The first one is printed even if the user disabled video (or there's no
video), so just remove it. The second one uses deprecated sub-option
syntax, so remove that as well.
And introduce a global option which does this. Or more precisely, this
deprecates the global wasapi and coreaudio options, and adds a new one
that merges their functionality. (Due to the way the sub-option
deprecation mechanism works, this is simpler.)
I decided that it's too much work to convert all the VO/AOs to the new
option system manually at once. So here's a shitty hack instead, which
achieves almost the same thing. (The only user-visible difference is
that e.g. --vo=name:help will list the sub-options normally, instead of
showing them as deprecation placeholders. Also, the sub-option parser
will verify each option normally, instead of deferring to the global
option parser.)
Another advantage is that once we drop the deprecated options,
converting the remaining things will be easier, because we obviously
don't need to add the compatibility hacks.
Using this mechanism is separate in the next commit to keep the diff
noise down.
Instead of requiring each VO or AO to manually add members to MPOpts and
the global option table, make it possible to register them automatically
via vo_driver/ao_driver.global_opts members. This avoids modifying
options.c/options.h every time, including having to duplicate the exact
ifdeffery used to enable a driver.
Normally I'd prefer a bunch of smaller functions with fewer parameters
over a single function with a lot of parameters. But future changes will
require messing with the parameters in a slightly more complex way, so a
combined function will be needed anyway. The now-unused "global"
parameter is required for later as well.
Positional parameters cause problems because they can be ambiguous with
flag options. If a flag option is removed or turned into a non-flag
option, it'll usually be interpreted as value for the first sub-option
(as positional parameter), resulting in very confusing error messages.
This changes it into a simple "option not found" error.
I don't expect that anyone really used positional parameters with --vo
or --ao. Although the docs for --ao=pulse seem to encourage positional
parameters for the host/sink options, which means it could possibly
annoy some PulseAudio users.
--vf and --af are still mostly used with positional parameters, so this
must be a configurable option in the option parser.
With the previous commit, ao_alsa.c now has 3 possible ways to pause
playback. Actually all 3 of them need get_delay() to fake its return
value, so don't duplicate that code.
Also much of the code looks a bit questionable when considering
inconsistent pause/resume calls from outside, so ignore redundant calls.
push.c does not handle this automatically, and AOs using push.c have to
handle it themselves. Also, ALSA is low-level enough that it needs
explicit support in user code. At least I haven't found any option that
does this.
We still can get away relatively cheaply by abusing underflow-handling
for this. ao_alsa.c already configures ALSA to handle underflows by
playing silence. So we purposely induce an underflow when opening the
device, as well as when pausing or resetting the device.
This introduces minor misbehavior: it doesn't account for the additional
delay the initial silence adds, unless the device has fully played the
fragment of silence when the player starts sending data to it. But
nobody cares.
Exactly the same situation as with ao_alsa in commit 0b144eac (except
that we can detect the situation better under wasapi).
Essentially, wasapi will allow us to output any sample format, and not
just the one configured by the user in the audio system settings.
This commit adds an --audio-channel=auto-safe mode, and makes it the
default. This mode behaves like "auto" with most AOs, except with
ao_alsa. The intention is to allow multichannel output by default on
sane APIs. ALSA is not sane as in it's so low level that it will e.g.
configure any layout over HDMI, even if the connected A/V receiver does
not support it. The HDMI fuckup is of course not ALSA's fault, but other
audio APIs normally isolate applications from dealing with this and
require the user to globally configure the correct output layout.
This will help with other AOs too. ao_lavc (encoding) is changed to the
new semantics as well, because it used to force stereo (perhaps because
encoding mode is supposed to produce safe files for crap devices?).
Exclusive mode output on Windows might need to be adjusted accordingly,
as it grants the same kind of low level access as ALSA (requires more
research).
In addition to the things mentioned above, the --audio-channels option
is extended to accept a set of channel layouts. This is supposed to be
the correct way to configure mpv ALSA multichannel output. You need to
put a list of channel layouts that your A/V receiver supports.
When selecting a device that simply doesn't exist with --audio-device,
AudioUnit will still initialize and start playback without complaining.
But it will never call the audio render callback, which leads to audio
playback simply not progressing.
I couldn't find a way to get AudioUnit to report an error at all, so
here's a crappy hack that takes care of this in most cases. We assume
that all devices have a kAudioDevicePropertyDeviceIsAlive property.
Invalid devices will error when querying the property (with 'obj!' as
status code).
This is not the correct fix, because we try to double-guess AudioUnit's
behavior by accessing a lower label API. Suggestions welcome.
