At least on my machine, reading back the frame with system memcpy is
slower than just using software rendering. Use the optimized gpu_memcpy
from LAV to speed things up.
This was once central, but now it's almost unused. Only vf_divtc still
uses it for extremely weird and incomprehensible reasons. The use in
stream.c is trivial. Replace these, and remove mpbswap.h.
MPlayer traditionally did this because it made sense: the most important
formats (avi, asf/wmv) used Microsoft formats, and many important
decoders (win32 binary codecs) also did. But the world has changed, and
I've always wanted to get rid of this thing from the codebase.
demux_mkv.c internally still uses it, because, guess what, Matroska has
a VfW muxing mode, which uses these data structures natively.
The oldest supported FFmpeg release doesn't provide
av_vdpau_alloc_context(). With these versions, the application has no
other choice than to hard code the size of AVVDPAUContext. (On the other
hand, there's av_alloc_vdpaucontext(), which does the same thing, but is
FFmpeg specific - not sure if it was available early enough, so I'm not
touching it.)
Newer FFmpeg and Libav releases require you to call this function, for
ABI compatibility reasons. It's the typcal lakc of foresight that make
FFmpeg APIs terrible. mpv successfully pretended that this crap didn't
exist (ABI compat. is near impossible to reach anyway) - but it appears
newer developments in Libav change the function from initializing the
struct with all-zeros to something else, and mpv vdpau decoding would
stop working as soon as this new work is relewased.
So, add a configure test (sigh).
CC: @mpv-player/stable
This inserts an automatic conversion filter if a Matroska file is marked
as 3D (StereoMode element). The basic idea is similar to video rotation
and colorspace handling: the 3D mode is added as a property to the video
params. Depending on this property, a video filter can be inserted.
As of this commit, extending mp_image_params is actually completely
unnecessary - but the idea is that it will make it easier to integrate
with VOs supporting stereo 3D mogrification. Although vo_opengl does
support some stereo rendering, it didn't support the mode my sample file
used, so I'll leave that part for later.
Not that most mappings from Matroska mode to vf_stereo3d mode are
probably wrong, and some are missing.
Assuming that Matroska modes, and vf_stereo3d in modes, and out modes
are all the same might be an oversimplification - we'll see.
See issue #1045.
bstr.c doesn't really deserve its own directory, and compat had just
a few files, most of which may as well be in osdep. There isn't really
any justification for these extra directories, so get rid of them.
The compat/libav.h was empty - just delete it. We changed our approach
to API compatibility, and will likely not need it anymore.
So talking to a certain Intel dev, it sounded like modern VA-API drivers
are reasonable thread-safe. But apparently that is not the case. Not at
all. So add approximate locking around all vaapi API calls.
The problem appeared once we moved decoding and display to different
threads. That means the "vaapi-copy" mode was unaffected, but decoding
with vo_vaapi or vo_opengl lead to random crashes.
Untested on real Intel hardware. With the vdpau emulation, it seems to
work fine - but actually it worked fine even before this commit, because
vdpau was written and designed not by morons, but competent people
(vdpau is guaranteed to be fully thread-safe).
There is some probability that this commit doesn't fix things entirely.
One problem is that locking might not be complete. For one, libavcodec
_also_ accesses vaapi, so we have to rely on our own guesses how and
when lavc uses vaapi (since we disable multithreading when doing hw
decoding, our guess should be relatively good, but it's still a lavc
implementation detail). One other reason that this commit might not
help is Intel's amazing potential to fuckup anything that is good and
holy.
Playing with high framedrop could make it run out of surfaces. In
theory, we wouldn't need an additional surface, if we could just clear
the vo_vaapi internal surface - but doing so would probably be a pain,
so I don't care.
The VO is run inside its own thread. It also does most of video timing.
The playloop hands the image data and a realtime timestamp to the VO,
and the VO does the rest.
In particular, this allows the playloop to do other things, instead of
blocking for video redraw. But if anything accesses the VO during video
timing, it will block.
This also fixes vo_sdl.c event handling; but that is only a side-effect,
since reimplementing the broken way would require more effort.
