While the SI_ST_DIS state is set *after* doing the close on a connection,
it was set *before* calling release on an applet. Applets have no internal
flags contrary to connections, so they have no way to detect they were
already released. Because of this it happened that applets were closed
twice, once via si_applet_release() and once via si_release_endpoint() at
the end of a transaction. The CLI applet could perform a double free in
this case, though the situation to cause it is quite hard because it
requires that the applet is stuck on output in states that produce very
few data.
In order to solve this, we now assign the SI_ST_DIS state *after* calling
->release, and we refrain from doing so if the state is already assigned.
This makes applets work much more like connections and definitely avoids
this double release.
In the future it might be worth making applets have their own flags like
connections to carry their own state regardless of the stream interface's
state, especially when dealing with connection reuse.
No backport is needed since this issue was caused by the rearchitecture
in 1.6.
If an applet tries to write to a closed connection, it hangs forever.
This results in some "get map" commands on the CLI to leave orphaned
connections alive.
Now the applet wakeup function detects that the applet still wants to
write while the channel is closed for reads, which is the equivalent
to the common "broken pipe" situation. In this case, an error is
reported on the stream interface, just as it happens with connections
trying to perform a send() in a similar situation.
With this fix the stats socket is properly released.
This function is a callback made only for calls from the applet handler.
Rename it to remove confusion. It's currently called from the Lua code
but that's not correct, we should call the notify and update functions
instead otherwise it will not enable the applet again.
This one is not needed anymore as what it used to do is either
completely covered by the new stream_int_notify() function, or undesired
and inherited from the past as a side effect of introducing the
connections.
This update is theorically never called since it's assigned only when
nothing is connected to the stream interface. However a test has been
added to si_update() to stay safe if some foreign code decides to call
si_update() in unsafe situations.
The code to report completion after a connection update or an applet update
was almost the same since applets stole it from the connection. But the
differences made them hard to maintain and prevented the creation of new
functions doing only one part of the work.
This patch replaces the common code from the si_conn_wake_cb() and
si_applet_wake_cb() with a single call to stream_int_notify() which only
notifies the stream (si+channels+task) from the outside.
No functional change was made beyond this.
stream_int_notify() was taken from the common part between si_conn_wake_cb()
and si_applet_done(). It is designed to report activity to a stream from
outside its handler. It'll generally be used by lower layers to report I/O
completion but may also be used by remote streams if the buffer processing
is shared.
The condition to release the SI_FL_WAIT_ROOM flag was abnormally
complicated because it was inherited from 6 years ago before we used
to check for the buffer's emptiness. The CF_READ_PARTIAL flag had to be
removed, and the complex test was replaced with a simpler one checking
if *some* data were moved out or not.
The reason behind this change is to have a condition compatible with
both connections and applets, as applets currently don't work very
well in this area. Specifically, some optimizations on the applet
side cause them not to release the flag above until the buffer is
empty, which may prevent applets from taking together (eg: peers
over large haproxy buffers and small kernel buffers).
Now the call to stream_int_update() is moved to si_update(), which
is exclusively called from the stream, so that the socket layer may
be updated without updating the stream layer. This will later permit
to call it individually from other places (other tasks or applets for
example).
Now that we have a generic stream_int_update() function, we can
replace the equivalent part in stream_int_update_conn() and
stream_int_update_applet() to avoid code duplication.
There is no functional change, as the code is the same but split
in two functions for each call.
This function is designed to be called from within the stream handler to
update the channels' expiration timers and the stream interface's flags
based on the channels' flags. It needs to be called only once after the
channels' flags have settled down, and before they are cleared, though it
doesn't harm to call it as often as desired (it just slightly hurts
performance). It must not be called from outside of the stream handler,
as what it does will be used to compute the stream task's expiration.
The code was taken directly from stream_int_update_applet() and
stream_int_update_conn() which had exactly the same one except for
applet-specific or connection-specific status update.
The purpose is to separate the connection-specific parts so that the
stream-int specific one can be factored out. There's no functional
change here, only code displacement.
If we're going to call the task we don't need to call the appctx anymore
since the task may decide differently in the end and will do the proper
thing using ->update(). This reduces one wake up call per session and
may go down to half in case of high concurrency (scheduling races).
The applets don't fiddle with SI_FL_WAIT_ROOM anymore, instead they indicate
what they want, possibly that they failed (eg: WAIT_ROOM), and it's done() /
update() which finally updates the WAIT_* flags according to the channels'
and stream interface's states. This solves the issue of the pauses during a
"show sess" without creating busy loops.
Now si->update() is used to update any type of stream interface, whether
it's an applet, a connection or even nothing. We don't call si_applet_call()
anymore at the end of the resync and we don't have the risk that the
stream's task is reinserted into the run queue, which makes the code
a bit simpler.
The stream_int_update_applet() function was simplified to ensure that
it remained compatible with this standardized calling convention. It
was almost copy-pasted from the update code dedicated to connections.
Just like for si_applet_done(), it seems that it should be possible to
merge the two functions except that it would require some slow operations,
except maybe if the type of end point is tested inside the update function
itself.
The applet I/O handlers now rely on si_applet_done() which itself decides
to wake up or sleep the appctx. Now it becomes critical that applte handlers
properly call this on every exit path so that the appctx is removed from the
active list after I/O have been handled. One such call was added to the Lua
socket handler. It used to work without it probably because the main task is
woken up by the parent task but now it's needed.
This is the equivalent of si_conn_wake() but for applets. It will be
called after changes to the stream interface are brought by the applet
I/O handler. Ultimately it will release buffers and may be even wake
the stream's task up if some important changes are detected.
It would be nice to be able to merge it with the connection's wake
function since it mostly manipulates the stream interface, but there
are minor differences (such as how to enable/disable polling on a fd
vs applet) and some specificities to applets (eg: don't wake the
applet up until the output is empty) which would require abstract
functions which would slow down everything.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
It's now called conn_sock_drain() to make it clear that it only reads
at the sock layer and not at the data layer. The function was too big
to remain inlined and it's used at a few places where size counts.
Currently si_idle_conn_null_cb() has to perform some low-level checks
over the file descriptor and the connection configuration that should
only belong to conn_drain(). Let's move these controls there. The
function now automatically checks for errors and hangups on the file
descriptor for example, and disables recv polling if there's no drain
function at the control layer.
Now that the connection performs the correct controls when shutting down,
use that in the few places where conn->xprt->shutw() was called. The calls
were split between conn_data_shutw() and conn_data_shutw_hard() depending
on the argument. Since the connection flags are updated, we don't need to
call conn_data_stop_send() anymore, instead we just have to call
conn_cond_update_polling().
Stop calling shutdown() on the connection's fd. Note, this also seems
to fix a bug which was harmless, but which consisted in not marking
the connection as shutdown at the socket level until the other side
was shut as well.