This helps with shitty APIs and even shittier drivers (I'm looking at
you, ALSA). Sometimes they won't send proper wakeups. This can be fine
during playback, when for example playing video, because mpv still will
wakeup the AO outside of its own wakeup mechanisms when sending new data
to it. But when draining, it entirely relies on the driver's wakeup
mechanism. So when the driver wakeup mechanism didn't work, it could
hard freeze while waiting for the audio thread to play the rest of the
data.
Avoid this by waiting for an upper bound. We set this upper bound at the
total mpv audio buffer size plus 1 second. We don't use the get_delay
value, because the audio API could return crap for it, and we're being
paranoid here. I couldn't confirm whether this works correctly, because
my driver issue fixed itself.
(In the case that happened to me, the driver somehow stopped getting
interrupts. aplay froze instead of playing audio, and playing audio-only
files resulted in a chop party. Video worked, for reasons mentioned
above, but drainign froze hard. The driver problem was solved when
closing all audio output streams in the system. Might have been a dmix
related problem too.)
When we're draining, don't wakeup the core on every buffer fill, since
unlike during normal playback, we won't actually get more data. The
wakeup here conceptually works like wakeups with condition variables, so
redundant wakeups do not hurt, so this is just a minor change and
nothing of consequence.
(Final EOF also requires waking up the core, but there is separate code
to send this notification.)
Also dump the p->still_playing field in trace logging.
For clang, it's enough to just put (void) around usages we are
intentionally ignoring the result of.
Since GCC does not seem to want to respect this decision, we are forced
to disable the warning globally.
Since the main thread is shared by other things in the player, using STA (single
threaded aparement) may have caused problems. Instead initialize in MTA
(multithreaded apartment).
This reportedly makes it work on ODROID-C2. The idea for this hack is
taken from kodi; they unconditionally set some or all of those flags.
I don't trust ALSA enough to hope that setting these flags couldn't
break something else, so we try without them first.
It's not clear whether this is a driver bug or a bug in the ALSA libs.
There is no ALSA bug tracker (the ALSA website has had a dead link to
a deleted bug tracker fo years). There's not much we can do other than
piling up ridiculous hacks. At least I think that at this point invalid
API usage by mpv can be excluded as a cause.
ALSA might be the worst audio API ever.
Including initguid.h at the top of a file that uses references to GUIDs
causes the GUIDs to be declared globally with __declspec(selectany). The
'selectany' attribute tells the linker to consolidate multiple
definitions of each GUID, which would be great except that, in Cygwin
and MinGW GCC 6.1, this method of linking makes the GUIDs conflict with
the ones declared in libuuid.a.
Since initguid.h obsoletes libuuid.a in modern compilers that support
__declspec(selectany), add initguid.h to all files that use GUIDs and
remove libuuid.a from the build.
Fixes#3097
Setting this here is a race condition. It's called from a CoreAudio
callbacks, and there are no locks. It's a string, so this can be
potentially severe.
It's hard to fix and only CoreAudio supported it, so remove it.
This causes the "audio-out-detected-device" property to return nothing
on all platforms.
This is particularly useful for opus which allows only a fairly restrictive set
of samplerates. If the codec doesn't provide a list of samplerates, just
continue to try the requsted one and hope for the best.
fixes#2957
This eliminates some intermittent pops heard in a HRT MicroStreamer DAC
uncorrelated with user interaction. As a bonus, this resolves#1773 which I can
o longer reproduce as of this commit. Leave the 50ms buffer for shared mode
since that seems to be working quite well.
This is also the way exclusive mode is done in the MSDN example code:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370844%28v=vs.85%29.aspx
This was originally increased in c545c40 to mitigate glitches that subsequent
refactorings have eliminated.
A COM message loop is apparently totally inappropriate for a low latency
thread. It leads to audio glitches because the thread doesn't wake up fast
enough when it should. It also causes mysterious correlations between the vo
and ao thread (i.e., toggling fullscreen delays audio feed events). Instead use
an mp_dispatch_queue to set/get volume/mute/session display name from the audio
thread. This has the added benefit of obviating the need to marshal the
associated interfaces from the audio thread.
Don't wait for WASAPI to send another feed event if we detect an underfull
buffer. It seems that WASAPI doesn't always send extra feed events if
something causes rendering to fall behind. This causes every subsequent playback
buffer to under-run until playback is reset. The fix is simply to do a one-shot
double feed when this happens, which allows rendering to catch up with playback.
This was observed to happen when using MsgWaitForMultipleObjects to wait for the
feed event and toggling fullscreen with vo=opengl:backend=win. This commit
improves the behaviour in that specific case and more generally makes exclusive
mode significantly more robust.