Also drop --softsleep. In theory, this option helps if the kernel's
sleeping mechanism is too inaccurate for video timing. In practice, I
haven't ever encountered a situation where it helps, and it just burns
CPU cycles. On the other hand it's probably actively harmful, because
it prevents the libavcodec decoder threads from doing real work.
Side note:
Originally, I intended that multiple frames can be queued to the VO. But
this is not done, due to problems with OSD and other certain features.
OSD in particular is simply designed in a way that it can be neither
timed nor copied, so you do have to render it into the video frame
before you can draw the next frame. (Subtitles have no such restriction.
sd_lavc was even updated to fix this.) It seems the right solution to
queuing multiple VO frames is rendering on VO-backed framebuffers, like
vo_vdpau.c does. This requires VO driver support, and is out of scope
of this commit.
As consequence, the VO has a queue size of 1. The existing video queue
is just needed to compute frame duration, and will be moved out in the
next commit.
Found with valgrind. This is somewhat terrifying, because the VA-API API
function is supposed to fill these values, and we access them only if
the API functions return success. So this shouldn't have happened.
Completely useless, and could accidentally be enabled by cycling
framedrop modes. Just get rid of it.
But still allow triggering the old code with --vd-lavc-framedrop, in
case someone asks for it. If nobody does, this new option will be
removed eventually.
Use OPT_KEYVALUELIST() for all places where AVOptions are directly set
from mpv command line options. This allows escaping values, better
diagnostics (also no more "pal"), and somehow reduces code size.
Remove the old crappy option parser (av_opts.c).
Since the new hwaccel API is now merged in ffmpeg's stable release, we can
finally remove support for the old API.
I pretty much kept lu_zero's new code unchanged and just added some error
printing (that we had with the old glue code) to make the life of our users
less miserable.
DVD and Bluray (and to some extent cdda) require awful hacks all over
the codebase to make them work. The main reason is that they act like
container, but are entirely implemented on the stream layer. The raw
mpeg data resulting from these streams must be "extended" with the
container-like metadata transported via STREAM_CTRLs. The result were
hacks all over demux.c and some higher-level parts.
Add a "disc" pseudo-demuxer, and move all these hacks and special-cases
to it.
This add support for reading primary information from lavc, categorized
into BT.601-525, BT.601-625, BT.709 and BT.2020; and passes it on to the
vo. In vo_opengl, we always generate the 3dlut against the wider BT.2020
and transform our source into this colorspace in the shader.
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
This means use of the min/max fields can be dropped for the flag option
type, which makes some things slightly easier. I'm also not sure if the
client API handled the case of flag not being 0 or 1 correctly, and this
change gets rid of this concern.
While I'm not very fond of "const", it's important for declarations
(it decides whether a symbol is emitted in a read-only or read/write
section). Fix all these cases, so we have writeable global data only
when we really need.
The i_bps members of the sh_audio and dev_video structs are mostly used
for displaying the average audio and video bitrates. Keeping them in
bits-per-second avoids truncating them to bytes-per-second and changing
them back lateron.
This is incomplete; the video chain will still hold some vaapi objects
after destroying the decoder and thus the vaapi context. This is very
bad. Fixing it would require something like refcounting the vaapi
context, but I don't really want to.
mpv supports two hardware decoding APIs on Linux: vdpau and vaapi. Each
of these has emulation wrappers. The wrappers are usually slower and
have fewer features than their native opposites. In particular the libva
vdpau driver is practically unmaintained.
Check the vendor string and print a warning if emulation is detected.
Checking vendor strings is a very stupid thing to do, but I find the
thought of people using an emulated API for no reason worse.
Also, make --hwdec=auto never use an API that is detected as emulated.
This doesn't work quite right yet, because once one API is loaded,
vo_opengl doesn't unload it, so no hardware decoding will be used if the
first probed API (usually vdpau) is rejected. But good enough.
Sometimes, Matroska files store monotonic PTS for h264 tracks with
b-frames, which means the decoder actually returns non-monotonic PTS.