In stream_sock_read0(), we used to clear this flag. But the only case
where stream_sock_read0() is called is in reaction with a conn_sock_read0()
event coming from the lower layers, which already clears this flag. So let's
remove this duplicate one and clear one of the few remaining layering
violations in this area.
Now that we can get the session from the channel, let's simplify the
prototype of session_alloc_recv_buffer() to only require the channel.
Both the caller and the function are now simplified.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
It applies to the channel and it doesn't erase outgoing data, only
pending unread data, which is strictly equivalent to what recv()
does with MSG_TRUNC, so that new name is more accurate and intuitive.
This name more accurately reminds that it applies to a channel and not
to a buffer, and that what is returned may be used as a max number of
bytes to pass to recv().
This function's name was poorly chosen and is confusing to the point of
being suspiciously used at some places. The operations it does always
consider the ability to forward pending input data before receiving new
data. This is not obvious at all, especially at some places where it was
used when consuming outgoing data to know if the buffer has any chance
to ever get the missing data. The code needs to be re-audited with that
in mind. Care must be taken with existing code since the polarity of the
function was switched with the renaming.
This is the equivalent of eb9fd51 ("OPTIM: stream_sock: reduce the amount
of in-flight spliced data") whose purpose is to try to immediately send
spliced data if available.
A session doesn't need buffers all the time, especially when they're
empty. With this patch, we don't allocate buffers anymore when the
session is initialized, we only allocate them in two cases :
- during process_session()
- during I/O operations
During process_session(), we try hard to allocate both buffers at once
so that we know for sure that a started operation can complete. Indeed,
a previous version of this patch used to allocate one buffer at a time,
but it can result in a deadlock when all buffers are allocated for
requests for example, and there's no buffer left to emit error responses.
Here, if any of the buffers cannot be allocated, the whole operation is
cancelled and the session is added at the tail of the buffer wait queue.
At the end of process_session(), a call to session_release_buffers() is
done so that we can offer unused buffers to other sessions waiting for
them.
For I/O operations, we only need to allocate a buffer on the Rx path.
For this, we only allocate a single buffer but ensure that at least two
are available to avoid the deadlock situation. In case buffers are not
available, SI_FL_WAIT_ROOM is set on the stream interface and the session
is queued. Unused buffers resulting either from a successful send() or
from an unused read buffer are offered to pending sessions during the
->wake() callback.
When a session_alloc_buffers() fails to allocate one or two buffers,
it subscribes the session to buffer_wq, and waits for another session
to release buffers. It's then removed from the queue and woken up with
TASK_WAKE_RES, and can attempt its allocation again.
We decide to try to wake as many waiters as we release buffers so
that if we release 2 and two waiters need only once, they both have
their chance. We must never come to the situation where we don't wake
enough tasks up.
It's common to release buffers after the completion of an I/O callback,
which can happen even if the I/O could not be performed due to half a
failure on memory allocation. In this situation, we don't want to move
out of the wait queue the session that was just added, otherwise it
will never get any buffer. Thus, we only force ourselves out of the
queue when freeing the session.
Note: at the moment, since session_alloc_buffers() is not used, no task
is subscribed to the wait queue.
In stream_int_register_handler(), we call si_alloc_appctx(si) but as a
mistake, instead of checking the return value for a NULL, we test <si>.
This bug was discovered under extreme memory contention (memory for only
two buffers with 500 connections waiting) and after 3 million failed
connections. While it was very hard to produce it, the fix is tagged
major because in theory it could happen when haproxy runs with a very
low "-m" setting preventing from allocating just the few bytes needed
for an appctx. But most users will never be able to trigger it. The
fix was confirmed to address the bug.
This fix must be backported to 1.5.
Commit bb2e669 ("BUG/MAJOR: http: correctly rewind the request body
after start of forwarding") was incorrect/incomplete. It used to rely on
CF_READ_ATTACHED to stop updating msg->sov once data start to leave the
buffer, but this is unreliable because since commit a6eebb3 ("[BUG]
session: clear BF_READ_ATTACHED before next I/O") merged in 1.5-dev1,
this flag is only ephemeral and is cleared once all analysers have
seen it. So we can start updating msg->sov again each time we pass
through this place with new data. With a sufficiently large amount of
data, it is possible to make msg->sov wrap and validate the if()
condition at the top, causing the buffer to advance by about 2GB and
crash the process.
Note that the offset cannot be controlled by the attacker because it is
a sum of millions of small random sizes depending on how many bytes were
read by the server and how many were left in the buffer, only because
of the speed difference between reading and writing. Also, nothing is
written, the invalid pointer resulting from this operation is only read.
Many thanks to James Dempsey for reporting this bug and to Chris Forbes for
narrowing down the faulty area enough to make its root cause analysable.
This fix must be backported to haproxy 1.5.
This commit modifies the PROXY protocol V2 specification to support headers
longer than 255 bytes allowing for optional extensions. It implements the
PROXY protocol V2 which is a binary representation of V1. This will make
parsing more efficient for clients who will know in advance exactly how
many bytes to read. Also, it defines and implements some optional PROXY
protocol V2 extensions to send information about downstream SSL/TLS
connections. Support for PROXY protocol V1 remains unchanged.
The new tune.idletimer value allows one to set a different value for
idle stream detection. The default value remains set to one second.
It is possible to disable it using zero, and to change the default
value at build time using DEFAULT_IDLE_TIMER.
Disabling the streamer flags after an idle period will help TCP proxies
to better adapt to the streams they're forwarding, especially with SSL
where this will allow the SSL sender to use smaller records. This is
typically used to optimally relay HTTP and derivatives such as SPDY or
HTTP/2 in pure TCP mode when haproxy is used as an SSL offloader.
This idea was first proposed by Ilya Grigorik on the haproxy mailing
list, and his tests seem to confirm the improvement :
https://www.mail-archive.com/haproxy@formilux.org/msg12576.html
By having the stream interface pass the CF_STREAMER flag to the
snd_buf() primitive, we're able to tell the send layer whether
we're sending large chunks or small ones.
We use this information in SSL to adjust the max record dynamically.
This results in small chunks respecting tune.ssl.maxrecord at the
beginning of a transfer or for small transfers, with an automatic
switch to full records if the exchanges last long. This allows the
receiver to parse HTML contents on the fly without having to retrieve
16kB of data, which is even more important with small initcwnd since
the receiver does not need to wait for round trips to start fetching
new objects. However, sending large files still produces large chunks.
For example, with tune.ssl.maxrecord = 2859, we see 5 write(2885)
sent in two segments each and 6 write(16421).
This idea was first proposed on the haproxy mailing list by Ilya Grigorik.
This prevents us from passing other useful info and requires the
upper levels to know these flags. Let's use a new flags category
instead : CO_SFL_*. For now, only MSG_MORE has been remapped.
