Notably, the address of the enumerator->count member is passed to
IMMDeviceCollection::GetCount(), which expects a UINT variable, not an int. How
did this ever work?
Previously, if the enumerator found no devices, attempting to get the default
device with IMMDeviceEnumerator::GetDefaultAudioEndpoint would result in the
cryptic (and undocumented) E_PROP_ID_UNSUPPORTED. This way, the user is given a
better indication of what exactly is wrong and isolates any other possible
triggers for this error.
Similar to the video path. dec_audio.c now handles decoding only. It
also looks very similar to dec_video.c, and actually contains some of
the rewritten code from it. (A further goal might be unifying the
decoders, I guess.)
High potential for regressions.
This is probably the 3rd time the user-visible behavior changes. This
time, switch back because not normalizing seems to be the more expected
behavior from users.
Seems useless.
This only helped in one case: one audio stream in the sample
av_find_best_stream_fails.ts had a AC3 packets which couldn't be
decoded, and for which avcodec_decode_audio4() returned 0 forever. In
this specific case, playback will now not start, and you have to
deselect audio manually.
(If someone complains, the old behavior might be restored, but
differently.)
Also remove the stale "bitrate" field.
While the situation is not really clear for the other rewritten
coreaudio code, it's very clear for the channel mapping code. It was all
written by us. (MPlayer doesn't even have any channel map handling.)
This covers source files which were added in mplayer2 and mpv times
only, and where all code is covered by LGPL relicensing agreements.
There are probably more files to which this applies, but I'm being
conservative here.
A file named ao_sdl.c exists in MPlayer too, but the mpv one is a
complete rewrite, and was added some time after the original ao_sdl.c
was removed. The same applies to vo_sdl.c, for which the SDL2 API is
radically different in addition (MPlayer supports SDL 1.2 only).
common.c contains only code written by me. But common.h is a strange
case: although it originally was named mp_common.h and exists in MPlayer
too, by now it contains only definitions written by uau and me. The
exceptions are the CONTROL_ defines - thus not changing the license of
common.h yet.
codec_tags.c contained once large tables generated from MPlayer's
codecs.conf, but all of these tables were removed.
From demux_playlist.c I'm removing a code fragment from someone who was
not asked; this probably could be done later (see commit 15dccc37).
misc.c is a bit complicated to reason about (it was split off mplayer.c
and thus contains random functions out of this file), but actually all
functions have been added post-MPlayer. Except get_relative_time(),
which was written by uau, but looks similar to 3 different versions of
something similar in each of the Unix/win32/OSX timer source files. I'm
not sure what that means in regards to copyright, so I've just moved it
into another still-GPL source file for now.
screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but
they're all gone.
Previously used opt_exclusive option to decide which volume control code to run.
The might not always reflect the actual state, for example if passthrough
is used. Admittedly, none of the volume controls will work anyway with
passthrough, but this is the right thing to do.
Prevents channels from being dropped, e.g. when going 7.1 -> 7.1(wide)
and similar cases. The reasoning here is that channel layouts over HDMI
don't work anyway, and not dropping a channel and playing it on a
slightly "wrong" (but expected) speaker is preferable to playing silence
on these speakers.
Do this to remove issues with ao_coreaudio. Frankly I'm not sure whether
our mapping (between CA and mpv/FFmpeg speakers) is correct, but on the
other hand due to the reasons stated above it's not all that meaningful.
This is mainly a refactor. I'm hoping it will make some things easier
in the future due to cleanly separating codec metadata and stream
metadata.
Also, declare that the "codec" field can not be NULL anymore. demux.c
will set it to "" if it's NULL when added. This gets rid of a corner
case everything had to handle, but which rarely happened.
Note that hresult_to_str() (coming from wasapi_explain_err()) is mostly
wasapi-specific, but since HRESULT error codes are unique, it can be
extended for any other use.
This is another attempt at making files with sparse video frames work
better.
The problem is that you generally can't know whether a jump in video
timestamps is just a (very) long video frame, or a timestamp reset. Due
to the existence of files with sparse video frames (new frame only every
few seconds or longer), every heuristic will be arbitrary (in general,
at least).
But we can use the fact that if video is continuous, audio should also
be continuous. Audio discontinuities can be easily detected, and if that
happens, reset some of the playback state.
The way the playback state is reset is rather radical (resets decoders
as well), but it's just better not to cause too much obscure stuff to
happen here. If the A/V sync code were to be rewritten, it should
probably strictly use PTS values (not this strange time_frame/delay
stuff), which would make it much easier to detect such situations and
to react to them.
