libav* is generally freaking horrible, and might do bad things if the
data pointer passed to it are not aligned. One way to be sure that the
alignment is correct is allocating all pointers using av_malloc().
It's possible that this is not needed at all, though. For now it might
be better to keep this, since the mp_audio code is intended to replace
another buffer in dec_audio.c, which is currently av_malloc() allocated.
The original reason why this uses av_malloc() is apparently because
libavcodec used to directly encode into mplayer buffers, which is not
the case anymore, and thus (probably) doesn't make sense anymore.
(The commit subject uses the word "cargo cult", after all.)
Remove the awkward planarization. It had to be done because the AC3
encoder requires planar formats, but now we support them natively.
Try to simplify buffer management with mp_audio_buffer.
Improve checking for buffer overflows and out of bound writes. In
theory, these shouldn't happen due to AC3 fixed frame sizes, but being
paranoid is better.
The format negotiation is the same, except don't confusingly copy the
input format into af->data, just to overwrite it later. af->data should
alwass contain the output format, and the existing code was just a very
misguided use of the af_test_output() helper function.
Just set af->data to the output format immediately, and modify the input
format properly.
Also, if format negotiation fails (and needs another iteration), don't
initialize the libavcodec encoder.
Before this commit, the af_instance->mul/delay values were in bytes.
Using bytes is confusing for non-interleaved audio, so switch mul to
samples, and delay to seconds. For delay, seconds are more intuitive
than bytes or samples, because it's used for the latency calculation.
We also might want to replace the delay mechanism with real PTS
tracking inside the filter chain some time in the future, and PTS
will also require time-adjustments to be done in seconds.
For most filters, we just remove the redundant mul=1 initialization.
(Setting this used to be required, but not anymore.)
Since ao_openal simulates multi-channel audio by placing a bunch of
mono-sources in 3D space, non-interleaved audio is a perfect match for
it. We just have to remove the interleaving code.
ALSA supports non-interleaved audio natively using a separate API
function for writing audio. (Though you have to tell it about this on
initialization.) ALSA doesn't have separate sample formats for this,
so just pretend to negotiate the interleaved format, and assume that
all non-interleaved formats have an interleaved companion format.
Replace the code that used a single buffer with mp_audio_buffer. This
also enables non-interleaved output operation, although it's still
disabled, and no AO supports it yet.
Implementation wise, this could be much improved, such as using a
ringbuffer that doesn't require copying data all the time. This is
why we don't use mp_audio directly instead of mp_audio_buffer.
This comes with two internal AO API changes:
1. ao_driver.play now can take non-interleaved audio. For this purpose,
the data pointer is changed to void **data, where data[0] corresponds to
the pointer in the old API. Also, the len argument as well as the return
value are now in samples, not bytes. "Sample" in this context means the
unit of the smallest possible audio frame, i.e. sample_size * channels.
2. ao_driver.get_space now returns samples instead of bytes. (Similar to
the play function.)
Change all AOs to use the new API.
The AO API as exposed to the rest of the player still uses the old API.
It's emulated in ao.c. This is purely to split the commits changing all
AOs and the commits adding actual support for outputting N-I audio.
Allocate af_instance->data in generic code before filter initialization.
Every filter needs af->data (since it contains the output
configuration), so there's no reason why every filter should allocate
and free it.
Remove RESIZE_LOCAL_BUFFER(), and replace it with mp_audio_realloc_min().
Interestingly, most code becomes simpler, because the new function takes
the size in samples, and not in bytes. There are larger change in
af_scaletempo.c and af_lavcac3enc.c, because these had copied and
modified versions of the RESIZE_LOCAL_BUFFER macro/function.
No AO can handle these, so it would be a problem if they get added
later, and non-interleaved formats get accepted erroneously. Let them
gracefully fall back to other formats.
Most AOs actually would fall back, but to an unrelated formats. This is
covered by this commit too, and if possible they should pick the
interleaved variant if a non-interleaved format is requested.
Based on earlier work by Stefano Pigozzi.
There are 2 changes:
1. Instead of mp_audio.audio, mp_audio.planes[0] must be used.
2. mp_audio.len used to contain the size of the audio in bytes. Now
mp_audio.samples must be used. (Where 1 sample is the smallest unit
of audio that covers all channels.)
Also, some filters need changes to reject non-interleaved formats
properly.
Nothing uses the non-interleaved features yet, but this is needed so
that things don't just break when doing so.
This affects 64 bit floats and big endian integer PCM variants
(basically crap nobody uses). Possibly not all MS-muxed files work, but
I couldn't get or produce any samples.
Remove a bunch of format tags that are not needed anymore. Most of these
were used by demux_mov, which is long gone. Repurpose/abuse 'twos' as
mpv-internal tag for dealing with the PCM variants mentioned above.
