The mplayer1/2/mpv CoreAudio audio output historically contained both usage
of AUHAL APIs (these go through the CoreAudio audio server) and the Device
based APIs (used only for output of compressed formats in exclusive mode).
The latter is a very unwieldy and low level API and pretty much forces us to
write a lot of code for little workr. Also with the widespread of HDMI, the
actual need for outputting compressed audio directly to the device is getting
lower (it was very useful with S/PDIF for bandwidth constraints not allowing
a number if channels transmitted in LPCM).
Considering how invasive it is (uses hog/exclusive mode), the new AO
(`ao_coreaudio_device`) is not going to be autoprobed but the user will have
to select it.
Something like "char *s = ...; isdigit(s[0]);" triggers undefined
behavior, because char can be signed, and thus s[0] can be a negative
value. The is*() functions require unsigned char _or_ EOF. EOF is a
special value outside of unsigned char range, thus the argument to the
is*() functions can't be a char.
This undefined behavior can actually trigger crashes if the
implementation of these functions e.g. uses lookup tables, which are
then indexed with out-of-range values.
Replace all <ctype.h> uses with our own custom mp_is*() functions added
with misc/ctype.h. As a bonus, these functions are locale-independent.
(Although currently, we _require_ C locale for other reasons.)
While I'm not very fond of "const", it's important for declarations
(it decides whether a symbol is emitted in a read-only or read/write
section). Fix all these cases, so we have writeable global data only
when we really need.
So the device buffer can be refilled quickly. Fixes dropouts in certain
cases: if all data is moved from the soft buffer to the audio device
buffer, the waiting code thinks it has to enter the mode in which it
waits for new data from the decoder. This doesn't work, because the
get_space() logic tries to keep the total buffer size down. get_space()
will return 0 (or a very low value) because the device buffer is full,
and the decoder can't refill the soft buffer. But this means if the AO
buffer runs out, the device buffer can't be refilled from the soft
buffer. I guess this mess happened because the code is trying to deal
with both AOs with proper event handling, and AOs with arbitrary
behavior.
Unfortunately this increases latency, as the total buffered audio
becomes larger. There are other ways to fix this again, but not today.
Fixes#818.
Apparently this can happen. So actually only return from waiting if ALSA
excplicitly signals that new output is available, or if we are woken up
externally.
This did not flush remaining audio in the buffer correctly (in case an
AO has an internal block size). So we have to make the audio feed thread
to write the remaining audio, and wait until it's done.
Checking the avoid_ao_wait variable should be enough to be sure that all
data that can be written was written to the AO driver.
This code handles buggy AOs (even if all AOs are bug-free, it's good for
robustness). Move handling of it to the AO feed thread. Now this check
doesn't require magic numbers and does exactly what's it supposed to do.
Until now, we've always calculated a timeout based on a heuristic when
to refill the audio buffers. Allow AOs to do it completely event-based
by providing wait and wakeup callbacks.
This also shuffles around the heuristic used for other AOs, and there is
a minor possibility that behavior slightly changes in real-world cases.
But in general it should be much more robust now.
ao_pulse.c now makes use of event-based waiting. It already did before,
but the code for time-based waiting was also involved. This commit also
removes one awkward artifact of the PulseAudio API out of the generic
code: the callback asking for more data can be reentrant, and thus
requires a separate lock for waiting (or a recursive mutex).
There were subtle and minor race conditions in the pull.c code, and AOs
using it (jack, portaudio, sdl, wasapi). Attempt to remove these.
There was at least a race condition in the ao_reset() implementation:
mp_ring_reset() was called concurrently to the audio callback. While the
ringbuffer uses atomics to allow concurrent access, the reset function
wasn't concurrency-safe (and can't easily be made to).
Fix this by stopping the audio callback before doing a reset. After
that, we can do anything without needing synchronization. The callback
is resumed when resuming playback at a later point.
Don't call driver->pause, and make driver->resume and driver->reset
start/stop the audio callback. In the initial state, the audio callback
must be disabled.
JackAudio of course is different. Maybe there is no way to suspend the
audio callback without "disconnecting" it (what jack_deactivate() would
do), so I'm not trying my luck, and implemented a really bad hack doing
active waiting until we get the audio callback into a state where it
won't interfere. Once the callback goes from AO_STATE_WAIT to NONE, we
can be sure that the callback doesn't access the ringbuffer or anything
else anymore. Since both sched_yield() and pthread_yield() apparently
are not always available, use mp_sleep_us(1) to avoid burning CPU during
active waiting.