This commit also moves the logic to avoid *over*filling the exclusive mode
buffer into thread_feed right next to the above described underfil logic.
OpenSL ES is used on Android. At the moment only stereo output is
supported. Two options are supported: 'frames-per-buffer' and
'sample-rate'. To get better latency the user of libmpv should pass
values obtained from AudioManager.getProperty(PROPERTY_OUTPUT_FRAMES_PER_BUFFER)
and AudioManager.getProperty(PROPERTY_OUTPUT_SAMPLE_RATE).
I can't explain this, but it seems to be a similar case to the ALSA HDMI
one. I find it hard to tell because of the slightly different names and
conventions in use in libavcodec, WAVEEXT channel masks, decoders, codec
specifications, HDMI, and platform audio APIs.
The fix is the same as the one for ao_alsa (see commit be49da72). This
should fix at least playing 7.1 sources on OSX with 7.1(rear) selected
in Audio MIDI Setup. The ao_alsa commit mentions XBMC, but I couldn't
find out where it does that or if it also does that for CoreAudio. It's
woth noting that PHT (essentially an old XBMC fork) also exhibited the
incorrect behavior (i.e. side and back speakers were swapped).
Correctly avoid a reload if the current device was specified by the user through
--audio-device. Previously, we only recognized if the user had specified
--ao=wasapi:device=.
Notably, the address of the enumerator->count member is passed to
IMMDeviceCollection::GetCount(), which expects a UINT variable, not an int. How
did this ever work?
Previously, if the enumerator found no devices, attempting to get the default
device with IMMDeviceEnumerator::GetDefaultAudioEndpoint would result in the
cryptic (and undocumented) E_PROP_ID_UNSUPPORTED. This way, the user is given a
better indication of what exactly is wrong and isolates any other possible
triggers for this error.
While the situation is not really clear for the other rewritten
coreaudio code, it's very clear for the channel mapping code. It was all
written by us. (MPlayer doesn't even have any channel map handling.)
This covers source files which were added in mplayer2 and mpv times
only, and where all code is covered by LGPL relicensing agreements.
There are probably more files to which this applies, but I'm being
conservative here.
A file named ao_sdl.c exists in MPlayer too, but the mpv one is a
complete rewrite, and was added some time after the original ao_sdl.c
was removed. The same applies to vo_sdl.c, for which the SDL2 API is
radically different in addition (MPlayer supports SDL 1.2 only).
common.c contains only code written by me. But common.h is a strange
case: although it originally was named mp_common.h and exists in MPlayer
too, by now it contains only definitions written by uau and me. The
exceptions are the CONTROL_ defines - thus not changing the license of
common.h yet.
codec_tags.c contained once large tables generated from MPlayer's
codecs.conf, but all of these tables were removed.
From demux_playlist.c I'm removing a code fragment from someone who was
not asked; this probably could be done later (see commit 15dccc37).
misc.c is a bit complicated to reason about (it was split off mplayer.c
and thus contains random functions out of this file), but actually all
functions have been added post-MPlayer. Except get_relative_time(),
which was written by uau, but looks similar to 3 different versions of
something similar in each of the Unix/win32/OSX timer source files. I'm
not sure what that means in regards to copyright, so I've just moved it
into another still-GPL source file for now.
screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but
they're all gone.
Previously used opt_exclusive option to decide which volume control code to run.
The might not always reflect the actual state, for example if passthrough
is used. Admittedly, none of the volume controls will work anyway with
passthrough, but this is the right thing to do.
Note that hresult_to_str() (coming from wasapi_explain_err()) is mostly
wasapi-specific, but since HRESULT error codes are unique, it can be
extended for any other use.
It existed for XP-compatibility only. There was also a time where
ao_wasapi caused issues, but we're relatively confident that ao_wasapi
works better or at least as good as ao_dsound on Windows Vista and
later.
Normally, PulseAudio accepts any combination of sample format, sample
rate, channel count/map. Sometimes it does not. For example, the channel
rate or channel count have fixed maximum values. We should not fail
fatally in such cases, but attempt to fall back to a working format.
We could just send pass an "unset" format to Pulse, but this is not too
attractive. Pulse could use a format which we do not support, and also
doing so much for an obscure corner case is not reasonable. So just pick
a format that is very likely supported.
This still could fail at runtime (the stream could fail instead of going
to the ready state), but this sounds also too complicated. In
particular, it doesn't look like pulse will tell us the cause of the
stream failure. (Or maybe it does - but I didn't find anything.)
Last but not least, our fallback could be less dumb, and e.g. try to fix
only one of samplerate or channel count first to reduce the loss, but
this is also not particularly worthy the effort.
