As ao_pipewire is probed first if a user does not have PipeWire running
they will see a scary warning message even if another AO afterwards is
probed fine.
Tone down the error message so as not to confuse users.
ao-volume is represented in the code with a `struct ao_control_vol_t`
which contains volumes for two channels, left and right.
However the code implementing this property in command.c never treats
these values individually. They are always averaged together.
On the other hand the code in the AOs handling these values also has to
handle the case where *not* exactly two channels are handled.
So let's remove the `struct ao_control_vol_t` and replace it with a
simple float.
This makes the semantics clear to AO authors and allows us to drop some code from the AOs and command.c.
In debug mode the macro causes an assertion failure.
In release mode it works differently and tells the compiler that it can
assume the codepath will never execute. For this reason I was conversative
in replacing it, e.g. in mpv-internal code that exhausts all valid values
of an enum or when a condition is clear from directly preceding code.
[motivation]
Seeking on MacOS appears to be lagged when users connect
to wireless audio output (airpods for example).
This commit attempts to fixmpv-player/mpv#10270
[observation]
1. When using other media player (VLC to be exact) simultaneously,
the lagging on seek disappear. We could guess that the AudioDevice
is on some sort of "warm-up" state.
See mpv-player/mpv#9243 for detailed description.
2. `AudioOutputUnitStart` takes significant longer time after each seek
or pause/play when using wireless output devices compares to wired devices.
[rationale]
After investigate codes in ao_coreaudio.c, it appears that the the `stop`
function was used as `ao_driver.reset` function. Therefore every seek
and pause would call `AudioOutputUnitStop`.
It turns out that `ao_driver.reset` function is used in `ao_reset`.
And `ao_reset` function is used to clean up the state of current `ao`
so I think `AudioUnitReset` is more proper than `AudioOutputUnitStop`
under this semantics.
Since ao_coreaudio use pull base mechanism, audio playback behaviors
upon pause/seek could be handled by callback function
(streaming silence when paused) so there is no need to stop AudioUnit when resetting.
Therefore using `AudioUnitReset` as `ao_driver.reset` looks proper.
Additionally, after using proper reset, the AudioUnit that represents
hardware I/O devices doesn't need to be restart everytime seek/pause actions happen.
Restarting wireless devices simply takes longer in MacOS which is
the root cause of lagging observed by users when they seek or pause/play media.
[method]
Use `AudioUnitReset` for ao_driver.reset.
When a pull AO reaches reaches EOF then ao_read_data() will set
p->playing = false.
Because the ao is marked as not playing ao_set_pause(true) will not
reset the AO.
This keeps the output stream unintentionally open.
Fixes#9835
This has been a long standing annoyance - ffmpeg is removing
sizeof(AVPacket) from the API which means you cannot stack-allocate
AVPacket anymore. However, that is something we take advantage of
because we use short-lived AVPackets to bridge from native mpv packets
in our main decoding paths.
We don't think that switching these to `av_packet_alloc` is desirable,
given the cost of heap allocation, so this change takes a different
approach - allocating a single packet in the relevant context and
reusing it over and over.
That's fairly straight-forward, with the main caveat being that
re-initialising the packet is unintuitive. There is no function that
does exactly what we need (what `av_init_packet` did). The closest is
`av_packet_unref`, which additionally frees buffers and side-data.
However, we don't copy those things - we just assign them in from our
own packet, so we have to explicitly clear the pointers before calling
`av_packet_unref`. But at least we can make a wrapper function for
that.
The weirdest part of the change is the handling of the vtt subtitle
conversion. This requires two packets, so I had to pre-allocate two in
the context struct. That sounds excessive, but if allocating the
primary packet is too expensive, then allocating the secondary one for
vtt subtitles must also be too expensive.
This change is not conditional as heap allocated AVPackets were
available for years and years before the deprecation.
This allows us to more easily see the datapath from mpv to pipewire.
We know how often the callbacks are triggered, how big the buffers are
and how much data mpv provides to pipewire.
This allows the core of mpv to know about issues in the AO.
Otherwise playback will just freeze as no more data callbacks are sent
by PipeWire.
Also it allows mpv to try to reconnect the AO or find another, working
AO.