The ao_jack.c change also removes a race condition: apparently we didn't
initialize _all_ ao fields before starting the audio callback.
In ao_wasapi.c, I'm not sure whether reset really waits for the audio
callback to return. Kovensky says it's not guaranteed, so disable the
reset callback - for now the behavior of ao_wasapi.c is like with
ao_jack.c, and active waiting is used to deal with the audio callback.
In most places where af_fmt2bits is called to get the bits/sample, the
result is immediately converted to bytes/sample. Avoid this by getting
bytes/sample directly by introducing af_fmt2bps.
In my opinion, we shouldn't use atomics at all, but ok.
This switches the mpv code to use C11 stdatomic.h, and for compilers
that don't support stdatomic.h yet, we emulate the subset used by mpv
using the builtins commonly provided by gcc and clang.
This supersedes an earlier similar attempt by Kovensky. That attempt
unfortunately relied on a big copypasted freebsd header (which also
depended on much more highly compiler-specific functionality, defined
reserved symbols, etc.), so it had to be NIH'ed.
Some issues:
- C11 says default initialization of atomics "produces a valid state",
but it's not sure whether the stored value is really 0. But we rely on
this.
- I'm pretty sure our use of the __atomic... builtins is/was incorrect.
We don't use atomic load/store intrinsics, and access stuff directly.
- Our wrapper actually does stricter typechecking than the stdatomic.h
implementation by gcc 4.9. We make the atomic types incompatible with
normal types by wrapping them into structs. (The FreeBSD wrapper does
the same.)
- I couldn't test on MinGW.
Use the time as returned by mp_time_us() for mpthread_cond_timedwait(),
instead of calculating the struct timespec value based on a timeout.
This (probably) makes it easier to wait for a specific deadline.
This didn't quite work. The main issue was that get_space tries to be
clever to reduce overall buffering, so it will cause the playloop to
decode and queue only as much audio as is needed to refill the AO in
reasonable time. Also, even if ignoring the problem, the logic of the
previous commit was slightly broken. (This required a few retries,
because I couldn't reproduce the issue on my own machine.)
When the audio buffer went low, but could not be refilled yet, it could
happen that the AO playback thread and the decode thread could enter a
wakeup feedback loop, causing up to 100% CPU usage doing nothing. This
happened because the decoder thread would wake up the AO thread when
writing 0 bytes of newly decoded data, and the AO thread in reaction
wakes up the decoder thread after writing 0 bytes to the AO buffer.
Fix this by waking up the decoder thread only if data was actually
played or queued. (This will still cause some redundant wakeups, but
will eventually settle down, reducing CPU usage close to ideal.)
I don't think this is really a very good idea because it is conceptually
incorrect but other prominent multimedia programs use this approach
(VLC and xbmc), and it seems to make the conversion more robust in certain
cases.
For example it has been reported, that configuring a receiver that can output
7.1 to output 5.1, will make CoreAudio report 8 channel descriptions, and the
last 2 descriptions will be tagged kAudioChannelLabel_Unknown.
Fixes#737
The code was falling back to the full waveext chmap_sel when less than 2
channels were detected. This new code is slightly more correct since it only
fills the chmap_sel with the stereo or mono chmap in the fallback case.
CoreAudio supports 3 kinds of layouts: bitmap based, tag based, and speaker
description based (using either channel labels or positional data).
Previously we tried to convert everything to bitmap based channel layouts,
but it turns out description based ones are the most generic and there are
built-in CoreAudio APIs to perform the conversion in this direction.
Moreover description based layouts support waveext extensions (like SDL and
SDR), and are easier to map to mp_chmaps.
The comment says that it wakes up the main thread if 50% has been
played, but in reality the value was 0.74/2 => 37.5%. Correct this. This
probably changes little, because it's a very fuzzy heuristic in the
first place.
Also move down the min_wait calculation to where it's actually used.
For some reason, the buffered_audio variable was used to "cache" the
ao_get_delay() result. But I can't really see any reason why this should
be done, and it just seems to complicate everything.