It existed for XP-compatibility only. There was also a time where
ao_wasapi caused issues, but we're relatively confident that ao_wasapi
works better or at least as good as ao_dsound on Windows Vista and
later.
Normally, PulseAudio accepts any combination of sample format, sample
rate, channel count/map. Sometimes it does not. For example, the channel
rate or channel count have fixed maximum values. We should not fail
fatally in such cases, but attempt to fall back to a working format.
We could just send pass an "unset" format to Pulse, but this is not too
attractive. Pulse could use a format which we do not support, and also
doing so much for an obscure corner case is not reasonable. So just pick
a format that is very likely supported.
This still could fail at runtime (the stream could fail instead of going
to the ready state), but this sounds also too complicated. In
particular, it doesn't look like pulse will tell us the cause of the
stream failure. (Or maybe it does - but I didn't find anything.)
Last but not least, our fallback could be less dumb, and e.g. try to fix
only one of samplerate or channel count first to reduce the loss, but
this is also not particularly worthy the effort.
Fixes#2654.
Given 5.1(side), this lets it pick 5.1 from [5.1, 7.1]. Which was
probably the original intention of this replacement stuff. Until now,
the opposite was done in some cases.
Keep the old heuristic if the replacement is not perfect. This would
mean that a subset of the channel layout is an inexact equivalent, but
not all of it.
(My conclusion is that audio output APIs should be designed to simply
take any channel layout, like the PulseAudio API does.)
Unify and clean up listing and selection. Use common enumerator code for both
operations to avoid duplication or inconsistencies.
Maintain, but significatnly simplify manual device selection by id, name or
number. This actually fixes loading by name which didn't really work before
since the "name" displayed by --audio-device=help differed from that used to
match the selection, which used the device "description" instead.
Save the selected deviceID in the private structure for later loading. This will
permit moving the device selection into the main thread in a future commit.
Apparently it's only wine where the qpc_position returned by
IAudioClock_GetPosition can be overflowed. So actually do the rescaling
correctly, but throw away the result if it looks unreasonable.
this fixes a regression in 5afa68835a
Make sure that subtraction of performance counters is done correctly.
Follow the *exact* instructions for converting performance counter to something
comparable to the QPCposition returned by IAudioClient::GetPosition
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370889%28v=vs.85%29.aspx
Also make sure that subtraction of unsigned integers is stored into a signed
integer to avoid nastiness. Also be more careful about overflow in the
conversion of the device position into number of samples.
Avoid casting mp_time_us() to a double, and use llrint to convert the
double precision delay_us back to integer for ao_read_data.
Finally, actually check the return value of ao_read_data and add a verbose
message if it is not the expected value. Unfortunately,
there is no way to tell WASAPI when this happens since the frame_count in
ReleaseBuffer must match GetBuffer.
Do not try and set/get master volume in exclusive if there is no
hardware support. This would just uselessly change the master slider,
but have no effect on the actual volume.
Furthermore if getting hardware volume support information fails, then assume
it has none.
It was complicated and not even very intuitive to the user.
If you are controlling the master volume, you just have to be
prepared to deal with the consequences.
A manually added af_volume could lead to muted audio when switching to a
new file. af_volume keeps the last volume set by AF_CONTROL_SET_VOLUME
to return it with AF_CONTROL_GET_VOLUME, but the initial value is 0. So
the mixer volume was forced to 0 when unintializing the filter chain and
reading back the previously set volume.
If there were many AO drivers without device selection, this added a
"Default" entry for each AO. These entries were not distinguishable, as
the device list feature is meant not to require to display the "raw"
device name in GUIs.
Disambiguate them by adding the driver name. If the AO is the first, the
name will remain just "Default". (The condition checks "num > 1",
because the very first entry is the dummy for AO autoselection.)
Of course, only FFmpeg has av_clipd(), while Libav does not. (Nevermind
that it doesn't do much more than the mpv MPCLAMP() macro. Supposedly,
libavutil can provide optimized platform-specific versions for av_clip*,
but of course nothing actually does for av_clipf() or av_clipd().)
libswresample doesn't do it - although it should, but the patch is stuck
in limbo.
Probably reduces problems with artifacts on downmixing in some cases.
Remove known useless device entries from the --audio-device list (and
corresponding property). Do this because the list is supposed to be a
high level list of devices the user can select. ALSA does not provide
such a list (in an useable manner), and ao_alsa.c is still in the best
position to improve the situation somewhat.