Handle this with an evil trick: if DTS is missing, set it to the PTS.
Then the existing logic, which deals with falling back to DTS if PTS is
broken. Actually, this trick is not so evil at all, because usually, PTS
has no errors, and DTS is either always set, or always unset. So this
_should_ provoke no regressions (famous last words).
libavformat actually does something similar: it derives DTS from PTS in
ways unknown to me. The result is very broken, but it causes the DTS
fallback to become active, and thus happens to work.
Also, prevent the heuristic from being active if PTS is merely monotonic
instead of strictly-monotonic. Non-unique PTS is broken, but we can't
fallback to DTS anyway in these cases.
The specific mkv file that is fixed with this commit had the following
fields set:
Muxing application: libebml v1.3.0 + libmatroska v1.4.1
Writing application: mkvmerge v6.7.0 ('Back to the Ground') [...]
But I know that this should also fix playback of mencoder produced mkv
files.
This was broken for some time, and it didn't recover correctly.
Redo decoder display preemption. Instead of trying to reinitialize the
hw decoder, simply fallback to software decoding. I consider display
preemption a bug in the vdpau API, so being able to _somehow_ recover
playback is good enough.
The approach taking here will probably also make it easier to handle
multithreading.
Also remove MSGL_SMODE and friends.
Note: The indent in options.rst was added to work around a bug in
ReportLab that causes the PDF manual build to fail.
Change how the video decoding loop works. The structure should now be a
bit easier to follow. The interactions on format changes are (probably)
simpler. This also aligns the decoding loop with future planned changes,
such as moving various things to separate threads.
This collects statistics and other things. The option dumps raw data
into a file. A script to visualize this data is included too.
Litter some of the player code with calls that generate these
statistics.
In general, this will be helpful to debug timing dependent issues, such
as A/V sync problems. Normally, one could argue that this is the task of
a real profiler, but then we'd have a hard time to include extra
information like audio/video PTS differences. We could also just
hardcode all statistics collection and processing in the player code,
but then we'd end up with something like mplayer's status line, which
was cluttered and required a centralized approach (i.e. getting the data
to the status line; so it was all in mplayer.c). Some players can
visualize such statistics on OSD, but that sounds even more complicated.
So the approach added with this commit sounds sensible.
The stats-conv.py script is rather primitive at the moment and its
output is semi-ugly. It uses matplotlib, so it could probably be
extended to do a lot, so it's not a dead-end.
It's not really needed to be public. Other code can just use mp_image.
The only disadvantage is that the other code needs to call an accessor
to get the VASurfaceID.
Although I at first thought it would be better to have a separate
implementation for hwaccels because the difference to software images
are too large, it turns out you can actually save some code with it.
Note that the old implementation had a small memory management bug. This
got painted over in commit 269c1e1, but is hereby solved properly.
Also note that I couldn't test vf_vavpp.c (due to lack of hardware), and
I hope I didn't accidentally break it.
They were used by ancient libavcodec versions. This also removes the
need to distinguish vdpau image formats at all (since there is only
one), and some code can be simplified.
Instead of doing it on every seek (libavcodec calls get_format on every
seek), reinitialize the decoder only if the video resolution changes.
Note that this may be relatively naive, since we e.g. (or: in
particular) don't check for profile changes. But it's not worse than the
state before the get_format change, and at least it paints over the
current vaapi breakage (issue #646).
This "sometimes" crashed when seeking. The fault apparently lies in
libavcodec: the decoder returns an unreferenced frame! This is
completely insane, but somehow I'm apparently still expected to
work this around. As a reaction, I will drop Libav 9 support in the
next commit. (While this commit will go into release/0.3.)
Apparently the "right" place to initialize the hardware decoder is in
the libavcodec get_format callback.
This doesn't change vda.c and vdpau_old.c, because I don't have OSX, and
vdpau_old.c is probably going to be removed soon (if Libav ever manages
to release Libav 10). So for now the init_decoder callback added with
this commit is optional.
This also means vdpau.c and vaapi.c don't have to manage and check the
image parameters anymore.