One reason might be that the value should be checked only if the AO
buffers have been recently filled (as otherwise the delay could go low
and trigger an accidental EOF condition), but this didn't work anyway,
since buffered_audio is set from ao_get_delay() anyway at a later point
if it was unset. And in both cases, the value is used _after_ filling
the audio buffers anyway.
Simplify it. Also, move the audio EOF condition to a separate function.
(Note that ao_eof_reached() probably could/should whether the last
ao_play() call had AOPLAY_FINAL_CHUNK set to avoid accidental EOF on
underflows, but for now let's keep the code equivalent.)
This was reported with PulseAudio 2.1. Apparently it still has problems
with reporting the correct delay. Since ao_pulse.c still has our custom
get_delay implementation, there's a possibility that this is our fault,
but this seems unlikely, because it's full of workarounds for issues
like this. It's also possible that this problem doesn't exist on
PulseAudio 5.0 anymore (I didn't explicitly retest it).
The check is general and works for all push based AOs. For pull based
AOs, this can't happen as pull.c implements all the logic correctly.
This should probably be an AO function, but since the playloop still has
some strange stuff (using the buffered_audio variable instead of calling
ao_get_delay() directly), just leave it and make it more explicit.
Same change as in e2184fcb, but this time for pull based AOs. This is
slightly controversial, because it will make a fast syscall from e.g.
ao_jack. And according to JackAudio developers, syscalls are evil and
will destroy realtime operation. But I don't think this is an issue at
all.
Still avoid locking a mutex. I'm not sure what jackaudio does in the
worst case - but if they set the jackaudio thread (and only this thread)
to realtime, we might run into deadlock situations due to priority
inversion and such. I'm not quite sure whether this can happen, but I'll
readily follow the cargo cult if it makes hack happy.
I'm not quite sure why ao_pulse needs this. It was broken when a thread
to fill audio buffers was added to AO - the pulseaudio callback was
waking up the playback thread, not the audio thread. But nobody noticed,
so it can't be very important. In any case, this change makes it wake up
the audio thread instead (which in turn wakes up the playback thread if
needed).
And also add a function ao_need_data(), which AO drivers can call if
their audio buffer runs low.
This change intends to make it easier for the playback thread: instead
of making the playback thread calculate a timeout at which the audio
buffer should be refilled, make the push.c audio thread wakeup the core
instead.
ao_need_data() is going to be used by ao_pulse, and we need to
workaround a stupid situation with pulseaudio causing a deadlock because
its callback still holds the internal pulseaudio lock.
For AOs that don't call ao_need_data(), the deadline is calculated by
the buffer fill status and latency, as before.
Also fix a format string mistake in a log call using it.
I wonder if this code shouldn't use FormatMessage, but it looks kind
of involved [1], so: no, thanks.
[1] http://support.microsoft.com/kb/256348/en-us
The volume controls in mpv now affect the session's volume (the
application's volume in the mixer). Since we do not request a
non-persistent session, the volume and mute status persist across mpv
invocations and system reboots.
In exclusive mode, WASAPI doesn't have access to a mixer so the endpoint
(sound card)'s master volume is modified instead. Since by definition
mpv is the only thing outputting audio in exclusive mode, this causes no
conflict, and ao_wasapi restores the last user-set volume when it's
uninitialized.
Due to the COM Single-Threaded Apartment model, the thread owning the
objects will still do all the actual method calls (in the form of
message dispatches), but at least this will be COM's problem rather than
having to set up several handles and adding extra code to the event
thread.
Since the event thread still needs to own the WASAPI handles to avoid
waiting on another thread to dispatch the messages, the init and uninit
code still has to run in the thread.
This also removes a broken drain implementation and removes unused
headers from each of the files split from the original ao_wasapi.c.
ao_wasapi.c was almost entirely init code mixed with option code and
occasionally actual audio handling code. Split most things to
ao_wasapi_utils.c and keep the audio handling code in ao_wasapi.c.
Gets rid of the internal ring buffer and get_buffer. Corrects an
implementation error in thread_reset.
There is still a possible race condition on reset, and a few refactors
left to do. If feasible, the thread that handles everything
WASAPI-related will be made to only handle feed events.
Assume obtained.samples contains the number of samples the SDL audio
callback will request at once. Then make sure ao.c will set the buffer
size at least to 3 times that value (or more).
Might help with bad SDL audio backends like ESD, which supposedly uses a
500ms buffer.
In general, we don't need to have a large hw audio buffer size anymore,
because we can quickly fill it from the soft buffer.
