The vdpau_mixer could fail to be recreated properly if preemption
occured at some point before playback initialization (like when using
--hwdec-preload and the opengl-cb API).
Normally, the vdpau_mixer was supposed to be marked invalid when the
components using it detect a preemption, e.g. in hwdec_vdpau.c. This one
didn't mark the vdpau_mixer as invalid if preemption was detected in
reinit(), only in map_image().
It's cleaner to detect preemption directly in the vdpau_mixer, which
ensures it's always recreated correctly.
The "fs-only" choice sets the _NET_WM_BYPASS_COMPOSITOR to 1 if the
window is fullscreened, and 0 otherwise. (0 is specified to be the
implicit default - i.e. no change is requested in windowed mode.)
In particular, change the default to "fs-only".
Fixes#2582.
Including initguid.h at the top of a file that uses references to GUIDs
causes the GUIDs to be declared globally with __declspec(selectany). The
'selectany' attribute tells the linker to consolidate multiple
definitions of each GUID, which would be great except that, in Cygwin
and MinGW GCC 6.1, this method of linking makes the GUIDs conflict with
the ones declared in libuuid.a.
Since initguid.h obsoletes libuuid.a in modern compilers that support
__declspec(selectany), add initguid.h to all files that use GUIDs and
remove libuuid.a from the build.
Fixes#3097
Substraction of 1 is not necessary due to .right and .bottom values of RECT
struct describing a point one pixel outside of the rectangle.
Fixes#2935. (2.b)
This gives us 16 bit fixed-point integer texture formats, including
ability to sample from them with linear filtering, and using them as FBO
attachments.
The integer texture format path is still there for the sake of ANGLE,
which does not support GL_EXT_texture_norm16 yet.
The change to pass_dither() is needed, because the code path using
GL_R16 for the dither texture relies on glTexImage2D being able to
convert from GL_FLOAT to GL_R16. GLES does not allow this. This could be
trivially fixed by doing the conversion ourselves, but I'm too lazy to
do this now.
Basically this gets rid of the need for the accessors in d3d11va.h, and
the code can be cleaned up a little bit.
Note that libavcodec only defines a ID3D11VideoDecoderOutputView pointer
in the last plane pointers, but it tolerates/passes through the other
plane pointers we set.
This uses ID3D11VideoProcessor to convert the video to a RGBA surface,
which is then bound to ANGLE. Currently ANGLE does not provide any way
to bind nv12 surfaces directly, so this will have to do.
ID3D11VideoContext1 would give us slightly more control about the
colorspace conversion, though it's still not good, and not available
in MinGW headers yet.
The video processor is created lazily, because we need to have the coded
frame size, of which AVFrame and mp_image have no concept of. Doing the
creation lazily is less of a pain than somehow hacking the coded frame
size into mp_image.
I'm not really sure how ID3D11VideoProcessorInputView is supposed to
work. We recreate it on every frame, which is simple and hopefully
doesn't affect performance.
Sucks, but better than freezing forever given the (to me) unpredictable
RPI behavior. This will be good enough to drop out of vsync timing mode,
or to abort playback.
Recreate all dispmanx objects after mode changes signalled by the TV
callback. This is needed since dispmanx objects are marked as invalid
and cease working.
One important point is that the vsync callbacks will stop coming when
this happens, so restoring the callback is important.
Note that the MMAL renderer itself does not get trashed by the firmware
on such events, but we completely reconfigure it anyway when it happens.
A minor simplification. Most callers don't need this, and there's no
good reason why the caller should provide an "initializer" like this.
(This function calls mp_image_new_dummy_ref(), which has no reason
for an initializer either.)
The active texture and some pixelstore parameters are now always reset
to defaults when entering and leaving the renderer. Could be important
for libmpv.
As of ffmpeg git master, only the libavdevice decklink wrapper supports
this. Everything else has dropped support.
You're now supposed to use AV_CODEC_ID_WRAPPED_AVFRAME, which works a
bit differently. Normal AVFrames should still work for these encoders.