This change is probably needed for when libavcodec VDA supports gets a
new iteration of its API.
Like with the previous commit, this is probably not needed, but it's
unclear whether that really is the case. Most likely, it used to be
needed by some demuxer, and now the only demuxer left that could
_possibly_ trigger this is demux_mkv.c.
Note that mjpeg is the only decoder that reads the extra_huff option,
and nothing in libavformat actually sets the option. So maybe it's
fundamentally not needed anymore.
This case can't happen with the normal realvideo codepath in
demux_mkv.c, because the code would errors out if the extradata is too
small, and everything would be broken anyway in the case the vd_lavc.c
condition is actually triggered.
It still might happen with VfW-muxed realvideo in Matroska, though.
Basically, I'm hoping this doesn't matter anyway, and that the vd_lavc.c
code was for other old demuxers, like demux_avi or demux_rm. Following
the commit history, it's not really clear for what demuxer this code
was added.
Set the flag CODEC_FLAG_OUTPUT_CORRUPT by default. Note that there is
also CODEC_FLAG2_SHOW_ALL, which is older, but this seems to be ffmpeg
only.
Note that whether you want this enabled depends on the user. Some might
prefer that only good frames are output, while others want the decoder
to try as hard as possible to output _anything_. Since mplayer/mpv is
rather the kind of player that tries hard instead of being "clever", set
the new default to override libavcodec's default.
A nice way to test this is switching video tracks. Since mpv doesn't
wait for the next key frame, it'll start feeding the decoder with a
packet from the middle of the stream.
This ended up a little bit messy. In order to get a mp_log everywhere,
mostly make use of the fact that va_surface already references global
state anyway.
In my opinion, config.h inclusions should be kept to a minimum. MPlayer
code really liked including config.h everywhere, though, even in often
used header files. Try to reduce this.
Since m_option.h and options.h are extremely often included, a lot of
files have to be changed.
Moving path.c/h to options/ is a bit questionable, but since this is
mainly about access to config files (which are also handled in
options/), it's probably ok.
The tmsg stuff was for the internal gettext() based translation system,
which nobody ever attempted to use and thus was removed. mp_gtext() and
set_osd_tmsg() were also for this.
mp_dbg was once enabled in debug mode only, but since we have log level
for enabling debug messages, it seems utterly useless.
This code tried to pass a still monotonic (even if not strictly
monotonic) PTS to the player, but as a result it remained stuck on
the PTS before a reset (since the PTS was lower).
Until now, the player didn't care to drain frames on video reconfig.
Instead, the VO was reconfigured (i.e. resized) before the queued frames
finished displaying. This can for example be observed by passing
multiple images with different size as mf:// filename. Then the window
would resize one frame before image with the new size is displayed. With
--vo=vdpau, the effect is worse, because this VO queues more than 1
frame internally.
Fix this by explicitly draining buffered frames before video reconfig.
Raise the display time of the last frame. Otherwise, the last frame
would be shown for a very short time only. This usually doesn't matter,
but helps when playing image files. This is a byproduct of frame
draining, because normally, video timing is based on the frames queued
to the VO, and we can't do that with frames of different size or format.
So we pretend that the frame before the change is the last frame in
order to time it. This code is incorrect though: it tries to use the
framerate, which often doesn't make sense. But it's good enough to test
this code with mf://.
This should help fixing some issues (like not draining video frames
correctly on reinit), as well as decoupling the decoder, filter chain,
and VO code.
I also wanted to make the hardware video decoding fallback work properly
if software-only video filters are inserted. This currently has the
issue that the fallback is too violent, and throws away a bunch of
demuxer packets needed to restart software decoding properly. But
keeping "backup" packets turned out as too hacky, so I'm not doing this,
at least not yet.
This adds vf_chain, which unlike vf_instance refers to the filter chain
as a whole. This makes the filter API less awkward, and will allow
handling format negotiation better.
The --flip option flipped the image upside-down, by trying to use VO
support, or if not available, by inserting a video filter. I'm not sure
why it existed. Maybe it was important in ancient times when VfW based
decoders output an image this way (but even then, flipping an image is a
free operation by negating the stride).