We want to add more logic to the stream event handler.
This logic should not be triggered during normal stream shutdown, so we
remove the listener beforehand.
The AO is feature-complete now.
As PipeWire also provides compatibility with PulseAudio, ALSA and Jack
we should put it before those for the autodetection to work.
The pure presence of PipeWire does not mean that it is actually driving
the audio session. For example it could only be meant for video.
Currently there is no proper API to detect this (see [0]), so we check
for the presence of audio sinks.
As soon as a proper API exists, we should use that.
[0] https://gitlab.freedesktop.org/pipewire/pipewire/-/issues/1835
Specifying the id of the target node during stream connect is
deprecated. Instead the property target.object should be used to link
by target serial or name. Using the name allows us to drop a bunch of
custom code.
When af_scaletempo2.c:process() detects a format change, it goes back
through mp_scaletempo2_init() to reinitialize everything. However,
mp_scaletempo2.input_buffer is not necessarily reallocated due to a
check in af_scaletempo2_internals.c:resize_input_buffer(). This is a
problem if the number of audio channels increases, since without
reallocating, the buffer for the new channel(s) will at best point to
NULL, and at worst uninitialized memory.
Since resize_input_buffer() is only called from two places, pull size
check out into mp_scaletempo2_fill_input_buffer(). This allows each
caller to decide whether they want to resize or not. We could be
smarter about when to reallocate, but that would add a lot of machinery
for a case I don't expect to be hit often in practice.
Previously we would only call list_devs() on available AOs if an AO
*did not* have a hotplug_init() callback or for the first one that *did*
have it.
This is problematic when multiple fully functional hotplug-capable AOs
are available.
The second one would not be able to contribute discovered devices.
This problem prevents ao_pipewire from introducing full hotplug support
with hotplug_init().
When a platform has multiple valid AOs that can provide hotplug events
we should try to use the one that also provides playback.
Concretely this will help when introducing hotplug support for
ao_pipewire.
Currently ao_pulse is probed by ao_hotplug_get_device_list() before
ao_pipewire and on the common setups where both AOs could work pulse
will be selected for hotplug handling.
This means that hotplug_init() of ao_pipewire will never be called and
list_devs() has to do its own initialization.
But if ao_pulse is non-functional or not compiled-in suddenly
ao_pipewire *must* implement hotplug_init() for hotplugging events to
work for all.
Also if the hotplug ao_pulse connects to a PulseAudio instance that is
not emulated by the same PipeWire instance as the playback ao_pipewire
the hotplug events are useless.
uau did some investigation and noticed that we do not send a wakeup
event when we encounter end-of-stream in ao_read_data(), in contrast to
the equivalent logic for push AOs in ao_play_data().
Inserting that wakeup fixes the original problem of lack of
reinitialization on a format change without the problems we saw with
the previous attempted fix.
Fixes#10566
The error description in #10545 could indicate that we are overflowing
we are corrupting the buffer metadata ourselves through out-of-bound
writes.
This check is also present in pw-cat so it seems to be expected for
b->requested to exceed the actual available buffer space.
Potential fix for #10545
pw_core_disconnect frees the core, so accessing it afterward to
destroy the context is not allowed.
Instead, just destroy the context, the first thing it does is disconnect
all cores for us.
mpv only remembers volume for two channels.
Always apply the same volume to all channels in case of
non-stereo layout similarly to ao_pulse.
Don't try to do anything smart when averaging volumes,
normally they are equal anyway.
This is the new FFmpeg channel layout structure, which now
combines channel count and layout into a single location.
Only unspecified (channel count only) and native (channel layout
mask based) layouts are currently supported for the initial move
towards non-deprecated APIs.
Pass channel volumes to `pw_stream_set_control` as array.
This is correct calling conventions and prevents
right channel muting every time ao-volume property is changed.
Terminate `pw_stream_set_control` calls with 0.
Changes:
* fixed hangups in the loop function and in some other cases
* refactoring according to @michaelforney's recommendations in #8314
* a few minor and/or cosmetic changes
* ability to build ao_sndio using meson
Changes:
- rewrite to use new internal MPV API;
- code refactoring;
- fix buffers size calculations;
- buffer set to auto;
- reset() - clean/reinit device only after errors;
The AO provides a way for mpv to directly submit audio to the PipeWire
audio server.