The ALSA doxygen says:
IOID - input / output identification ("Input" or "Output"), NULL
means both
This bug was blatantly introduced with commit cf94fce4.
Apparently, some audio drivers do not support the DTS subtype, but
passthrough works anyway if the AC3 subtype is set. Just retry with
AC3 if the proper format doesn't work. The audio device which
exposed this behavior reported itself as
"M601d-A3/A3R (Intel(R) Display Audio)".
xbmc/kodi even always passes DTS as AC3.
Just set the ratio directly by working around the intended semantics of
the API function. The silly rounding stuff we had isn't needed anymore
(and not entirely correct anyway).
Note that since the compensation is virtually active forever, we need to
reset if it's not needed. So always run this code to be sure to reset
it.
Also note that libswresample itself had a precision issue, until it
was fixed in FFmpeg commit 351e625d.
Deal with jittering Matroska crap timestamps. This reuses the mechanism
that is needed for frames without PTS, and adds a heuristic to it. If
the interpolated timestamp is less than 1ms away from the real one, it
might be due to Matroska timestamp rounding (or other file formats with
such rounding, or files remuxed from Matroska).
While there actually isn't much of a need to do this (audio PTS
jittering by such a low amount doesn't negatively influence much), it
helps with identifying jitter from other sources.
Instead of requiring the decoder to set the PTS directly on the
dec_audio context (including handling absence of PTS etc.), transfer the
packet PTS to the decoded audio frame. Marginally simpler, and gives
more control to the generic code.
Essentially we'd use something random, just because it's part of the srt
of traditionally used ALSA channel mappings. But each driver can do its
own things.
This doesn't let me sleep at night, so remove it.
This could accidentally change some spdif formats to AAC (because AAC is
the first on the list and will match first). spdif formats are
inherently uninterchangeable, so treat them as their own class of
formats (like int vs. float).
Might fix some issues with ao_wasapi.c.
Actually, it didn't really require that before (most work was avoided),
but some bits had to be run anyway. Separate the speed change into a
light-weight function, which merely updates already created filters, and
a heavy-weight one which messes with filter insertion.
This also happens to fix the case where the filters would "forget" the
current speed (force resampling, change speed, hit a volume control to
force af_volume insertion - it will reset speed and desync).
Since we now always run the light-weight function, remove the
af_scaletempo verbose message that is printed on speed setting. Other
than that, all setters are cheap.
For some reason, the encoder didn't like that the AVPacket already had
fields set. I'm not quite sure, but this might just be invalid API
usage. Do it as it's recommended.
We need to effectively swap the last channel pair. See commit 4e358a96
and 5a18c5ea for details.
Doing this seems rather strange, as 7.1 just extends 5.1 with 2 new
speakers, and 5.1 doesn't need this change. Going by the HDMI standard
and the Intel HDA sources (cited in the referenced commits), it also
looks like 7.1 should simply append two channels to 5.1 as well. But
swapping them is apparently correct. This is also what XBMC does. (I
didn't find any other applications doing 7.1 PCM using the ALSA channel
map API. VLC seems to ignore the 7.1 case.) Testing reveals that at
least the end result is correct.
"Normal" ALSA 7.1 is unaffected by this, as it reports a different
(and saner) channel layout.
Instead of constructing an ALSA channel map from mpv ones from scratch,
try to find the original ALSA channel map again. Th result is that we
need to convert channel maps only in one direction. If we need to map
a mp_chmap to ALSA, we fetch the device's channel map list, convert
each entry to mp_chmap, and find the first one which fits.
This seems helpful for the following commit. For now, this only gets rid
of mapping back the trivial MONO mapping, which alone would still be
acceptable, but with other channel layout mogrifications it gets messy
fast. While we need to do something awkward to keep our channel map
reordering for VAR chmaps (which basically gives nicer output and
possibly slightly better performance), this is still the better
solution.
This reverts commit 4e358a9636.
Testing shows the channel pairs must indeed be swapped (details see
commit message of the reverted commit). Making the downmix code move
sl/sr to sdl/sdr is not an appropriate solution anymore, and it's
better to fix the unusual channel layout in ao_alsa.c directly.
(Not reverting the change in chmap.c; this is still correct.)
ao_alsa: attempt to fix 7.1 over HDMI
The last 2 channels of 7.1 (RLC/RRC in ALSA) were exported as sdl/sdr
instead of sl/sr (I don't even know why I chose sdl/sdr, but SL/SR
and RLC/RRC are different in the ALSA API). libsw/avresample do not
move the sl/sr channels to sdl/sdr when rematrixing, so silence was
sent for 2 channels. If my selection of sdl/sdr is essentially API
abuse, there's no reason why they should do this differently.
