When the decoder detects a format change, it overwrites the values
stored in sh_audio (this affects the members sample_format, samplerate,
channels). In the case when the old audio data still needs to be
played/filtered, the audio format as identified by sh_audio and the
format used for the decoder buffer can mismatch. In particular, they
will mismatch in the very unlikely but possible case the audio chain is
reinitialized while old data is draining during a format change.
Or in other words, sh_audio might contain the new format, while the
audio chain is still configured to use the old format.
Currently, the audio code (player/audio.c and init_audio_filters) access
sh_audio to get the current format. This is in theory incorrect for the
reasons mentioned above. Use the decoder buffer's format instead, which
should be correct at any point.
Commit 22b3f522 not only redid major aspects of audio decoding, but also
attempted to fix audio format change handling. Before that commit, data
that was already decoded but not yet filtered was thrown away on a
format change. After that commit, data was supposed to finish playing
before rebuilding filters and so on.
It was still buggy, though: the decoder buffer was initialized to the
new format too early, triggering an assertion failure. Move the reinit
call below filtering to fix this.
ad_mpg123.c needs to be adjusted so that it doesn't decode new data
before the format change is actually executed.
Add some more assertions to af_play() (audio filtering) to make sure
input data and configured format don't mismatch. This will also catch
filters which don't set the format on their output data correctly.
Regression due to planar_audio branch.
Simulate proper handling of AOPLAY_FINAL_CHUNK. Print when underruns
occur (i.e. running out of data). Add some options that control
simulated buffer and outburst sizes.
All this is useful for debugging and self-documentation. (Note that
ao_null always was supposed to simulate an ideal AO, which is the reason
why it fools people who try to use it for benchmarking video.)
demuxer->filepos contains the byte offset of the last read packet. This
is so that the player can estimate the current playback position, if no
proper timestamps are available. Simplify it to use demux_packet->pos in
the generic demuxer code, instead of bothering every demuxer
implementation about it.
(Note that this is still a bit incorrect: it relfects the position of
the last packet read by the demuxer, not that returned to the user. But
that was already broken, and is not that trivial to fix.)
This was originally added for better seeking where libavformat's seek
function won't work well: files with timestamp resets. In these cases,
the code tried to calculate an average bitrate, and then do byte based
seeks by multiplying the seek target time with the bitrate.
Apparently this was unreliable enough that the code was just commented
(and other parts became inactive). Get rid of it.
Note that the player still does byte based seeks in these cases when
doing percent-seeks.
This should allow it to select better fallback formats, instead of
picking the first encoder sample format if ao->format is not equal to
any of the encoder sample formats.
Not sure what is supposed to happen if the encoder provides no
compatible sample format (or no sample format list at all), but in this
case ao_lavc.c still fails gracefully.
The added function af_format_conversion_score() can be used to select
the best sample format to convert to in order to reduce loss and extra
conversion work.
It calculates a "loss" score when going from one format to another, and
for each conversion that needs to be done a certain score is subtracted.
Thus, if you have to convert from one format to a set of other formats,
you can calculate the score for each conversion, and pick the one with
the highest score.
Conversion between int and float is considered the worst case. One odd
consequence is that when converting from s32 to u8 or float, u8 will be
picked.
Test program used to develop this follows:
#define MAX_FMT 200
struct entry {
const char *name;
int score;
};
static int compentry(const void *px1, const void *px2)
{
const struct entry *x1 = px1;
const struct entry *x2 = px2;
if (x1->score > x2->score)
return 1;
if (x1->score < x2->score)
return -1;
return 0;
}
int main(int argc, char *argv[])
{
for (int n = 0; af_fmtstr_table[n].name; n++) {
struct entry entry[MAX_FMT];
int entries = 0;
for (int i = 0; af_fmtstr_table[i].name; i++) {
assert(i < MAX_FMT);
entry[entries].name = af_fmtstr_table[i].name;
entry[entries].score =
af_format_conversion_score(af_fmtstr_table[i].format,
af_fmtstr_table[n].format);
entries++;
}
qsort(&entry[0], entries, sizeof(entry[0]), compentry);
for (int i = 0; i < entries; i++) {
printf("%s -> %s: %d \n", af_fmtstr_table[n].name,
entry[i].name, entry[i].score);
}
}
}
These must be written even if there was no "final frame", e.g. due to
the player being exited with "q".
Although the issue is mostly of theoretical nature, as most audio codecs
don't need the final encoding calls with NULL data. Maybe will be more
relevant in the future.
This used to be in bytes, now it's in samples. Divide the value by 8
(assuming a typical audio format, float samples with 2 channels).