Doing this directly instead of going through the various compatibility
layers provided by PipeWire has the following advantages:
* It reduces complexity of going through the compatibility layers
* It allows a richer integration between mpv and PipeWire
(for example for metadata)
* Some users report issues with the compatibility layers that to not
occur with the native AO
For now the AO is ordered after all the other relevant AOs, so it will
most probably not be picked up by default.
This is for the following reasons:
* Currently it is not possible to detect if the PipeWire daemon that mpv
connects to is actually driving the system audio.
(https://gitlab.freedesktop.org/pipewire/pipewire/-/issues/1835)
* It gives the AO time to stabilize before it is used by everyone.
Based-on-patch-by: Oschowa <oschowa@web.de>
Based-on-patch-by: Andreas Kempf <aakempf@gmail.com>
Helped-by: Ivan <etircopyhdot@gmail.com>
Simply returning out of this function leaks avpkt, need to always "goto
done".
Rewrite the logic a bit to make it more clear what's going on (IMO).
Fixes#9593
Ever instance of m_obj_list is a constant and for all of them, the field
is true. Just remove the field all together.
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
This fixes a mismatch between configure working and build time
failing with Linux + OSSv4, enabling compilation on Debian based
Linux systems with the oss4-dev package.
Fixes#9378
This brings my scaletempo2 benchmark down from ~22s to ~7s on my machine
(-march=native), and down to ~11s with a generic compile.
Guarded behind an appropriate #ifdef to avoid being ableist against
people who have the clinical need to run obscure platforms.
Closes#8848
This fixes audio encoding crashing under ASan.
When extended_data != data, FFmpeg copies more pointers from
extended_data (= the number of channels) than there really
are for non-planar formats (= exactly 1), but that's not our fault.
Regardless, this commit makes it work in all common cases.
Changes:
- code refactored;
- mixer options removed;
- new mpv sound API used;
- add sound devices detect (mpv --audio-device=help will show all available devices);
- only OSSv4 supported now;
Tested on FreeBSD 12.2 amd64.
This makes the behavior of all control messages consistent,
fixing an inconsistency that has been with us since
4d8266c739 - which is the initial
rework of the polyaudio AO into the pulseaudio AO.
Muting the stream also directly triggers an update to the OSD.
When not waiting for the command completion this read of the mute
property may read the old state. A stale read.
Note that this somehow was not triggered on native Pulseaudio, but it is
an issue on Pipewire.
See https://gitlab.freedesktop.org/pipewire/pipewire/-/issues/868
Set pcm state to SND_PCM_STATE_XRUN in case -EPIPE is received,
and handle this state as per the usual logic.
This way snd_pcm_prepare gets called, and the loop continued.
Inspired by a patch posted by malc_ on #mpv.
--audio-stream-silence is a shitty feature compensating for awful
consumer garbage, that mutes PCM at first to check whether it's
compressed audio, using formats advocated and owned by malicious patent
troll companies (who spend more money on their lawyers than paying any
technicians), wrapped in a wasteful way to make it constant bitrate
using a standard whose text is not freely available, and only rude users
want it. This feature has been carelessly broken, because it's
complicated and stupid. What would Jesus do? If not getting an aneurysm,
or pushing over tables with expensive A/V receivers on top of them, he'd
probably fix the feature. So let's take inspiration from Jesus Christ
himself, and do something as dumb as wasting some of our limited
lifetime on this incredibly stupid fucking shit.
This is tricky, because state changes like end-of-audio are supposed to
be driven by the AO driver, while playing silence precludes this. But it
seems code paths for "untimed" AOs can be reused.
But there are still problems. For example, underruns will just happen
normally (and stop audio streaming), because we don't have a separate
heuristic to check whether the buffer is "low enough" (as a consequence
of a network stall, but before the audio output itself underruns).
Create a central function which pumps data through the filter. This also
might fix bogus use of the filter API on flushing. (The filter is just
used for convenience, but I guess the overall result is still simpler.)
AVFrame doesn't have public code for pool allocation, so mpv does it
manually. AVFrame allocation is very tricky, so we added a bug.