Since what we're doing is a linear blend of the four colors, we can just
do it for free by using GPU sampling.
This requires significantly fewer texture fetches and calculations to
compute the final color, making it much more efficient. The code is also
much shorter and simpler.
Until now, we have made the assumption that a driver will use only 1
hardware surface format. the format is dictated by the driver (you
don't create surfaces with a specific format - you just pass a
rt_format and get a surface that will be in a specific driver-chosen
format).
In particular, the renderer created a dummy surface to probe the format,
and hoped the decoder would produce the same format. Due to a driver
bug this required a workaround to actually get the same format as the
driver did.
Change this so that the format is determined in the decoder. The format
is then passed down as hw_subfmt, which allows the renderer to configure
itself with the correct format. If the hardware surface changes its
format midstream, the renderer can be reconfigured using the normal
mechanisms.
This calls va_surface_init_subformat() each time after the decoder
returns a surface. Since libavcodec/AVFrame has no concept of sub-
formats, this is unavoidable. It creates and destroys a derived
VAImage, but this shouldn't have any bad performance effects (at
least I didn't notice any measurable effects).
Note that vaDeriveImage() failures are silently ignored as some
drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL
interop. In addition, we still probe whether we can map an image
in the EGL interop code. This is important as it's the only way
to determine whether EGL interop is supported at all. With respect
to the driver bug mentioned above, it doesn't matter which format
the test surface has.
In vf_vavpp, also remove the rt_format guessing business. I think the
existing logic was a bit meaningless anyway. It's not even a given
that vavpp produces the same rt_format for output.
In the past, --video-unscaled also disabled zooming and aspect ratio
corrections. But this didn't make much sense in terms of being a useful
option. The new behavior just sets the initial video size to be
unscaled, but it's still affected by zoom commands and aspect ratio
corrections.
To get the old behavior back, --video-aspect=0 --video-zoom=0 need to be
added as well (in the general case). Most of the time it should not make
a difference though.
Also, there seems to have been some additional dst_rect clamping code
inside src_dst_split_scaling that didn't seem to either be necessary nor
ever get triggered. (The code immediately above it already makes sure to
crop the video if it's larger than the dst_rect)
No idea why it was there, but I just removed it.
Apply basic transformations like rotation by 90° and mirroring when
sampling from the source textures. The original idea was making this
part of img_tex.transform, but this didn't work: lots of code plays
tricks on the transform, so manipulating it is not necessarily
transparent, especially when width/height are switched. So add a new
pre_transform field, which is strictly applied before the normal
transform.
This fixes most glitches involved with rotating the image.
Cropping and rotation are now weirdly separated, even though they could
be done in the same step. I think this is not much of a problem, and
has the advantage that changing panscan does not trigger FBO
reallocations (I think...).
Typically happens with some implementations if no context is currrent,
or is otherwise broken. This is particularly relevant to the opengl_cb
API, because the API user will have no other indication what went wrong.
The underlying intention of this code is to make changing
--videotoolbox-format at runtime work. For this reason, the format can't
just be statically setup, but must be read from the option at runtime.
This means the format is not fixed anymore, and we have to make sure the
renderer is property reinitialized if the format changes. There is
currently no way to trigger reinit on this level, which is why the
mp_image_params.hw_subfmt field was introduced.
One sketchy thing remains: normally, the renderer is supposed to be
involved with VO format negotiation, which would ensure that the VO
can take the format at all. Since the hw_subfmt is not part of this
format negotiation, it's implied the get_vt_fmt() callback only
returns formats supported by the renderer. This is not necessarily
clear because vo_opengl checks this with converted_imgfmt separately.
None of this matters in practice though, because we know all formats
are always supported.
(This still requires somehow triggering decoder reinit to make the
change effective.)
The sync-by-display mode relies on using the vsync statistics for
timing. As a consequence discontinuities must be handled somehow. Until
now we have done this by completely resetting these statistics.