We don't need to call fd_stop_both() since we already call
conn_cond_update_polling() which will do it. This call was introduced by
commit d29a066 ("BUG/MAJOR: connection: always recompute polling status
upon I/O").
We used to only update the polling flags in data phase, but after that
we could update other flags. It does not seem possible to trigger a
bug here but it's not very safe either. Better always keep them up to
date.
The recv/send callbacks must check for readiness themselves instead of
having their callers do it. This will strengthen the test and will also
ensure we never refrain from calling a handshake handler because a
direction is being polled while the other one is ready.
We simply remove these functions and replace their calls with the
appropriate ones :
- if we're in the data phase, we can simply report wait on the FD
- if we're in the socket phase, we may also have to signal the
desire to read/write on the socket because it might not be
active yet.
These flags were used to report the readiness of the file descriptor.
Now this readiness is directly checked at the file descriptor itself.
This removes the need for constantly synchronizing updates between the
file descriptor and the connection and ensures that all layers share
the same level of information.
For now, the readiness is updated in conn_{sock,data}_poll_* by directly
touching the file descriptor. This must move to the lower layers instead
so that these functions can disappear as well. In this state, the change
works but is incomplete. It's sensible enough to avoid making it more
complex.
Now the sock/data updates become much simpler because they just have to
enable/disable access to a file descriptor and not to care anymore about
its readiness.
Recent commit d7ad9f5 ("MAJOR: channel: add a new flag CF_WAKE_WRITE to
notify the task of writes") was not correct. It used to wake up the task
as soon as there was some write activity and the flag was set, even if there
were still some data to be forwarded. This resulted in process_session()
being called a lot when transfering chunk-encoded HTTP responses made of
very large chunks.
The purpose of the flag is to wake up only a task waiting for some
room and not the other ones, so it's totally counter-productive to
wake it up as long as there are data to forward because the task
will not be allowed to write anyway.
Also, the commit above was taking some risks by not considering
certain events anymore (eg: state != SI_ST_EST). While such events
are not used at the moment, if some new features were developped
in the future relying on these, it would be better that they could
be notified when subscribing to the WAKE_WRITE event, so let's
restore the condition.
Now we can more safely rely on the connection state to decide how to
drain and what to do when data are drained. Callers don't need to
manipulate the file descriptor's state anymore.
Note that it also removes the need for the fix ea90063 ("BUG/MEDIUM:
stream-int: fix the keep-alive idle connection handler") since conn_drain()
correctly sets the polling flags.
It was not possible to know if the drain() function had hit an
EAGAIN, so now we change the API of this function to return :
< 0 if EAGAIN was met
= 0 if some data remain
> 0 if a shutdown was received
Since commit 6b66f3e ([MAJOR] implement autonomous inter-socket forwarding)
introduced in 1.3.16-rc1, we've been relying on a stupid mechanism to wake
up the task after a write, which was an exact copy-paste of the reader side.
The principle was that if we empty a buffer and there's no forwarding
scheduled or if the *producer* is not in a connected state, then we wake
the task up.
That does not make any sense. It happens to wake up too late sometimes (eg,
when the request analyser waits for some room in the buffer to start to
work), and leads to unneeded wakeups in client-side keep-alive, because
the task is woken up when the response is sent, while the analysers are
simply waiting for a new request.
In order to fix this, we introduce a new channel flag : CF_WAKE_WRITE. It
is designed so that an analyser can explicitly request being notified when
some data were written. It is used only when the HTTP request or response
analysers need to wait for more room in the buffers. It is automatically
cleared upon wake up.
The flag is also automatically set by the functions which try to write into
a buffer from an applet when they fail (bi_putblk() etc...).
That allows us to remove the stupid condition above and avoid some wakeups.
In http-server-close and in http-keep-alive modes, this reduces from 4 to 3
the average number of wakeups per request, and increases the overall
performance by about 1.5%.
Since the applet rework and the removal of the inter-task applets,
we must not clear the stream-interface's owner task anymore otherwise
we risk a crash when maintaining keep-alive with an applet. This is
not possible right now so there is no impact yet, but this bug is not
easy to track down. No backport is needed.
Commit 2737562 (MEDIUM: stream-int: implement a very simplistic idle
connection manager) implemented an idle connection handler. In the
case where all data is drained from the server, it fails to disable
polling, resulting in a busy spinning loop.
Thanks to Sander Klein and Guillaume Castagnino for reporting this bug.
No backport is needed.
Idle connections are not monitored right now. So if a server closes after
a response without advertising it, it won't be detected until a next
request wants to use the connection. This is a bit problematic because
it unnecessarily maintains file descriptors and sockets in an idle
state.
This patch implements a very simple idle connection manager for the stream
interface. It presents itself as an I/O callback. The HTTP engine enables
it when it recycles a connection. If a close or an error is detected on the
underlying socket, it tries to drain as much data as possible from the socket,
detect the close and responds with a close as well, then detaches from the
stream interface.
Right now we see many places doing their own setsockopt(SO_LINGER).
Better only do it just before the close() in fd_delete(). For this
we add a new flag on the file descriptor, indicating if it's safe or
not to linger. If not (eg: after a connect()), then the setsockopt()
call is automatically performed before a close().
The flag automatically turns to safe when receiving a read0.
conn_xprt_ready() reports if the transport layer is ready.
conn_ctrl_ready() reports if the control layer is ready.
The stream interface uses si_conn_ready() to report that the
underlying connection is ready. This will be used for connection
reuse in keep-alive mode.
From now on, a call to stream_int_register_handler() causes a call
to si_alloc_appctx() and returns an initialized appctx for the
current stream interface. If one was previously allocated, it is
released. If the stream interface was attached to a connection, it
is released as well.
The appctx are allocated from the same pools as the connections, because
they're substantially smaller in size, and we can't have both a connection
and an appctx on an interface at any moment.
In case of memory shortage, the call may return NULL, which is already
handled by all consumers of stream_int_register_handler().
The field appctx was removed from the stream interface since we only
rely on the endpoint now. On 32-bit, the stream_interface size went down
from 108 to 44 bytes. On 64-bit, it went down from 144 to 64 bytes. This
represents a memory saving of 160 bytes per session.
It seems that a later improvement could be to move the call to
stream_int_register_handler() to session.c for most cases.
The task returned by stream_int_register_handler() is never used, however we
always need to access the appctx afterwards. So make it return the appctx
instead. We already plan for it to fail, which is the reason for the addition
of a few tests and the possibility for the HTTP analyser to return a status
code 500.
We used to have two very similar functions for sending a PROXY protocol
line header. The reason is that the default one relies on the stream
interface to retrieve the other end's address, while the "local" one
performs a local address lookup and sends that instead (used by health
checks).