Note that this probably doesn't change much anyway. On my system (dmix
enabled), the buffer size is only 170ms, and ALSA won't give more. Even
when using a hardware device the buffer size seems to be limited to
341ms.
This AO pretended to support volume operations when in spdif passthrough
mode, but actually did nothing. This is wrong: at least the GET
operations must write their argument. Signal that volume is unsupported
instead.
This was probably a hack to prevent insertion of volume filters or so,
but it didn't work anyway, while recovering after failed volume filter
insertion does work, so this is not needed at all.
Since the addition of the AO feed thread, 200ms of latency (MIN_BUFFER)
was added to all push-based AOs. This is not so nice, because even AOs
with relatively small buffering (e.g. ao_alsa on my system with ~170ms
of buffer size), the additional latency becomes noticable when e.g.
toggling mute with softvol.
Fix this by trying to keep not only 200ms minimum buffer, but also 200ms
maximum buffer. In other words, never buffer beyond 200ms in total. Do
this by estimating the AO's buffer fill status using get_space and the
initially known AO buffer size (the get_space return value on
initialization, before any audio was played). We limit the maximum
amount of data written to the soft buffer so that soft buffer size and
audio buffer size equal to 200ms (MIN_BUFFER).
To avoid weird problems with weird AOs, we buffer beyond MIN_BUFFER if
the AO's get_space requests more data than that, and as long as the soft
buffer is large enough.
Note that this is just a hack to improve the latency. When the audio
chain gains the ability to refilter data, this won't be needed anymore,
and instead we can introduce some sort of buffer replacement function in
order to update data in the soft buffer.
It is possible to have ao->reset() called between ao->pause() and
ao->resume() when seeking during the pause. If the underlying PCM
supports pausing, resuming an already reset PCM will produce an error.
Avoid that by explicitly checking PCM state before calling
snd_pcm_pause().
Signed-off-by: wm4 <wm4@nowhere>
The uint64_t math would cause overflow at long enough system uptimes
(...such as 3 days), and any precision error given by the double math will
be under one milisecond.
One strange issue is that we apparently can't stop the audio API on
audio reset (ao_driver.reset). We could use SDL_PauseAudio, but that
doesn't specify whether remaining audio is dropped. We also could use
SDL_LockAudio, but holding that over a long time will probably be bad,
and it probably doesn't drop audio. This means we simply play silence
after a reset, instead of stopping the callback completely. (The
existing code ran into an underrun in this situation.)
The delay estimation works about the same. We simply assume that the
callback is locked to audio timing (like ao_jack), and that 1 callback
corresponds to 1 period. It seems this (removed) code fragment assumes
there 1 one period size delay:
// delay subcomponent: remaining audio from the next played buffer, as
// provided by the callback
buffer_interval += callback_interval;
so we explicitly do that too.
Until now, this was always conflated with uninit. This was ugly, and
also many AOs emulated this manually (or just ignored it). Make draining
an explicit operation, so AOs which support it can provide it, and for
all others generic code will emulate it.
For ao_wasapi, we keep it simple and basically disable the internal
draining implementation (maybe it should be restored later).
Tested on Linux only.
Same deal as with the previous commit. We don't lose any functionality,
except for waiting "properly" on audio end, instead of waiting using the
delay estimate.
This removes the ringbuffer management from the code, and uses the
generic code added with the previous commit. The result should be
pretty much the same.
The "estimate" sub-option goes away. This estimation is now always
active. The new code for delay estimation is slightly different, and
follows the claim of the jack framework that callbacks are timed
exactly.
This has 2 goals:
- Ensure that AOs have always enough data, even if the device buffers
are very small.
- Reduce complexity in some AOs, which do their own buffering.
One disadvantage is that performance is slightly reduced due to more
copying.
Implementation-wise, we don't change ao.c much, and instead "redirect"
the driver's callback to an API wrapper in push.c.
Additionally, we add code for dealing with AOs that have a pull API.
These AOs usually do their own buffering (jack, coreaudio, portaudio),
and adding a thread is basically a waste. The code in pull.c manages
a ringbuffer, and allows callback-based AOs to read data directly.
Since the AO will run in a thread, and there's lots of shared state with
encoding, we have to add locking.