One nice thing about this is that it provided a possible path for
implementing video orientation, which is a feature we should probably
support eventually. The important part is that it would be for free for
VOs that support it, and would work even with hardware decoding.
But for now get rid of it. It's useless, trivial, stands in the way, and
supporting video orientation would require solving other problems first.
If the timebase is set, it's used for converting the packet timestamps.
Otherwise, the previous method of reinterpret-casting the mpv style
double timestamps to libavcodec style int64_t timestamps is used.
Also replace the kind of awkward mp_get_av_frame_pkt_ts() function by
mp_pts_from_av(), which simply converts timestamps in a way the old
function did. (Plus it takes a timebase parameter, similar to the
addition to mp_set_av_packet().)
Note that this should not change anything yet. The code in ad_lavc.c and
vd_lavc.c passes NULL for the timebase parameters. We could set
AVCodecContext.pkt_timebase and use that if we want to give libavcodec
"proper" timestamps.
This could be important for ad_lavc.c: some codecs (opus, probably mp3
and aac too) have weird requirements about doing decoding preroll on the
container level, and thus require adjusting the audio start timestamps
in some cases. libavcodec doesn't tell us how much was skipped, so we
either get shifted timestamps (by the length of the skipped data), or we
give it proper timestamps. (Note: libavcodec interprets or changes
timestamps only if pkt_timebase is set, which by default it is not.)
This would require selecting a timebase though, so I feel uncomfortable
with the idea. At least this change paves the way, and will allow some
testing.
The harder work was done in the previous commits. After that this feature comes
out almost for free.
The only problem is I can't get the textures created with CGLTexImageIOSurface2D
to download properly, thus the code performs download using some CoreVideo APIs.
If someone knows why download of textures created with CGLTexImageIOSurface2D
doesn't work please contact me :)
PIX_FMT_* -> AV_PIX_FMT_* (except some pixdesc constants)
enum PixelFormat -> enum AVPixelFormat
Losen some version checks in certain newer pixel formats.
av_pix_fmt_descriptors -> av_pix_fmt_desc_get
This removes support for FFmpeg 1.0.x, which is even older than
Libav 9.x. Support for it probably was already broken, and its
libswresample was rejected by our build system anyway because it's
broken.
Mostly untested; it does compile with Libav 9.9.
The old ffmpeg vdpau support code uses separate vdpau pixel formats for
each decoder (pretty much because mplayer's architecture sucked), which
just gets into the way. Force the old decoder's output to IMGFMT_VDPAU,
and remove IMGFMT_IS_VDPAU() where we can remove it.
This should completely remove the differences betwene the old and new
vdpau decoder outside of the decoder.
PIX_FMT_VDA_VLD and PIX_FMT_VAAPI_VLD were never used anywhere. I'm not
sure why they were even added, and they sound like they are just for
compatibility with XvMC-style decoding, which sucks anyway.
Now that there's only a single vaapi format, remove the
IMGFMT_IS_VAAPI() macro. Also get rid of IMGFMT_IS_VDA(), which was
unused.
pthreads should be available anywhere. Even if not, for environment
without threads a pthread wrapper could be provided that can't actually
start threads, thus disabling features that require threads.
Make pthreads mandatory in order to simplify build dependencies and to
reduce ifdeffery. (Admittedly, there wasn't much complexity, but maybe
we will use pthreads more in the future, and then it'd become a real
bother.)
So, FFmpeg/Libav requires us to figure out video timestamps ourselves
(see last 10 commits or so), but the methods it provides for this aren't
even sufficient. In particular, everything that uses AVI-style DTS (avi,
vfw-muxed mkv, possibly mpeg4-in-ogm) with a codec that has an internal
frame delay is broken. In this case, libavcodec will shift the packet-
to-image correspondence by the codec delay, meaning that with a delay=1,
the first AVFrame.pkt_dts is not 0, but that of the second packet. All
timestamps will appear shifted. The start time (e.g. the time displayed
when doing "mpv file.avi --pause") will not be exactly 0.