This can be somewhat annoying, especially if the GL driver's vsync
timing is not ideal. So after e.g. a seek it could take a second until
it locked back to the proper values.
Change it not to reset all statistics. Some state obviously has to be
reset, because it's a discontinuity. To make it worse, the driver's
vsync behavior will also change on such discontinuities. To compensate,
we discard the timings for the first 2 vsyncs after each discontinuity
(via num_successive_vsyncs). This is probably not fully ideal, and
num_total_vsync_samples handling in particular becomes a bit
questionable.
The past behavior was a bit weird, especially when zooming out. There
was no simple way to zoom in or out in consistent increments using
keybindings alone.
The new behavior preserves most of the old behavior's semantics but
scales out to infinity better. It coincidentally also makes it
really easy to get clean power of 2 ratios (e.g. 2x, 4x, 8x and their
inverses).
Fixes#3004.
This makes the black point closer (chromatically) to the white point, by
ensuring channels keep their consistent brightness ratios as they go
down to zero.
I also raised the 3DLUT version as this changes semantics and is a
separate commit from the previous one.
This commit refactors the 3DLUT loading mechanism to build the 3DLUT
against the original source characteristics of the file. This allows us,
among other things, to use a real BT.1886 profile for the source. This
also allows us to actually use perceptual mappings. Finally, this
reduces errors on standard gamut displays (where the previous 3DLUT
target of BT.2020 was unreasonably wide).
This also improves the overall accuracy of the 3DLUT due to eliminating
rounding errors where possible, and allows for more accurate use of
LUT-based ICC profiles.
The current code is somewhat more ugly than necessary, because the idea
was to implement this commit in a working state first, and then maybe
refactor the profile loading mechanism in a later commit.
Fixes#2815.
This also draws it after color management etc. In a nutshell, this
change makes the transparency checkerboard independent of upscaling,
panning, cropping etc. It will always be the same apparent size and
position (relative to the window).
It will also be independent of the video colorspace and such things.
(Note: This might cause white imbalance issues if playing a file with a
white point that does not match the display, in absolute colorimetric
mode. But that's uncommon, especially in conjunction with transparent
image files, so it's not a primary concern here)
Until now, we've let the windowing backend decide. But since they
usually require premultiplied alpha, and premultiplied alpha is easier
to handle, hardcode it.
The recent changes fixed rotation handling, but reversed the rotation
direction. The direction is expected to be counter-clockwise, because
demuxers export video rotation metadata as such.
This has been completely broken since commit 93546f0c. But even before,
rotation handling did not make too much sense. In particular, it rotated
the contents of the cropped image, instead of adjusting the crop
rectangle as well. The result was that things like panscan or zooming
did not behave as expected with rotation applied.
The same is true for vertical flipping. Flipping is triggered by
negative image stride. OpenGL does not support flipping the image on
upload, so it's done as part of the rendering. It can be triggered with
--vf=flip, but other filters and even decoders could setup negative
stride to flip the image.
Fix these issues by applying transforms to texture coordinates properly,
and by making rotation and flipping part of these transforms.
This still doesn't work properly for separated scaling. The issue is
that we'd have to adjust how the passes are done. For now, pick a very
stupid solution by rotating the image to a FBO, and then scaling from
that. This has the avantage that the scale logic doesn't have to be
complicated for such a rare case. It could be improved later.
Prescaling is apparently still broken. I don't know if chroma
positioning works properly either. None of this should affect the case
with no rotation.
gl_transform_vec() assumed column-major, while everything else seemed to
assumed row-major memory organization for gl_transform.m. Also,
gl_transform_trans() seems to contain additional confusion.
This didn't matter until now, as everything has been orthogonal, this
the swapped matrix entries were always 0.
If the texture count is lower than 4, entries in va.textcoord[] will
remain uninitialized. While this is unlikely to be a problem (since
these values are unused on the shader side too), it's not nice and might
explain some things which have shown up in valgrind.
Fix by always initializing the whole thing.