One case this doesn't handle correctly are the encode_lavc_available()
calls in ao_lavc.c and vo_lavc.c. They don't do much (and usually only
to protect against doing --ao=lavc with normal playback), and changing
it would be a bit messy. So just leave them.
We want to move the AO to its own thread. There's no technical reason
for making the ao struct opaque to do this. But it helps us sleep at
night, because we can control access to shared state better.
This field will be moved out of the ao struct. The encoding code was
basically using an invalid way of accessing this field.
Since the AO will be moved into its own thread too and will do its own
buffering, the AO and the playback core might not even agree which
sample a PTS timestamp belongs to. Add some extrapolation code to handle
this case.
Use QueryPerformanceCounter to improve the accuracy of
IAudioClock::GetPosition.
While this is mainly for "realtime correctness" (usually the delay is a
single sample or less), there are cases where IAudioClock::GetPosition
takes a long time to return from its call (though the documentation doesn't
define what a "long time" is), so correcting its value might be important in
case the documented possible delay happens.
The lack of device latency made get_delay report latencies shorter than
they should; on systems with fast enough drivers, the delay is not
perceptible, but high enough invisible delays would cause desyncs.
I'm not yet completely sure whether this is 100% accurate, there are
some issues involved when repeatedly pausing+unpausing (the delay might
jump around by several dozen miliseconds), but seeking seems to be
working correctly now.
The player didn't quit when the end of a file was reached. The reason
for this is that jack reported a constant audio delay even when all
audio was done playing. Whether that was recognized as EOF by the player
depended whether the exact value was higher or lower than the player's
threshhold for what it considers no more audio.
get_delay() should return amount of time it takes until the last sample
written to the audio buffer reaches the speaker. Therefore, we have to
track the estimated time when the last sample is done, and subtract it
from the calculated latency. Basically, the latency is the only amount
of time left in the delay, and it should go towards 0 as audio reaches
ths speakers.
I'm not sure if this is correct, but at least it solves the problem. One
suspicious thing is that we use system time to estimate the end of the
audio time. Maybe using jack_frame_time() would be more correct. But
apart from this, there doesn't seem to be a better way to handle this.
Windows applications that use LoadLibrary are vulnerable to DLL
preloading attacks if a malicious DLL with the same name as a system DLL
is placed in the current directory. mpv had some code to avoid this in
ao_wasapi.c. This commit just moves it to main.c, since there's no
reason it can't be used process-wide.
This change can affect how plugins are loaded in AviSynth, but it
shouldn't be a problem since MPC-HC also does this and it's a very
popular AviSynth client.
1000ms is a bit insane. It makes behavior on playback speed changes
worse (because the player has to catch up the dropped audio due to
audio-chain reset), and perhaps makes seeking slower.
Note that the problem of playback speed changes misbehaving will be
fixed in the future, but even then we don't want to have a buffer that
large.
Always pass around mp_log contexts in the option parser code. This of
course affects all users of this API as well.
In stream.c, pass a mp_null_log, because we can't do it properly yet.
This will be fixed later.
Remove the nonsensical print_lock too.
Things that are called from the option validator are not converted yet,
because the option parser doesn't provide a log context yet.
This could output additional, potentially useful error messages. But the
callback is global and not library-safe, and would require us to add
additional state. Remove it, because it's obviously too much of a pain.
Also, it seems ALSA prints stuff to stderr anyway.
Since m_option.h and options.h are extremely often included, a lot of
files have to be changed.
Moving path.c/h to options/ is a bit questionable, but since this is
mainly about access to config files (which are also handled in
options/), it's probably ok.
The tmsg stuff was for the internal gettext() based translation system,
which nobody ever attempted to use and thus was removed. mp_gtext() and
set_osd_tmsg() were also for this.
mp_dbg was once enabled in debug mode only, but since we have log level
for enabling debug messages, it seems utterly useless.
The previous RING_BUFFER_COUNT value, 64, would have ao_wasapi buffer 64
frames of audio in the ring buffer; a delay of 1280ms, which is clearly
overkill for everything. A value of 8 buffers 8 frames for a total of
160ms.
When get_space was converted to returning samples instead of bytes, a
unit type mismatch in get_delay's calculation returned bogus values. Fix
by converting get_space's value back to bytes.
Fixes playback with ao_wasapi when reaching EOF, or seeking past it.