Now to shift audio pts when outputting to e.g. avi, you need an explicit
facility to insert/remove initial samples, to avoid initial regions of
the video to be sped up/slowed down.
One such facility is the delay filter in libavfilter.
My main problem with this is that the output format will be incorrect.
(This doesn't matter right, because there are no samples output.)
This assumes all audio filters can deal with len==0 passed in for
filtering (though I wouldn't see why not).
A filter can still signal an error by returning NULL.
af_lavrresample has to be fixed, since resampling 0 samples makes
libavresample fail and return a negative error code. (Even though it's
not documented to return an error code!)
When blending OSD and subtitles onto the video, we write bogus alpha
values. This doesn't normally matter, because these values are normally
unused and discarded. But at least on Wayland, the alpha values are used
by the compositor and leads to transparent windows even with opaque
video on places where the OSD happens to use transparency.
(Also see github issue #338.)
Until now, the alpha basically contained garbage. The source factor
GL_SRC_ALPHA meant that alpha was multiplied with itself. Use GL_ONE
instead (which is why we have to use glBlendFuncSeparate()). This should
give correct results, even with video that has alpha. (Or at least it's
something close to correct, I haven't thought too hard how the
compositor will blend it, and in fact I couldn't manage to test it.)
If glBlendFuncSeparate() is not available, fall back to glBlendFunc(),
which does the same as the code did before this commit. Technically, we
support GL 1.1, but glBlendFuncSeparate is 1.4, and I guess we should
try not to crash if vo_opengl_old runs on a system with GL 1.1 drivers
only.
Apparently we were using FFmpeg-specific APIs. I have no idea whether
this code is correct on both FFmpeg and Libav (no examples, bad
doxygen... why do they even complaint aht people are using their APIs
incorrectly?), but it appears to work on FFmpeg. That was also the case
before commit ebc4ccb though, where it used internal libavformat
symbols.
Untested on Libav, Travis will tell us.
Set the PulseAudio stream title, just like the VO window title is set.
Refactor update_vo_window_title() so that we can use it for AOs too.
The ao_pulse.c bit is stolen from MPlayer.
In theory, af_volume could use separate volume levels for each channel.
But this was never used anywhere.
MPlayer implemented something similar before (svn r36498), but kept the
old path for some reason.
This member was redundant. sh_audio->sample_format indicates the sample
size already.
The TV code is a bit strange: the redundant sample size was part of the
internal TV interface. Assume it's really redundant and not something
else. The PCM decoder ignores the sample size anyway.
Also do some cosmetic changes, like merging definition and
initialization of local variables.
Remove an annoying debug mp_msg() from af_open(). It just printed the
command line parameters; if this is really needed, it could be added
to af.c instead (similar as to what vf.c does).
Helps with readability. Also remove the ctx_opt_set_* helper macros and
use av_opt_set_* directly (I think these macros were used because the
lines ended up too long, but this commit removes two indentation levels,
giving more space).
This should allow to make format negotiation much simpler, since it
takes the responsibility to compare actual input and accepted input
formats from the filters. It's also backwards compatible. Filters which
have expensive initialization still can use the old method.
I have no idea what these do, but apparently they are needed to inform
ALSA about spdif configuration. First, replace the literal constant "6"
for the AES0 parameter with the symbolic constants from the ALSA
headers (the final value is the same). Second, copy paste some funky
looking parameter setup from VLC's alsa output for setting the AES1,
AES2, AES3 parameters. (The code is actually not literally copy-pasted,
but does exactly the same.)
My small but non-zero hope is that this could make DTS-HD work, or at
least work into that direction. I can't test spdif stuff though, and
for DTS-HD not even opening the ALSA device succeeds on my system.
Using spdif with alsa requires adding magic parameters to the device
name, and the existing code tried to deal with the situation when the
user wanted to add parameters too.
Rewrite this code, in particular remove the duplicated parameter string
as preparation for the next commit. The new code is a bit stricter, e.g.
it doesn't skip spaces before and after '{' and '}'. (Just don't add
spaces.)
This accessed tons of private libavformat symbols all over the place.
Don't do this and convert all code to proper public APIs. As a
consequence, the code becomes shorter and cleaner (many things the code
tried are done by libavformat APIs).
It's probably better if all auto-inserted filters are removed when doing
an af_add operation. If they're really needed, they will be
automatically re-added.
Fix the error message. It used to be for an actual internal error, but
now it happens when format negotiation fails, e.g. when trying to use
spdif and real audio filters.
Note that the change in seek_reset is not entirely equivalent: we even
drop the remainder of buffered audio when seeking. This should be more
correct, because the whole point of the reset_ao parameter is to control
whether audio queued for output should be dropped or not.