The mess here is really that ALSa doesn't map the HDMI layouts cleanly.
Most ALSA drivers export 7.1 in a way compatible to our expectations,
but Intel HDA/HDMI does not:
mpv/ffmpeg: fl-fr-fc-lfe-bl-br-sl-sr
ALSA/generic: FL FR FC LFE RL RR SL SR [1]
ALSA/HDMI: FL FR LFE FC RL RR RLC RRC [2]
The HDMI layout is layout 0x13 (going by CEA-861-B). The comment in
the kernel code has to be correct too. The early standard defines only
1 other layout, which replaces RLC/RRC with FRC/FLC - this probably
corresponds to what we call "7.1(wide)".
So it appears when ALSA requests RLC/RRC, we should feed it sl/sr.
To make it more complicated, Kodi/xbmc apparently also have to deal with
ALSA being special, but instead of sending sl/sr to RLC/RRC, they swap
the last two pairs of the layout, and send sl/sr to RL/RR and bl/br to
RLC/RRC. Or I might have misunderstood their code. I don't have a
7.1-capable A/V receiver, so I can't test this.
For now, go with the simpler solution, and wait until someone tests it.
If the speakers end up swapped, a completely different solution will be
needed.
[1] https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/sound/core/pcm_lib.c?id=refs/tags/v4.3#n2434
[2] https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/sound/pci/hda/patch_hdmi.c?id=refs/tags/v4.3#n307
These calls actually can leave the ALSA configuration space empty (how
very useful), which is why snd_pcm_hw_params() can fail. An earlier
change intended to make this non-fatal, but it didn't work for this
reason.
Backup the old parameters, so we can retry with the non-empty
configuration space. (It has to be non-empty, because the previous
setters didn't fail.)
Note that the buffer settings are not very important to us. They're
a leftover from MPlayer, which needed to write enough data to the
audio device to not underrun while decoding and displaying a video
frame. In mpv, most of these things happen asynchronously, _and_
there is a dedicated thread just for feeding the audio device, so
we should be pretty imune even against extreme buffer settings. But
I suppose it's still useful to prevent PulseAudio from making the
buffer too large, so still keep this code.
Again, this could have bad access, is unlikely, and has no bad
consequences. It's noteworthy that vlc and the ALSA PCM example both do
this first, even if they set the sample rate later.
I'm worried that not restricting the access type before restricting the
format will cause problems. While it's unlikely, it might prevent
failures in some corner cases. Also, since we by default always use
interleaved access (buggy ALSA plugins), this will have no effects at
all.
If the API doesn't list padded channel maps, but the final device
channel map is padded, and if unpadded output is not possible (unlike in
the somewhat similar dmix case), then we shouldn't apply the channel
count mismatch fallback in the beginning. Do it after channel map
negotiation instead.
Doesn't matter much; effectively this prevents just log spam in some
cases where the map is legitimately padded. Normally this is really
only needed for the dmix ALSA case. (See git blame for details.)
av_free_packet() got finally deprecated. Use av_packet_unref() instead,
which has almost the same semantics, has existed for a while, and is
available in all FFmpeg and Libav versions we support.
Until recently, the channel layout code happened to catch this, but now
an explicit check is needed. Otherwise, it'd try to pad the missing
channels with NA in the channel map fallback code.
This is intended for the case when CoreAudio returns only unknown
channel layouts, or no channel layout matches the number of channels the
CoreAudio device forces. Assume that outputting stereo or mono to the
first channels is safe, and that it's better than outputting nothing.
It's notable that XBMC/kodi falls back to a static channel layout in
this case. For some messed up reason, the layout it uses happens to
match with the channel order in ALSA's/mpv's "7.1(alsa)" layout.
Share some code between ca_init_chmap() and ca_get_active_chmap(), which
also makes it look slightly nicer. No functional changes, other than the
additional log message.
If no channel layouts were determined (which can actually happen with
some "strange" devices), the selection code was falling back to mono,
because mono is always added as a fallback. This doesn't seem quite
right.
Allow a fallback to stereo too, if no channel layout could be retrieved
at all. So we always assume that mono and stereo work, if no other
layouts are available.
(I still don't know what the CoreAudio stereo layout is supposed to do.
It could be used to swap left and right channels. It could also be used
to pad/move the channels, but I have never seen that. And it can be set
to non-stereo channels, which breaks mpv. Whatever.)