There are some use cases for this. For example, you can use it to set
defaults of automatically inserted filters (like af_lavrresample). It's
also useful if you have a non-trivial VO configuration, and want to use
--vo to quickly change between the drivers without repeating the whole
configuration in the --vo argument.
This partially reverts commit 7d152965. It turns out that at least some
ALSA drivers (at least snd-hda-intel) report incorrect audio delay with
non-native sample rates, even if the sample rate is only very slightly
different from the native one.
For example, 48000Hz is fine on my hda-intel system, while both 8000Hz
and 47999Hz lead to a delay off by 40ms (according to mpv's A/V
difference display), which suggests that something in ALSA is
calculating the delay using the wrong sample rate.
As an additional problem, with ALSA resampling enabled, using
48001Hz/float/2ch fails, while 49000Hz/float/2ch or 48001Hz/s16/2ch
work. With resampling disabled, all these cases work obviously, because
our own resampler doesn't just refuse any of these formats.
Since some people want to use the ALSA resampler (because it's highly
configurable, supports multiple backends, etc.), we still allow enabling
ALSA resampling with an ao_alsa suboption.
Previous code was using the values of the AudioChannelLabel enum directly to
create the channel bitmap. While this was quite smart it was pretty unreadable
and fragile (what if Apple changes the values of those enums?).
Change it to use a 'dumb' conversion table.
The code stopped at kAudioChannelLabel_TopBackRight and missed mapping for
5 more channel labels. These are in a completely different order that the mpv
ones so they must be mapped manually.
Resampling with non-ancient ALSA setups works fine, so there is no
need to keep this around. Furthermore, as of writing, the default
builtin resampler used by many ALSA setups (taken from libspeex)
actually has higher quality than the default resampling modes of
avresample and swresample.
Simulate proper handling of AOPLAY_FINAL_CHUNK. Print when underruns
occur (i.e. running out of data). Add some options that control
simulated buffer and outburst sizes.
All this is useful for debugging and self-documentation. (Note that
ao_null always was supposed to simulate an ideal AO, which is the reason
why it fools people who try to use it for benchmarking video.)
This should allow it to select better fallback formats, instead of
picking the first encoder sample format if ao->format is not equal to
any of the encoder sample formats.
Not sure what is supposed to happen if the encoder provides no
compatible sample format (or no sample format list at all), but in this
case ao_lavc.c still fails gracefully.
These must be written even if there was no "final frame", e.g. due to
the player being exited with "q".
Although the issue is mostly of theoretical nature, as most audio codecs
don't need the final encoding calls with NULL data. Maybe will be more
relevant in the future.
ao_null should simulate a "perfect" AO, but framestepping behaved quite
badly with it. Framstepping usually exposes problems with AOs dropping
their buffers on pause, and that's what happened here.
Since ao_openal simulates multi-channel audio by placing a bunch of
mono-sources in 3D space, non-interleaved audio is a perfect match for
it. We just have to remove the interleaving code.
ALSA supports non-interleaved audio natively using a separate API
function for writing audio. (Though you have to tell it about this on
initialization.) ALSA doesn't have separate sample formats for this,
so just pretend to negotiate the interleaved format, and assume that
all non-interleaved formats have an interleaved companion format.
Replace the code that used a single buffer with mp_audio_buffer. This
also enables non-interleaved output operation, although it's still
disabled, and no AO supports it yet.
This comes with two internal AO API changes:
1. ao_driver.play now can take non-interleaved audio. For this purpose,
the data pointer is changed to void **data, where data[0] corresponds to
the pointer in the old API. Also, the len argument as well as the return
value are now in samples, not bytes. "Sample" in this context means the
unit of the smallest possible audio frame, i.e. sample_size * channels.
2. ao_driver.get_space now returns samples instead of bytes. (Similar to
the play function.)
Change all AOs to use the new API.
The AO API as exposed to the rest of the player still uses the old API.
It's emulated in ao.c. This is purely to split the commits changing all
AOs and the commits adding actual support for outputting N-I audio.
No AO can handle these, so it would be a problem if they get added
later, and non-interleaved formats get accepted erroneously. Let them
gracefully fall back to other formats.
Most AOs actually would fall back, but to an unrelated formats. This is
covered by this commit too, and if possible they should pick the
interleaved variant if a non-interleaved format is requested.
Now to shift audio pts when outputting to e.g. avi, you need an explicit
facility to insert/remove initial samples, to avoid initial regions of
the video to be sped up/slowed down.