Now that the send_proxy_ofs is stored in the connection and not the
stream interface, we can make the local_send_proxy rely on it and
support partial sends. This also simplifies the code by removing the
local_send_proxy function, making health checks use send_proxy_ofs,
resulting in the removal of the CO_FL_LOCAL_SPROXY flag, and the
associated test in the connection handler. The other flag,
CO_FL_SI_SEND_PROXY was renamed without the "SI" part so that it
is clear that it is not dedicated anymore to a usage with a stream
interface.
Till now the send_proxy_ofs field remained in the stream interface,
but since the dynamic allocation of the connection, it makes a lot
of sense to move that into the connection instead of the stream
interface, since it will not be statically allocated for each
session.
Also, it turns out that moving it to the connection fils an alignment
hole on 64 bit architectures so it does not consume more memory, and
removing it from the stream interface was an opportunity to correctly
reorder fields and reduce the stream interface's size from 160 to 144
bytes (-10%). This is 32 bytes saved per session.
The outgoing connection is now allocated dynamically upon the first attempt
to touch the connection's source or destination address. If this allocation
fails, we fail on SN_ERR_RESOURCE.
As we didn't use si->conn anymore, it was removed. The endpoints are released
upon session_free(), on the error path, and upon a new transaction. That way
we are able to carry the existing server's address across retries.
The stream interfaces are not initialized anymore before session_complete(),
so we could even think about allocating them dynamically as well, though
that would not provide much savings.
The session initialization now makes use of conn_new()/conn_free(). This
slightly simplifies the code and makes it more logical. The connection
initialization code is now shorter by about 120 bytes because it's done
at once, allowing the compiler to remove all redundant initializations.
The si_attach_applet() function now takes care of first detaching the
existing endpoint, and it is called from stream_int_register_handler(),
so we can safely remove the calls to si_release_endpoint() in the
application code around this call.
A call to si_detach() was made upon stream_int_unregister_handler() to
ensure we always free the allocated connection if one was allocated in
parallel to setting an applet (eg: detect HTTP proxy while proceeding
with stats maybe).
si_prepare_conn() is not appropriate in our case as it both initializes and
attaches the connection to the stream interface. Due to the asymmetry between
accept() and connect(), it causes some fields such as the control and transport
layers to be reinitialized.
Now that we can separately initialize these fields using conn_prepare(), let's
break this function to only attach the connection to the stream interface.
Also, by analogy, si_prepare_none() was renamed si_detach(), and
si_prepare_applet() was renamed si_attach_applet().
Currently the control and transport layers of a connection are supposed
to be initialized when their respective pointers are not NULL. This will
not work anymore when we plan to reuse connections, because there is an
asymmetry between the accept() side and the connect() side :
- on accept() side, the fd is set first, then the ctrl layer then the
transport layer ; upon error, they must be undone in the reverse order,
then the FD must be closed. The FD must not be deleted if the control
layer was not yet initialized ;
- on the connect() side, the fd is set last and there is no reliable way
to know if it has been initialized or not. In practice it's initialized
to -1 first but this is hackish and supposes that local FDs only will
be used forever. Also, there are even less solutions for keeping trace
of the transport layer's state.
Also it is possible to support delayed close() when something (eg: logs)
tracks some information requiring the transport and/or control layers,
making it even more difficult to clean them.
So the proposed solution is to add two flags to the connection :
- CO_FL_CTRL_READY is set when the control layer is initialized (fd_insert)
and cleared after it's released (fd_delete).
- CO_FL_XPRT_READY is set when the control layer is initialized (xprt->init)
and cleared after it's released (xprt->close).
The functions have been adapted to rely on this and not on the pointers
anymore. conn_xprt_close() was unused and dangerous : it did not close
the control layer (eg: the socket itself) but still marks the transport
layer as closed, preventing any future call to conn_full_close() from
finishing the job.
The problem comes from conn_full_close() in fact. It needs to close the
xprt and ctrl layers independantly. After that we're still having an issue :
we don't know based on ->ctrl alone whether the fd was registered or not.
For this we use the two new flags CO_FL_XPRT_READY and CO_FL_CTRL_READY. We
now rely on this and not on conn->xprt nor conn->ctrl anymore to decide what
remains to be done on the connection.
In order not to miss some flag assignments, we introduce conn_ctrl_init()
to initialize the control layer, register the fd using fd_insert() and set
the flag, and conn_ctrl_close() which unregisters the fd and removes the
flag, but only if the transport layer was closed.
Similarly, at the transport layer, conn_xprt_init() calls ->init and sets
the flag, while conn_xprt_close() checks the flag, calls ->close and clears
the flag, regardless xprt_ctx or xprt_st. This also ensures that the ->init
and the ->close functions are called only once each and in the correct order.
Note that conn_xprt_close() does nothing if the transport layer is still
tracked.
conn_full_close() now simply calls conn_xprt_close() then conn_full_close()
in turn, which do nothing if CO_FL_XPRT_TRACKED is set.
In order to handle the error path, we also provide conn_force_close() which
ignores CO_FL_XPRT_TRACKED and closes the transport and the control layers
in turns. All relevant instances of fd_delete() have been replaced with
conn_force_close(). Now we always know what state the connection is in and
we can expect to split its initialization.
The connection will only remain there as a pre-allocated entity whose
goal is to be placed in ->end when establishing an outgoing connection.
All connection initialization can be made on this connection, but all
information retrieved should be applied to the end point only.
This change is huge because there were many users of si->conn. Now the
only users are those who initialize the new connection. The difficulty
appears in a few places such as backend.c, proto_http.c, peers.c where
si->conn is used to hold the connection's target address before assigning
the connection to the stream interface. This is why we have to keep
si->conn for now. A future improvement might consist in dynamically
allocating the connection when it is needed.
The long-term goal is to have a context for applets as an alternative
to the connection and not as a complement. At the moment, the context
is still stored into the stream interface, and we only put a pointer
to the applet's context in si->end, initialize the context with object
type OBJ_TYPE_APPCTX, and this allows us not to allocate an entry when
deciding to switch to an applet.
A special care is taken to never dereference si->conn anymore when
dealing with an applet. That's why it's important that si->end is
always set to the proper type :
si->end == NULL => not connected to anything
*si->end == OBJ_TYPE_APPCTX => connected to an applet
*si->end == OBJ_TYPE_CONN => real connection (server, proxy, ...)
The session management code used to check the applet from the connection's
target. Now it uses the stream interface's end point and does not touch the
connection at all. Similarly, we stop checking the connection's addresses
and file descriptors when reporting the applet's status in the stats dump.