(According to Libav developers, this is how it's supposed to work; just
that the first DTS values are normally negative with formats that use
DTS "properly". Who cares if it doesn't work at all with very common
video formats? There's no indication that they'll fix this soon,
either. An elegant workaround is missing too.)
Add a hack to re-enable the old PTS code for AVI and vfw-muxed MKV.
Since these timestamps are not reorderd, we wouldn't need to sort them,
but it's less code this way (and possibly more robust, should a demuxer
unexpectedly output PTS).
The original intention of all the timestamp changes recently was
actually to get rid of demuxer-specific hacks and the old timestamp
sorting code, but it looks like this didn't work out. Yet another case
where trying to replace native MPlayer functionality with FFmpeg/Libav
led to disadvantages and bugs. (Note that the old PTS sorting code
doesn't and can't handle frame dropping correctly, though.)
Bug reports:
https://trac.ffmpeg.org/ticket/3178https://bugzilla.libav.org/show_bug.cgi?id=600
Using --start with files that use DTS only, or which simply have broken
PTS timestamps, would incorrectly drop frames and possibly not execute
the seek correctly.
Add yet another heuristic to detect this. The intent is that --start and
hr-seeks in general should work correctly, but in order to keep things
fast, we still want to allow frame dropping during hr-seek if there are
no problems doing so. Do this by disabling frame dropping by default,
but re-enabling it if there are no problems found for a while. As a
consequence, --start might be somewhat slower, but normal user
interaction should remain as fast as before.
Note that there's something subtle about the added code: the
has_broken_packet_pts field is checked even before the first packet is
fed to dec_video.c, so the field must not be set to 0 right on start.
It's not initially set to 0 anyway, because the heuristic requires
decoding some images before enabling frame drop anyway.
Note 2: it's not clear whether frame dropping during hr-seek really
helps; I didn't benchmark it.
The d_video->pts field was a bit strange. The code overwrote it multiple
times (on decoding, on filtering, then once again...), and it wasn't
really clear what purpose this field had exactly. Replace it with the
mpctx->video_next_pts field, which is relatively unambiguous.
Move the decreasing PTS check to dec_video.c. This means it acts on
decoder output, not on filter output. (Just like in the previous commit,
assume the filter chain is sane.) Drop the jitter vs. reset semantics;
the dec_video.c determined PTS never goes backwards, and demuxer
timestamps don't "jitter".
Also get rid of the PTS check _after_ filters. This means if there's a
video filter which unsets PTS, no warning will be printed. But we assume
that all filters are well-behaved enough by now.
Refactor the PTS handling code to make it cleaner, and to separate the
bits that use PTS sorting.
Add a heuristic to fall back to DTS if the PTS us non-monotonic. This
code is based on what FFmpeg/Libav use for ffplay/avplay and also
best_effort_timestamp (which is only in FFmpeg). Basically, this 1. just
uses the DTS if PTS is unset, and 2. ignores PTS entirely if PTS is non-
monotonic, but DTS is sorted.
The code is pretty much the same as in Libav [1]. I'm not sure if all of
it is really needed, or if it does more than what the paragraph above
mentions. But maybe it's fine to cargo-cult this.
This heuristic fixes playback of mpeg4 in ogm, which returns packets
with PTS==DTS, even though the PTS timestamps should follow codec
reordering. This is probably a libavformat demuxer bug, but good luck
trying to fix it.
The way vd_lavc.c returns the frame PTS and DTS to dec_video.c is a bit
inelegant, but maybe better than trying to mess the PTS back into the
decoder callback again.
[1] https://git.libav.org/?p=libav.git;a=blob;f=cmdutils.c;h=3f1c667075724c5cde69d840ed5ed7d992898334;hb=fa515c2088e1d082d45741bbd5c05e13b0500804#l1431
These used the suffix _resync_stream, which is a bit misleading. Nothing
gets "resynchronized", they really just reset state.
(Some audio decoders actually used to "resync" by reading packets for
resuming playback, but that's not the case anymore.)
Also move the function in dec_video.c to the top of the file.