This crashed with libopus encoding, but not some other audio codecs,
because the libopus libavcodec wrapper accesses AVFrame.data. Most code
tries to avoid accessing AVFrame.data and uses AVFrame.extended_data,
because using the former would subtly corrupt memory on more than 8
channels. The fact that this problem manifested only now shows that most
AVFrame consuming FFmpeg code indeed uses extended_data for audio.
It is now the AO's responsibility to handle period size alignment. The
ao->period_size alignment field is unused as of the recent audio
refactor commit. Remove it.
It turns out that ao_alsa shows extremely inefficient behavior as a
consequence of the removal of period size aligned writes in the
mentioned refactor commit. This is because it could get into a state
where it repeatedly wrote single samples (as small as 1 sample), and
starved the rest of the player as a consequence. Too bad. Explicitly
align the size in ao_alsa. Other AOs, which need this, should do the
same.
One reason why it broke so badly with ao_alsa was that it retried the
write() even if all reported space could be written. So stop doing that
too. Retry the write only if we somehow wrote less.
I'm not sure about ao_pulse.
Unused, was terrible garbage. It was (or at least its implementation
was) always a make-shift solution, and just gross bullshit. It is unused
now, so delete it.
This replaces the two buffers (ao_chain.ao_buffer in the core, and
buffer_state.buffers in the AO) with a single queue. Instead of having a
byte based buffer, the queue is simply a list of audio frames, as output
by the decoder. This should make dataflow simpler and reduce copying.
It also attempts to simplify fill_audio_out_buffers(), the function I
always hated most, because it's full of subtle and buggy logic.
Unfortunately, I got assaulted by corner cases, dumb features (attempt
at seamless looping, really?), and other crap, so it got pretty
complicated again. fill_audio_out_buffers() is still full of subtle and
buggy logic. Maybe it got worse. On the other hand, maybe there really
is some progress. Who knows.
Originally, the data flow parts was meant to be in f_output_chain, but
due to tricky interactions with the playloop code, it's now in the dummy
filter in audio.c.
At least this improves the way the audio PTS is passed to the encoder in
encoding mode. Now it attempts to pass frames directly, along with the
pts, which should minimize timestamp problems. But to be honest, encoder
mode is one big kludge that shouldn't exist in this way.
This commit should be considered pre-alpha code. There are lots of bugs
still hiding.
Allow mp_aframe_clip_timestamps() to discard a spdif frame if it's
entirely out of the timestamp range. Just a minor thing that might make
handling these dumb formats easier.
Previously get_state() would keep setting the cork status
while paused, but it only does for that after underflows now.
Correct this oversight by creating the stream corked for start()
to uncork it at a later time.
fixes#8026
FFmpeg expects those fields to be set on the AVFrame when
encoding audio, not doing so will cause the avcodec_send_frame
call to return EINVAL (at least in recent builds).
scaletempo2 is a new audio filter for playing back
audio at modified speed and is based on chromium
commit 51ed77e3f37a9a9b80d6d0a8259e84a8ca635259.
It sounds subjectively better than the existing
implementions scaletempo and rubberband.
When get_state() corks the stream after an underrun happens
priv->playing is incorrectly reset to true, which can cause the
player to miss the underrun entirely. Stop resetting priv->playing
during corking (but not uncorking) to fix this.
The underflow callback introduced in d27ad96 can be called
when the buffer is still full, causing playback to never
resume afterwards since get_state() reports free_samples == 0.
Fix this by fully resetting on underrun, which flushes
the stream and ensures free buffer space.
fixes#7874
The pull mode APIs were previously required to have thread-safe
ao_controls. However, locks were added in b83bdd1 for parity with push
mode. This introduced deadlocks in ao_wasapi.
Instead, only lock ao_control for the push mode APIs.
fixes#7787
See also #7832, #7811. We'll wait for feedback to see if those should
also be closed.
AOs which use the "push" API must set this field now. Actually, this was
sort of always required, but happened to work anyway. The future
intention is to use device_buffer as the pre-buffer amount, which has to
be available right before audio playback is started. "Pull" AOs really
need this too conceptually, just that the API is underspecified.