One such facility is the delay filter in libavfilter.
Set the PulseAudio stream title, just like the VO window title is set.
Refactor update_vo_window_title() so that we can use it for AOs too.
The ao_pulse.c bit is stolen from MPlayer.
I have no idea what these do, but apparently they are needed to inform
ALSA about spdif configuration. First, replace the literal constant "6"
for the AES0 parameter with the symbolic constants from the ALSA
headers (the final value is the same). Second, copy paste some funky
looking parameter setup from VLC's alsa output for setting the AES1,
AES2, AES3 parameters. (The code is actually not literally copy-pasted,
but does exactly the same.)
My small but non-zero hope is that this could make DTS-HD work, or at
least work into that direction. I can't test spdif stuff though, and
for DTS-HD not even opening the ALSA device succeeds on my system.
Using spdif with alsa requires adding magic parameters to the device
name, and the existing code tried to deal with the situation when the
user wanted to add parameters too.
Rewrite this code, in particular remove the duplicated parameter string
as preparation for the next commit. The new code is a bit stricter, e.g.
it doesn't skip spaces before and after '{' and '}'. (Just don't add
spaces.)
ao_lavc.c accesses ao->buffer, which I consider internal. The access was
done in ao_lavc.c/uninit(), which tried to get the left-over audio in
order to write the last (possibly partial) audio frame. The play()
function didn't accept partial frames, because the AOPLAY_FINAL_CHUNK
flag was not correctly set, and handling it otherwise would require an
internal FIFO.
Fix this by making sure that with gapless audio (used with encoding),
the AOPLAY_FINAL_CHUNK is set only once, instead when each file ends.
Basically, move the hack in ao_lavc's uninit to uninit_player.
One thing can not be entirely correctly handled: if gapless audio is
active, we don't know really whether the AO is closed because the file
ended playing (i.e. we want to send the buffered remainder of the audio
to the AO), or whether the user is quitting the player. (The stop_play
flag is overwritten, fixing that is perhaps not worth it.) Handle this
by adding additional code to drain the AO and the buffers when playback
is quit (see play_current_file() change).
Test case: mpv avdevice://lavfi:sine=441 avdevice://lavfi:sine=441 -length 0.2267 -gapless-audio
The configure followed 5 different convetions of defines because the next guy
always wanted to introduce a new better way to uniform it[1]. For an
hypothetic feature 'hurr' you could have had:
* #define HAVE_HURR 1 / #undef HAVE_DURR
* #define HAVE_HURR / #undef HAVE_DURR
* #define CONFIG_HURR 1 / #undef CONFIG_DURR
* #define HAVE_HURR 1 / #define HAVE_DURR 0
* #define CONFIG_HURR 1 / #define CONFIG_DURR 0
All is now uniform and uses:
* #define HAVE_HURR 1
* #define HAVE_DURR 0
We like definining to 0 as opposed to `undef` bcause it can help spot typos
and is very helpful when doing big reorganizations in the code.
[1]: http://xkcd.com/927/ related
The code was selecting PA_CHANNEL_POSITION_MONO for MP_SPEAKER_ID_FC,
which is correct only with the "mono" channel layout, but not anything
else. Remove the mono entry, and handle mono separately.
See github issue #326.
It's true that ALSA uses alloca() in some of its API functions, but
since this is hidden behind macros in the ALSA headers, we have no
reason to include alloca.h ourselves.
Might help with portability (FreeBSD).
At least not with ffmpeg.
Honestly, I have no idea how little endian AC3 works at all, since
ao_pcm doesn't do anything special about it, and treats it like s16le.
Maybe it's broken and ffmpeg has special logic to detect it.
Was disabled by default, was never used, internal support was
inconsistent and poor, and there has been virtually no interest in
creating translations.
And I don't even think that a terminal program should be translated.
This is something for (hypothetical) GUIs.
Output silence to the output buffer during underruns. This removes small
occasional glitches that happen before the AUHAL is actually paused from the
`audio_pause` call.
Fixes#269
Trying to connect multiple mpv clients to JACK with the
JackUseExactName option would fail unless the user manually
specifies a unique client name. This changes the behavior
to automatically generate a unique name if the requested
one is already in use.
Use the new MP_ macros for some AOs instead of mp_msg.
Not all AOs are converted, and some only partially. In some cases, some
additional cosmetic changes are made.