Fixes#2654.
Unify and clean up listing and selection. Use common enumerator code for both
operations to avoid duplication or inconsistencies.
Maintain, but significatnly simplify manual device selection by id, name or
number. This actually fixes loading by name which didn't really work before
since the "name" displayed by --audio-device=help differed from that used to
match the selection, which used the device "description" instead.
Save the selected deviceID in the private structure for later loading. This will
permit moving the device selection into the main thread in a future commit.
Apparently it's only wine where the qpc_position returned by
IAudioClock_GetPosition can be overflowed. So actually do the rescaling
correctly, but throw away the result if it looks unreasonable.
this fixes a regression in 5afa68835a
Make sure that subtraction of performance counters is done correctly.
Follow the *exact* instructions for converting performance counter to something
comparable to the QPCposition returned by IAudioClient::GetPosition
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370889%28v=vs.85%29.aspx
Also make sure that subtraction of unsigned integers is stored into a signed
integer to avoid nastiness. Also be more careful about overflow in the
conversion of the device position into number of samples.
Avoid casting mp_time_us() to a double, and use llrint to convert the
double precision delay_us back to integer for ao_read_data.
Finally, actually check the return value of ao_read_data and add a verbose
message if it is not the expected value. Unfortunately,
there is no way to tell WASAPI when this happens since the frame_count in
ReleaseBuffer must match GetBuffer.
Do not try and set/get master volume in exclusive if there is no
hardware support. This would just uselessly change the master slider,
but have no effect on the actual volume.
Furthermore if getting hardware volume support information fails, then assume
it has none.
It was complicated and not even very intuitive to the user.
If you are controlling the master volume, you just have to be
prepared to deal with the consequences.
If there were many AO drivers without device selection, this added a
"Default" entry for each AO. These entries were not distinguishable, as
the device list feature is meant not to require to display the "raw"
device name in GUIs.
Disambiguate them by adding the driver name. If the AO is the first, the
name will remain just "Default". (The condition checks "num > 1",
because the very first entry is the dummy for AO autoselection.)
Remove known useless device entries from the --audio-device list (and
corresponding property). Do this because the list is supposed to be a
high level list of devices the user can select. ALSA does not provide
such a list (in an useable manner), and ao_alsa.c is still in the best
position to improve the situation somewhat.
The ALSA doxygen says:
IOID - input / output identification ("Input" or "Output"), NULL
means both
This bug was blatantly introduced with commit cf94fce4.
Apparently, some audio drivers do not support the DTS subtype, but
passthrough works anyway if the AC3 subtype is set. Just retry with
AC3 if the proper format doesn't work. The audio device which
exposed this behavior reported itself as
"M601d-A3/A3R (Intel(R) Display Audio)".
xbmc/kodi even always passes DTS as AC3.
Essentially we'd use something random, just because it's part of the srt
of traditionally used ALSA channel mappings. But each driver can do its
own things.
This doesn't let me sleep at night, so remove it.
We need to effectively swap the last channel pair. See commit 4e358a96
and 5a18c5ea for details.
Doing this seems rather strange, as 7.1 just extends 5.1 with 2 new
speakers, and 5.1 doesn't need this change. Going by the HDMI standard
and the Intel HDA sources (cited in the referenced commits), it also
looks like 7.1 should simply append two channels to 5.1 as well. But
swapping them is apparently correct. This is also what XBMC does. (I
didn't find any other applications doing 7.1 PCM using the ALSA channel
map API. VLC seems to ignore the 7.1 case.) Testing reveals that at
least the end result is correct.
"Normal" ALSA 7.1 is unaffected by this, as it reports a different
(and saner) channel layout.
Instead of constructing an ALSA channel map from mpv ones from scratch,
try to find the original ALSA channel map again. Th result is that we
need to convert channel maps only in one direction. If we need to map
a mp_chmap to ALSA, we fetch the device's channel map list, convert
each entry to mp_chmap, and find the first one which fits.
This seems helpful for the following commit. For now, this only gets rid
of mapping back the trivial MONO mapping, which alone would still be
acceptable, but with other channel layout mogrifications it gets messy
fast. While we need to do something awkward to keep our channel map
reordering for VAR chmaps (which basically gives nicer output and
possibly slightly better performance), this is still the better
solution.
These calls actually can leave the ALSA configuration space empty (how
very useful), which is why snd_pcm_hw_params() can fail. An earlier
change intended to make this non-fatal, but it didn't work for this
reason.
Backup the old parameters, so we can retry with the non-empty
configuration space. (It has to be non-empty, because the previous
setters didn't fail.)