Since last commit, we now have a pointer to the applet in the
applet context. So we don't need the si->release function pointer
anymore, it can be extracted from applet->applet.release. At many
places, the ->release function was still tested for real connections
while it is only limited to applets, so most of them were simply
removed. For the remaining valid uses, a new inline function
si_applet_release() was added to simplify the check and the call.
si_prepare_embedded() was used both to attach an applet and to detach
anything from a stream interface. Split it into si_prepare_none() to
detach and si_prepare_applet() to attach an applet.
si->conn->target is now assigned from within these two functions instead
of their respective callers.
This is to be more consistent with the other functions. The only
reason why these functions used to return a value was to let the
caller adjust polling by itself, but now their only callers were
the si_shutr()/si_shutw() inline functions. Now these functions
do not depend anymore on the connection.
These connection variant of these functions now call
conn_data_stop_recv()/conn_data_stop_send() before returning order
not to require a return code anymore. The applet version does not
need this at all.
These functions induce a lot of ifs everywhere because they consider two
different cases, one which is where the connection exists and has a file
descriptor, and the other one which is the default case where at most an
applet has to be notified.
Let's have them in si_ops and automatically decide which one to use.
The connection shutdown sequence has been slightly simplified, and we
now clear the flags at the end.
Also we remove SHUTR_NOW after a shutw with nolinger, as it's cleaner
not to keep it.
When we get a hard error from a syscall indicating the socket is dead,
it makes sense to set the CO_FL_SOCK_WR_SH and CO_FL_SOCK_RD_SH flags
to indicate that the socket may not be used anymore. It will ease the
error processing in health checks where the state of socket is very
important. We'll also be able to avoid some setsockopt(nolinger) after
an error.
For now, the rest of the code is not impacted because CO_FL_ERROR is
always tested prior to these flags.
PROXY protocol header was not tolerant to signals, so it might cause a
connection to report an error if a signal comes in at the exact same
moment the send is done.
This is 1.5-specific and does not need any backport.
The connection flag CO_FL_ERROR will be tested in the functions both
si_conn_recv_cb() and si_conn_send_cb(). If CO_FL_ERROR has been set, out_error
branch will be executed. But the only job of out_error branch is to set
CO_FL_ERROR on connection flag. So it's better return directly than goto
out_error branch under such conditions. As a result, out_error branch becomes
needless and can be removed.
In addition, the return type of si_conn_send_loop() is also changed to void.
The caller should check conn->flags for errors just like stream_int_chk_snd_conn()
does as below:
static void stream_int_chk_snd_conn(struct stream_interface *si)
{
...
conn_refresh_polling_flags(si->conn);
- if (si_conn_send(si->conn) < 0) {
+ si_conn_send(si->conn);
+ if (si->conn->flags & CO_FL_ERROR) {
...
}
Signed-off-by: Godbach <nylzhaowei@gmail.com>
Though si_conn_send_loop() does not loop over ->snd_buf() after commit ed7f836,
there is still some codes left which use `while` but only execute once. This
commit does the cleanup job and rename si_conn_send_loop() to si_conn_send().
Signed-off-by: Godbach <nylzhaowei@gmail.com>
David Berard reported that send-proxy was broken on FreeBSD and tracked the
issue to be an error returned by send(). We already had the same issue in
the past in another area which was addressed by the following commit :
0ea0cf6 BUG: raw_sock: also consider ENOTCONN in addition to EAGAIN
In fact, on Linux send() returns EAGAIN when the connection is not yet
established while other OSes return ENOTCONN. Let's consider ENOTCONN for
send-proxy there as the same as EAGAIN.
David confirmed that this change properly fixed the issue.
Another place was affected as well (health checks with send-proxy), and
was fixed.
This fix does not need any backport since it only affects 1.5.
Splicing is avoided for small transfers because it's generally cheaper
to perform a couple of recv+send calls than pipe+splice+splice. This
has the consequence that the last chunk of a large transfer may be
transferred using recv+send if it's less than 4 kB. But when the pipe
is already set up, it's better to use splice() to read the pending data,
since they will get merged with the pending ones. This is what now
happens everytime the reader is slower than the writer.
Note that this change alone could have fixed most of the CPU hog bug,
except at the end when only the close was pending.
As explained in previous patch, we incorrectly call chk_snd() when
performing a read even if the write event is already subscribed to
poll(). This is counter-productive because we're almost sure to get
an EAGAIN.
A quick test shows that this fix halves the number of failed splice()
calls without adding any extra work on other syscalls.
This could have been tagged as an improvement, but since this behaviour
made the analysis of previous bug more complex, it still qualifies as
a fix.
Mark Janssen reported an issue in 1.5-dev19 which was introduced
in 1.5-dev12 by commit 96199b10. From time to time, randomly, the
CPU usage spikes to 100% for seconds to minutes.
A deep analysis of the traces provided shows that it happens when
waiting for the response to a second pipelined HTTP request, or
when trying to handle the received shutdown advertised by epoll()
after the last block of data. Each time, splice() was involved with
data pending in the pipe.
The cause of this was that such events could not be taken into account
by splice nor by recv and were left pending :
- the transfer of the last block of data, optionally with a shutdown
was not handled by splice() because of the validation that to_forward
is higher than MIN_SPLICE_FORWARD ;
- the next recv() call was inhibited because of the test on presence
of data in the pipe. This is also what prevented the recv() call
from handling a response to a pipelined request until the client
had ACKed the previous response.
No less than 4 different methods were experimented to fix this, and the
current one was finally chosen. The principle is that if an event is not
caught by splice(), then it MUST be caught by recv(). So we remove the
condition on the pipe's emptiness to perform an recv(), and in order to
prevent recv() from being used in the middle of a transfer, we mark
supposedly full pipes with CO_FL_WAIT_ROOM, which makes sense because
the reason for stopping a splice()-based receive is that the pipe is
supposed to be full.
The net effect is that we don't wake up and sleep in loops during these
transient states. This happened much more often than expected, sometimes
for a few cycles at end of transfers, but rarely long enough to be
noticed, unless a client timed out with data pending in the pipe. The
effect on CPU usage is visible even when transfering 1MB objects in
pipeline, where the CPU usage drops from 10 to 6% on a small machine at
medium bandwidth.
Some further improvements are needed :
- the last chunk of a splice() transfer is never done using splice due
to the test on to_forward. This is wrong and should be performed with
splice if the pipe has not yet been emptied ;
- si_chk_snd() should not be called when the write event is already being
polled, otherwise we're almost certain to get EAGAIN.
Many thanks to Mark for all the traces he cared to provide, they were
essential for understanding this issue which was not reproducible
without.
Only 1.5-dev is affected, no backport is needed.
Commit 7bb68abb introduced the SI_FL_NOHALF flag in dev10. It is used
to automatically close the write side of a connection whose read side
is closed. But the patch also caused the opposite to happen, which is
that a simple shutw() call would immediately close the connection. This
is not desired because when using option abortonclose, we want to pass
the client's shutdown to the server which will decide what to do with
it. So let's avoid the close when SHUTR is not set.