Using the default output audio unit should provide a much better user
exeperience since it changes automatically the output device based on which
becomes the default one.
This was removed in d427b4fd. I now found a sample that causes underruns when
moving to a chapter and apparently this is also a problem when taking
screenshots.
Reverts one of the changes from 18777ecf. `kAudioObjectPropertyScopeOutput`
was introduced in the 10.8 SDK while `kAudioDevicePropertyScopeOutput` was
moved to `AudioHardwareDeprecated.h`. Since the deprecation is silent for now
(no warnings), just use the old constant.
Either way, they both evaluate to 'outp', and in the 10.8 SDK the deprecated
constant is defined in terms of the non-deprecated one.
Fixes#155
This is not done automatically by CoreAudio. I am told that it would a PITA
to have to switch back the format manually on the device (especially if the
same device is used for lpcm output).
b2f9e0610 introduced this functionality with code that was quite 'monolithic'.
Split the functionality over several functions and ose the new macros to get
array properties.
Introduce some macros to deal with properties. These allow to work around the
limitation of CoreAudio's API being `void **` based. The macros allow to keep
their client's code DRY, by not asking size and other details which can be
derived by the macro itself. I have no idea why Apple didn't design their API
like this in the first place.
* ao_coreaudio_utils: contains several utility function
* ao_coreaudio_properties: contains functions to set and get audio object
properties.
Conflicts:
audio/out/ao_coreaudio.c
The condition was checked wrongly on asbd which is the input format
description. This lead to the condition always being true, thus selecting lpcm
streams for digital input.
The initialization is split more clearly between compressed and lpcm case.
For the compressed case, format selection is simplified a lot and negotiation
removed. The way it was written it just passed back to the core the original
requested format, not what was found available on hardware.
Since this is most likely useless for the compressed case, I didn't bother
with this. In the future I'd like to split this AO in two one that only uses
the AUHAL and the other with direct access to the hardware so that even
passthrough of lcpm can be possible. This would decrease the latency,
audiophiles would like that.
Split out some utility functions that use the CoreAudio API but are not related
the main task of the AOs (which is to move data correctly to the ringbuffer).
These are mainly need for the verbosity of the CoreAudio API and are just
obscuring the 'real' code.
Read only the requested amount by the AUHAL (instead of all the buffered data).
No idea what the deal is with pausing the audio units if there is no audio to
play, maybe to avoid underruns of some sort. Anyway from my tests this
condition never occurred so I'm removing it all.
MSDN tells me to multiply the samplerates by 4 (for setting up the S/PDIF
signal frequency), but doesn't mention that I'm only supposed to do it
on the new, NT6.1+ IEC 61937 structs. Works on my Realtek Digital Output,
but as I can't connect any hardware to it I can't hear the result.
Also, always ask for little-endian AC3. I'm not sure if this is supposed
to be LE or NE, but Windows is LE on all platforms, so we go with LE.
Entirely untested as this troper has no S/PDIF hardware.
Refuses trying any other format if we can't use passthrough, or we would
end up sending white noise at the user.
Do an strstr match against the device description and, if we have only
a single match, take it. This works as long as the devices in the system
don't change, but it's not supposed to be reliable; if one wants
reliability, one uses the device ID string.
Formatting.
This could turn valid parameters into syntax errors by the mere presence
or abscence of a device (e.g. USB audio devices), so don't do that.
We do validate that, if the parameter is an integer, it is not negative.
We also respond to the "help" parameter, which does the same as the "list"
suboption but exits after listing.
Demote the validation logging to MSGL_DBG2.
Validates by trying to pick the device using the device enumerator and
aborting with out of range on failure.
Refactors find_and_load_device to not use the wasapi_state; it might be
called during validation. Adds missing CoInitialize/CoUninitialize calls.
Remove unused variables (the SAFE_RELEASE macros keep them referenced so
compiler warnings don't help finding them...).
Remove the IMMDeviceEnumerator from the wasapi_state, it's only needed
during initialization and initialization is now well factored enough to
get rid of it.
Try and connect to unplugged devices as well when using the device ID
string.
Omit "{0.0.0.00000000}." on devices that start with that substring,
re-add when searching for devices by ID.
Log the device ID of the default device.
Log the friendly name of the used device.
Consistently refer to endpoints/devices as devices, as this is more
consistent with mpv terminology.