Fix some editing mistake or non-sense about the extra buffering added
(1<<x instead of x<<5).
Also sneak in a s/MPlayer/mpv/.
This changes option parsing as well as filter defaults slightly. The
default is now to encode to spdif (this is way more useful than writing
raw AC3 - what was this even useful for, other than writing broken ac3
-in-wav files?). The bitrate parameter is now always in kbps.
Apparently this was completely broken after commit 22b3f522. Basically,
this locked up immediately completely while decoding the first packet.
The reason was that the buffer calculations confused bytes and number of
samples. Also, EOF reporting was broken (wrong return code).
The special-casing of ad_mpg123 and ad_spdif (with DECODE_MAX_UNIT) is a
bit annoying, but will eventually be solved in a better way.
This could cause the bundle to recache stuff because of differences with
configuration of other software using fonconfig. The defaults OS X directories
should be added to fontconfig at build time (through configure).
Slightly simplifies memory management. This might make adding a demuxer
cache wrapper easier at a later point, because you can just copy the
complete stream header, without worrying that the wrapper will free the
individual stream header fields.
The existing code tried to remove the "extra" profile flags for h264.
FF_PROFILE_H264_INTRA doesn't matter for us at all, because it's set
only for profiles the vdpau/vaapi APIs don't support.
The FF_PROFILE_H264_CONSTRAINED flag on the other hand is added to
H264_BASELINE, except that it makes the file a real subset of H264_MAIN
and H264_HIGH. Removing that flag would select the BASELINE profile,
which appears to be rarely supported by hardware decoders. This means we
accidentally rejected perfectly hardware decodable files. Use MAIN for
it instead.
(vaapi has explicit support for CONSTRAINED_BASELINE, but it seems to be
a new thing, and is not reported as supported where I tried. So don't
bother to check it, and do the same as on vdpau.)
See github issue #204.
This used to be needed for teletext support. Teletext commit has been
removed (see commit ebaaa41f), and it appears this code is inactive.
It was just forgotten with the removal. Get rid of it completely.
Untested. (Like all changes to the TV code.)
Signed-off-by: wm4 <wm4@nowhere>
Significant modifications over the original patch by not overriding
syscalls with macros ("#define open v4l2open") for fallback, but the
other way around ("#define v4l2open open"). As consequence, the calls
have to be replaced throughout the file.
Untested, although the original patch probably was tested.
Apparently this is not portable to FreeBSD. It turns out that we
(probably) don't use any symbols defined by this header directly, so
the includes are not needed.
These use the _oldargs_ hack, which failed in combination with playback
resume. Make it work.
It would be better to port all filters to new option parsing, but that's
obviously too much work, and most filters will probably be deleted and
replaced by libavfilter in the long run.
ao_null should simulate a "perfect" AO, but framestepping behaved quite
badly with it. Framstepping usually exposes problems with AOs dropping
their buffers on pause, and that's what happened here.
Most libavcodec decoders output non-interleaved audio. Add direct
support for this, and remove the hack that repacked non-interleaved
audio back to packed audio.
Remove the minlen argument from the decoder callback. Instead of
forcing every decoder to have its own decode loop to fill the buffer
until minlen is reached, leave this to the caller. So if a decoder
doesn't return enough data, it's simply called again. (In future, I
even want to change it so that decoders don't read packets directly,
but instead the caller has to pass packets to the decoders. This fits
well with this change, because now the decoder callback typically
decodes at most one packet.)
ad_mpg123.c receives some heavy refactoring. The main problem is that
it wanted to handle format changes when there was no data in the decode
output buffer yet. This sounds reasonable, but actually it would write
data into a buffer prepared for old data, since the caller doesn't know
about the format change yet. (I.e. the best place for a format change
would be _after_ writing the last sample to the output buffer.) It's
possible that this code was not perfectly sane before this commit,
and perhaps lost one frame of data after a format change, but I didn't
confirm this. Trying to fix this, I ended up rewriting the decoding
and also the probing.
libav* is generally freaking horrible, and might do bad things if the
data pointer passed to it are not aligned. One way to be sure that the
alignment is correct is allocating all pointers using av_malloc().
It's possible that this is not needed at all, though. For now it might
be better to keep this, since the mp_audio code is intended to replace
another buffer in dec_audio.c, which is currently av_malloc() allocated.
The original reason why this uses av_malloc() is apparently because
libavcodec used to directly encode into mplayer buffers, which is not
the case anymore, and thus (probably) doesn't make sense anymore.
(The commit subject uses the word "cargo cult", after all.)