The code review during the chase for the POST freeze uncovered another possible
issue which might appear when we perform an incomplete read and want to stop because
of READ_DONTWAIT or because we reached the maximum read_poll limit. Reading is
disabled but SI_FL_WAIT_ROOM was not set, possibly causing some cases where a
send() on the other side would not wake the reader up until another activity
on the same side calls the update function which fixes its status.
Since the changes in connection management, it became necessary to re-enable
polling after a fast-forward transfer would complete.
One such issue was addressed after dev12 by commit 9f7c6a18 (BUG/MAJOR:
stream_interface: certain workloads could cause get stuck) but unfortunately,
it was incomplete as very subtle cases would occasionally remain unaddressed
when a buffer was marked with the NOEXP flag, which is used during POST
uploads. The wake up must be performed even when the flag is there, the
flag is used only to refresh the timeout.
Too many conditions need to be hit together for the situation to be
reproducible, but it systematically appears for some users.
It is particularly important to credit Sander Klein and John Rood from
Picturae ICT ( http://picturae.com/ ) for reporting this bug on the mailing
list, providing configs and countless traces showing the bug in action, and
for their patience testing litteraly tens of snapshots and versions of
supposed fixes during a full week to narrow the commit range until the bug
was really knocked down! As a side effect of their numerous tests, several
other bugs were fixed.
stream_int_chk_rcv_conn() did not clear connection flags before updating them. It
is unsure whether this could have caused the stalled transfers that have been
reported since dev15.
In order to avoid such further issues, we now use a simple inline function to do
all the job.
Back in the days where polling was made with select() where all FDs
were checked at once, stream_int_chk_snd_conn() used to check whether
the file descriptor it was passed was ready or not, so that it did
not perform the work for nothing.
Right now FDs are checked just before calling the I/O handler so this
test never matches at best, or may return false information at worst.
Since conn_fd_handler() always clears the flags upon exit, it looks
like a missed event cannot happen right now. Still, better remove
this outdated check than wait for it to cause issues.
Sander Klein reported a rare case of POST transfers being stalled
after a few megabytes since dev15. One possible culprit is the fix
for the CPU spinning issues which is not totally correct, because
stream_int_chk_snd_conn() would inconditionally enable the
CO_FL_CURR_WR_ENA flag.
What could theorically happen is the following sequence :
1) send buffer is empty, server-side polling is disabled
2) client sends some data
3) such data are forwarded to the server using
stream_int_chk_snd_conn()
4) conn->flags |= CO_FL_CURR_WR_ENA
5) si_conn_send_loop() is called
6) raw_sock_from_buf() does a partial write due to full kernel buffers
7) stream_int_chk_snd_conn() detects this and requests to be called
to send the remaining data using __conn_data_want_send(), and clears
the SI_FL_WAIT_DATA flag on the stream interface, indicating that it
is already congestionned.
8) conn_cond_update_polling() calls conn_data_update_polling() which
sees that both CO_FL_DATA_WR_ENA and CO_FL_CURR_WR_ENA are set, so
it does not enable polling on the output fd.
9) the next chunk from the client fills the buffer
10) stream_int_chk_snd_conn() is called again
11) SI_FL_WAIT_DATA is already cleared, so the function immediately
returns without doing anything.
12) the buffer is now full with the FD write polling disabled and
everything deadlocks.
Not that there is no reason for such an issue not to happen the other
way around, from server to client, except maybe that due to the speed
difference between the client and the server, client-side polling is
always enabled and the buffer is never empty.
All this shows that the new polling still looks fragile, in part due
to the double information on the FD status, being both in fdtab[] and
in the connection, which looks unavoidable. We should probably have
some functions to tighten the relation between such flags and avoid
manipulating them by hand.
Also, the effects of chk_snd() on the polling are still under-estimated,
while the relation between the stream_int and the FD is still too much
present. Maybe the function should be rethought to only call the connection's
fd handler. The connection model probably needs two calling conventions
for bottom half and upper half.
There were a few synchronous calls to polling updates in some functions
called from the connection handler. These ones are not needed and should
be replaced by more efficient and more debugable asynchronous calls.
Bryan Berry and Baptiste Assmann both reported some occasional CPU
spinning loops where haproxy was still processing I/O but burning
CPU for apparently uncaught events.
What happens is the following sequence :
- proxy is in TCP mode
- a connection from a client initiates a connection to a server
- the connection to the server does not immediately happen and is
polled for
- in the mean time, the client speaks and the stream interface
calls ->chk_snd() on the peer connection to send the new data
- chk_snd() calls send_loop() to send the data. This last one
makes the connection succeed and empties the buffer, so it
disables polling on the connection and on the FD by creating
an update entry.
- before the update is processed, poll() succeeds and reports
a write event for this fd. The poller does fd_ev_set() on the
FD to switch it to speculative mode
- the IO handler is called with a connection which has no write
flag but an FD which is enabled in speculative mode.
- the connection does nothing useful.
- conn_update_polling() at the end of conn_fd_handler() cannot
disable the FD because there were no changes on this FD.
- the handler is left with speculative polling still enabled on
the FD, and will be called over and over until a poll event is
needed to transfer data.
There is no perfectly elegant solution to this. At least we should
update the flags indicating the current polling status to reflect
what is being done at the FD level. This will allow to detect that
the FD needs to be disabled upon exit.
chk_snd() also needs minor changes to correctly switch to speculative
polling before calling send_loop(), and to reflect this in the connection
flags. This is needed so that no event remains stuck there without any
polling. In fact, chk_snd() and chk_rcv() should perform the same number
of preparations and cleanups as conn_fd_handler().
It's annoying that handshake handlers remove themselves from the
connection flags when they fail because there is no way to tell
which one fails. So now we only remove them when they succeed.
Several places got the connection close sequence wrong because it
was not obvious. In practice we always need the same sequence when
aborting, so let's have a common function for this.
The connection handling changed introduced in 1.5-dev12 introduced a
regression with commit 9bf9c14c. The issue is that the stream_sock_read0()
callback must update the channel flags to indicate that the side is closed
so that when process_session() is called, it can propagate the close to the
other side and terminate the session.
The issue only appears in HTTP tunnel mode. It's a bit tricky to trigger
the issue, it requires that the request channel is full with data flowing
from the client to the server and that both the response and the read0()
are received at once so that the flags are not updated, and that the HTTP
analyser switches to tunnel mode without being informed that the request
write side is closed. After that, process_session() does not know that the
connection has to be aborted either, and no more event appears on this side
where the connection stays here forever.
Many thanks to Igor at owind for testing several snapshots and for providing
valuable traces to reproduce and diagnose the issue!
Some very specifically scheduled workloads could sometimes get stuck when
data receive was disabled due to buffer full then re-enabled due to a full
send(). A conn_data_want_recv() had to be set again in this specific case.