From what I can see, only ao_null did not do this yet.
Previously, device_buffer defaulted to 0 on pulse. This meant that
commit baa7b5c would always wait with a timeout of 0, leading to
high CPU usage for PulseAudio users.
By setting device_buffer to the number of samples per channel that
PulseAudio sets as its target, this commit fixes this behaviour.
The playback thread may obviously still fill the AO'S entire audio
buffer, which means it unset p->draining, which makes no sense and broke
ao_drain(). So just don't unset it here.
Not sure if this really fixes this, it was hard to reproduce. Regression
due to the recent changes. There are probably many more bugs like this.
Stupid asynchronous nightmare state machine. Give me a language that
supports formal verification (in presence of concurrency) or something.
I feel like this makes slightly more sense. At least it doesn't include
the potentially arbitrary constant latency that is generally included in
the delay value. Also, the buffer status doesn't matter - either we've
filled the entire buffer (then we can wait this long), or there's not
enough data anyway (then the core will wake up the thread if new data is
available).
But ultimately, we have to guess, unless the AO does notify us with
ao_wakeup_playthread().
Draining may now wait for no reason up to 1/4th of the total buffer
time. Shouldn't be a disimprovement in practice.
It's conceivable that ao->driver->reset() will make the audio API wait
for ao_read_data() (i.e. its audio callback) to return. Since we
recently moved the reset() call inside the same lock that ao_read_data()
acquires, this could deadlock. Whether this really happens depends on
how exactly the AO behaves. For example, ao_wasapi does not have this
problem. "Push" AOs are not affected either.
Fix by moving it outside of the lock. Assume ao->driver->start() will
not have this problem.
Could affect ao_sdl, ao_coreaudio (and similar rotten fruit AOs). I'm
unsure whether anyone experienced the problem in practice.
Instead of the relatively subtle underflow handling, simply signal
whether the stream is in a playing state. Should make it more robust.
Should affect ao_alsa and ao_pulse only (and ao_openal, but it's
broken).
For ao_pulse, I'm just guessing. How the hell do you query whether a
stream is playing? Who knows. Seems to work, judging from very
superficial testing.
Just a detail. If wrong (not unlikely because I'm just guessing my own
messy state machine), this will make the player freeze due to waiting
for something that never happens. Enjoy.
The feeder thread basically woke up the core and itself too often, and
caused some CPU overhead. This was caused by the recent buffer.c
changes.
For one, do not let ao_read_data() wake up the core, and instead rely on
the feeder thread's own buffer management. This is a bit strange, since
the change intended to unify the buffer management, but being more
consequent about it is better deferred to later, when the buffer
management changes again anyway. And also, the "more" condition in the
feeder thread seems outdated, or at least what made it make sense has
been destroyed, so do something that may or may not be better. In any
case, I'm still not getting underruns with ao_alsa, but the wakeup
hammering is gone.
This affects "pull" AOs only: ao_alsa, ao_pulse, ao_openal, ao_pcm,
ao_lavc. There are changes to the other AOs too, but that's only about
renaming ao_driver.resume to ao_driver.start.
ao_openal is broken because I didn't manage to fix it, so it exits with
an error message. If you want it, why don't _you_ put effort into it? I
see no reason to waste my own precious lifetime over this (I realize the
irony).
ao_alsa loses the poll() mechanism, but it was mostly broken and didn't
really do what it was supposed to. There doesn't seem to be anything in
the ALSA API to watch the playback status without polling (unless you
want to use raw UNIX signals).
No idea if ao_pulse is correct, or whether it's subtly broken now. There
is no documentation, so I can't tell what is correct, without reverse
engineering the whole project. I recommend using ALSA.
This was supposed to be just a simple fix, but somehow it expanded scope
like a train wreck. Very high chance of regressions, but probably only
for the AOs listed above. The rest you can figure out from reading the
diff.
wasapi/coreaudio/sdl were affected, alsa/pusle were not.
The confusion here was that resume() has different meaning with pull and
push AOs.
Fixes: #7772
Regression since the recent refactor. How did nobody notice?
This happened because the push code now calls the function for the pull
code. Both the former and latter apply the volume, so oops.