Note that the buffer settings are not very important to us. They're
a leftover from MPlayer, which needed to write enough data to the
audio device to not underrun while decoding and displaying a video
frame. In mpv, most of these things happen asynchronously, _and_
there is a dedicated thread just for feeding the audio device, so
we should be pretty imune even against extreme buffer settings. But
I suppose it's still useful to prevent PulseAudio from making the
buffer too large, so still keep this code.
Again, this could have bad access, is unlikely, and has no bad
consequences. It's noteworthy that vlc and the ALSA PCM example both do
this first, even if they set the sample rate later.
I'm worried that not restricting the access type before restricting the
format will cause problems. While it's unlikely, it might prevent
failures in some corner cases. Also, since we by default always use
interleaved access (buggy ALSA plugins), this will have no effects at
all.
If the API doesn't list padded channel maps, but the final device
channel map is padded, and if unpadded output is not possible (unlike in
the somewhat similar dmix case), then we shouldn't apply the channel
count mismatch fallback in the beginning. Do it after channel map
negotiation instead.
Doesn't matter much; effectively this prevents just log spam in some
cases where the map is legitimately padded. Normally this is really
only needed for the dmix ALSA case. (See git blame for details.)
Until recently, the channel layout code happened to catch this, but now
an explicit check is needed. Otherwise, it'd try to pad the missing
channels with NA in the channel map fallback code.
This is intended for the case when CoreAudio returns only unknown
channel layouts, or no channel layout matches the number of channels the
CoreAudio device forces. Assume that outputting stereo or mono to the
first channels is safe, and that it's better than outputting nothing.
It's notable that XBMC/kodi falls back to a static channel layout in
this case. For some messed up reason, the layout it uses happens to
match with the channel order in ALSA's/mpv's "7.1(alsa)" layout.
Share some code between ca_init_chmap() and ca_get_active_chmap(), which
also makes it look slightly nicer. No functional changes, other than the
additional log message.
If no channel layouts were determined (which can actually happen with
some "strange" devices), the selection code was falling back to mono,
because mono is always added as a fallback. This doesn't seem quite
right.
Allow a fallback to stereo too, if no channel layout could be retrieved
at all. So we always assume that mono and stereo work, if no other
layouts are available.
(I still don't know what the CoreAudio stereo layout is supposed to do.
It could be used to swap left and right channels. It could also be used
to pad/move the channels, but I have never seen that. And it can be set
to non-stereo channels, which breaks mpv. Whatever.)
mNumberChannelDescriptions being 0 is pretty much an error, but if it
can happen, then the code checking the chmap below will trigger UB, as
chmap is not initialized at all.
Also, simplify the code a little: we never change the number of
channels, so this is just fine.
Coreaudio gives us a channel map with all entries set to
kAudioChannelLabel_Unknown. This is translated to a mpv channel map with
all channels set to NA, which has special meaning: it's an "unknown"
channel map, which acts as wildcard and can be converted from/to any
channel layout. Not really what we want.
I've got this with USB audio, playing stereo. The multichannel layout
consisted of 2 unknown channels, while the stereo channel map was
stereo (as expected).
Note that channel maps with _some_ NA entries are not affected by this,
and must still work.
If the device returns an unexpected number of channels instead of the
requested count on init, don't immediately error out. Instead, look if
there's a channel map with the given number of channels.
If there isn't, still error out, because we don't want to guess the
channel layout.
Reportedly fixes operation with "USB connected Parasound ZDAC v.2". (OSX
and USB audio sure is not nice at all.)
This might be perceived as hang by some users, so it's quite possible
that this will have to be adjusted again somehow.
Fixes#2409.
The manpage entry explains this.
(Maybe this option could be always enabled and removed. I don't quite
remember what valid use-cases there are for just disabling audio
entirely, other than that this is also needed for audio decoder init
failure.)
Make the code a bit more uniform. Always build a "dummy" audio output
list before probing, which means that opening preferred devices and
pure auto-probing is done with the same code. We can drop the second
ao_init() call.
This also makes the next commit easier, which wants to selectively
fallback to ao_null. This could have been implemented by passing a
different requested audio output list (instead of reading it from
MPOptions), but I think it's better if this rather special feature
is handled internally in the AO code. This also makes sure the AO
code can handle its own options (such as the audio output list) in
a self-contained way.
This can happen with USB audio. There was already code for this, but
something in mpv and ALSA changed - and now the old code is not
necessarily triggered anymore. It probably depends on the exact
situation.
This could sometimes cause crashes in hotplug events. (Apparently in
cases when CoreAudio changes its state asynchronously, or such.)
CA_GET_STR() does not set the string if there was an error, so errors
have to be strictly checked before using it.