This bug was introduced with connection rework and polling changes in dev12.
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
Before connections were introduced, it was possible to connect an
external task to a stream interface. However it was left as an
exercise for the brave implementer to find how that ought to be
done.
The feature was broken since the introduction of connections and
was never fixed since due to lack of users. Better remove this dead
code now.
Hijackers were functions designed to inject data into channels in the
distant past. They became unused around 1.3.16, and since there has
not been any user of this mechanism to date, it's uncertain whether
the mechanism still works (and it's not really useful anymore). So
better remove it as well as the pointer it uses in the channel struct.
si_fd() is not used a lot, and breaks builds on OpenBSD 5.2 which
defines this name for its own purpose. It's easy enough to remove
this one-liner function, so let's do it.
CF_READ_DONTWAIT was designed to avoid getting an EAGAIN upon recv() when
very few data are expected. It prevents the reader from looping over
recv(). Unfortunately with speculative I/O, it is very common that the
same event has the time to be called twice before the task handles the
data and disables the recv(). This is because not all tasks are always
processed at once.
Instead of leaving the buffer free-wheeling and doing an EAGAIN, we
disable reading as soon as the first recv() succeeds. This way we're
sure that only the next wakeup of the task will re-enable it if needed.
Doing so has totally removed the EAGAIN we were seeing till now (30% of
recv).
It is stupid to loop over ->snd_buf() because the snd_buf() itself already
loops and stops when system buffers are full. But looping again onto it,
we lose the information of the full buffers and perform one useless syscall.
Furthermore, this causes issues when dealing with large uploads while waiting
for a connection to establish, as it can report a server reject of some data
as a connection abort, which is wrong.
1.4 does not have this issue as it loops maximum twice (once for each buffer
half) and exists as soon as system buffers are full. So no backport is needed.
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.
With this commit, we now separate the channel from the buffer. This will
allow us to replace buffers on the fly without touching the channel. Since
nobody is supposed to keep a reference to a buffer anymore, doing so is not
a problem and will also permit some copy-less data manipulation.
Interestingly, these changes have shown a 2% performance increase on some
workloads, probably due to a better cache placement of data.
It was previously in frontend.c but there is no reason for this anymore
considering that all the information involved is in the connection itself
only. Theorically this should be in the socket layer but we don't have
this yet.
Till now we used to perform the L4_CONN check in the data layer
(eg: stream interface) but that does not make sense, because some transport
layers will imply that the connection is opened (eg: SSL), and also because
the complexity to check for this is higher in the data layer than in the
transport layer. This is so much true that some read0 cases did not validate
the connection.
So as of now, the transport layer is responsible for clearing L4_CONN when
it detects an activity, and the data layer may safely rely on this flag. This
only impacts a minor change in raw_sock and stream_interface for now.
Just like ->init(), ->wake() may now be used to return an error and
abort the connection. Currently this is not used but will be with
embryonic sessions.
Instead of calling conn_notify_si() from the connection handler, we
now call data->wake(), which will allow us to use a different callback
with health checks.
Note that we still rely on a flag in order to decide whether or not
to call this function. The reason is that with embryonic sessions,
the callback is already initialized to si_conn_cb without the flag,
and we can't call the SI notify function in the leave path before
the stream interface is initialized.
This issue should be addressed by involving a different data_cb for
embryonic sessions and for stream interfaces, that would be changed
during session_complete() for the final data_cb.
Now conn->data will designate the data layer which is the client for
the transport layer. In practice it's the stream interface and will
soon also be the health checks.
While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
Since data and socket polling flags were split, it became possible to update
data flags even during handshakes. In fact this is very important otherwise
it is not possible to poll for writes if some data are to be forwarded during
a handshake (eg: data received during an SSL connect).
I/O handlers now all use __conn_{sock,data}_{stop,poll,want}_* instead
of returning dummy flags. The code has become slightly simpler because
some tricks such as the MIN_RET_FOR_READ_LOOP are not needed anymore,
and the data handlers which switch to a handshake handler do not need
to disable themselves anymore.
These ones are implicitly handled by the connection's data layer, no need
to rely on them anymore and reaching them maintains undesired dependences
on stream-interface.
We need to have the source and destination addresses in the connection.
They were lying in the stream interface so let's move them. The flags
SI_FL_FROM_SET and SI_FL_TO_SET have been moved as well.
It's worth noting that tcp_connect_server() almost does not use the
stream interface anymore except for a few flags.
It has been identified that once we detach the connection from the SI,
it will probably be needed to keep a copy of the server-side addresses
in the SI just for logging purposes. This has not been implemented right
now though.
This is a massive rename of most functions which should make use of the
word "channel" instead of the word "buffer" in their names.
In concerns the following ones (new names) :
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes);
static inline void channel_init(struct channel *buf)
static inline int channel_input_closed(struct channel *buf)
static inline int channel_output_closed(struct channel *buf)
static inline void channel_check_timeouts(struct channel *b)
static inline void channel_erase(struct channel *buf)
static inline void channel_shutr_now(struct channel *buf)
static inline void channel_shutw_now(struct channel *buf)
static inline void channel_abort(struct channel *buf)
static inline void channel_stop_hijacker(struct channel *buf)
static inline void channel_auto_connect(struct channel *buf)
static inline void channel_dont_connect(struct channel *buf)
static inline void channel_auto_close(struct channel *buf)
static inline void channel_dont_close(struct channel *buf)
static inline void channel_auto_read(struct channel *buf)
static inline void channel_dont_read(struct channel *buf)
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes)
Some functions provided by channel.[ch] have kept their "buffer" name because
they are really designed to act on the buffer according to some information
gathered from the channel. They have been moved together to the same place in
the file for better readability but they were not changed at all.
The "buffer" memory pool was also renamed "channel".
Get rid of these confusing BF_* flags. Now channel naming should clearly
be used everywhere appropriate.
No code was changed, only a renaming was performed. The comments about
channel operations was updated.
This is similar to the recent removal of BF_OUT_EMPTY. This flag was very
problematic because it relies on permanently changing information such as the
to_forward value, so it had to be updated upon every change to the buffers.
Previous patch already got rid of its users.
One part of the change is sensible : the flag was also part of BF_MASK_STATIC,
which is used by process_session() to rescan all analysers in case the flag's
status changes. At first glance, none of the analysers seems to change its
mind base on this flag when it is subject to change, so it seems fine not to
add variation checks here. Otherwise it's possible that checking the buffer's
input and output is more reliable than checking the flag's replacement.
This flag is quite complex to get right and updating it everywhere is a
major pain, especially since the buffer/channel split. This is the first
step of getting rid of it. Instead now it's dynamically computed whenever
needed.
This flag was very problematic because it was composite in that both changes
to the pipe or to the buffer had to cause this flag to be updated, which is
not always simple (eg: there may not even be a channel attached to a buffer
at all).
There were not that many users of this flags, mostly setters. So the flag got
replaced with a macro which reports whether the channel is empty or not, by
checking both the pipe and the buffer.
One part of the change is sensible : the flag was also part of BF_MASK_STATIC,
which is used by process_session() to rescan all analysers in case the flag's
status changes. At first glance, none of the analysers seems to change its
mind base on this flag when it is subject to change, so it seems fine not to
add variation checks here. Otherwise it's possible that checking the buffer's
output size is more useful than checking the flag's replacement.
Some parts of the sock_ops structure were only used by the stream
interface and have been moved into si_ops. Some of them were callbacks
to the stream interface from the connection and have been moved into
app_cp as they're the application seen from the connection (later,
health-checks will need to use them). The rest has moved to data_ops.
Normally at this point the connection could live without knowing about
stream interfaces at all.
In recent splice fixes we made splice call chk_snd, but this was due
to inappropriate checks in conn_notify_si() which prevented the chk_snd()
call from being performed. Now that this has been fixed, remove this
duplicate code.
It's more efficient to centralize polling changes, which is already done
in the connection handler. So now all I/O callbacks just change flags and
rely on the connection handler for the commit. The special case of the
send loop is handled by the chk_snd() function which does an update at
the end.
These ones should only be handled by the stream interface at the end
of the handshake now. Similarly a number of information are now taken
at the connection level rather than at the data level (eg: shutdown).
Fast polling updates have been used instead of slow ones since the
function is only called by the connection handler.
This function was relying on the result of file descriptor polling
which is inappropriate as it may be subject to race conditions during
handshakes. Make it more robust by relying solely on buffer activity.
The splicing is now provided by the data-layer rcv_pipe/snd_pipe functions
which in turn are called by the stream interface's recv and send callbacks.
The presence of the rcv_pipe/snd_pipe functions is used to attest support
for splicing at the data layer. It looks like the stream-interface's
SI_FL_CAP_SPLICE flag does not make sense anymore as it's used as a proxy
for the pointers above.
It also appears that we call chk_snd() from the recv callback and then
try to call it again in update_conn(). It is very likely that this last
function will progressively slip into the recv/send callbacks in order
to avoid duplicate check code.
The code works right now with and without splicing. Only raw_sock provides
support for it and it is automatically selected when the various splice
options are set. However it looks like splice-auto doesn't enable it, which
possibly means that the streamer detection code does not work anymore, or
that it's only called at a time where it's too late to enable splicing (in
process_session).
Similar to what was done on the receive path, the data layer now provides
only an snd_buf() callback that is iterated over by the stream interface's
si_conn_send_loop() function.
The data layer now has no knowledge about channels nor stream interfaces.
The splice() code still need to be ported as it currently is disabled.
The recv function is now generic and is usable to iterate any connection-to-buf
reading function from a stream interface. So let's move it to stream-interface.
The "raw_sock" prefix will be more convenient for naming functions as
it will be prefixed with the data layer and suffixed with the data
direction. So let's rename the files now to avoid any further confusion.
The #include directive was also removed from a number of files which do
not need it anymore.
At the moment, the struct is still embedded into the struct channel, but
all the functions have been updated to use struct buffer only when possible,
otherwise struct channel. Some functions would likely need to be splitted
between a buffer-layer primitive and a channel-layer function.
Later the buffer should become a pointer in the struct buffer, but doing so
requires a few changes to the buffer allocation calls.
This is a massive rename. We'll then split channel and buffer.
This change needs a lot of cleanups. At many locations, the parameter
or variable is still called "buf" which will become ambiguous. Also,
the "struct channel" is still defined in buffers.h.
This function is used by the data layer when a zero has been read over a
connection. At the moment it only handles sockets and nothing else. Once
the complete split is done between buffers and stream interfaces, it should
become possible to work regardless on the connection type.
The connection send() callback is supposed to be generic for a
stream-interface, and consists in calling the lower layer snd_buf
function. Move this function to the stream interface and remove
the sock-raw and sock-ssl clones.
sock_raw and sock_ssl use a pretty generic chk_rcv function, so let's move
this function to the stream_interface and remove specific functions. Later
we might have a single chk_rcv function.
We need to have a generic function to be called by upper layers when buffer
flags have been updated (the si->update function). At the moment, both sock_raw
and sock_ssl had their own which basically was a copy-paste. Since these
functions are only used to update stream interface flags, it is logical to
have them handled by the stream interface code.
This allowed us to remove the stream_interface-specific update function from
sock_raw and sock_ssl which now use the generic code.
The stream_sock_update_conn callback has also been more appropriately renamed
conn_notify_si() since it's meant to be called by lower layers to notify the
SI and possibly upper layers about incoming changes.
This is a second attempt at getting rid of FD_WAIT_*. Now the situation is
much better since native I/O handlers can directly manipulate the FD using
fd_{poll|want|stop}_* and the connection handlers manipulate connection-level
flags using the conn_{data|sock}_* equivalent.
Proceeding this way ensures that the connection flags always reflect the
reality even after data<->handshake switches.
Now the connection handler, the handshake callbacks and the I/O callbacks
make use of the connection-layer polling functions to enable or disable
polling on a file descriptor.
Some changes still need to be done to avoid using the FD_WAIT_* constants.
These functions have a more explicity meaning and will offer provisions
for explicit polling.
EV_FD_ISSET() has been left for now as it is still in use in checks.
Up to now, we had to use a shutr/shutw interface per data layer, which
basically means 3 distinct functions when we include SSL :
- generic stream_interface
- sock_raw
- sock_ssl
With this change, the code located in the stream_interface manages all the
stream_interface and buffer updates, and calls the data layer hooks when
needed.
At the moment, the socket layer hook had been implicitly considered as
being a regular socket, so the si_shut*() functions call the normal
shutdown() and EV_FD_CLR() functions on the fd if a socket layer is
defined. This may change in the future. The stream_int_shut*()
functions don't call EV_FD_CLR() so that they can later be embedded
in lower layers.
Thus, the si->data->shutr() is not called anymore and si->data->shutw()
is called to close the data layer only (eg: only for SSL).
Proceeding like this is very important because it's the only way to be
able not to rely on these functions when called from the connection
handlers, and call the data layers' instead.
Handshakes is not called anymore from the data handlers, they're only
called from the connection handler when their flag is set.
Also, this move has uncovered an issue with the stream interface notifier :
it doesn't consider the FD_WAIT_* flags possibly set by the handshake
handlers. This will result in a stuck handshake when no data is in the
output buffer. In order to cover this, for now we'll perform the EV_FD_SET
in the SSL handshake function, but this needs to be addressed separately
from the stream interface operations.
This new flag is used to indicate that the connection was already
connected. It can be used by I/O handlers to know that a connection
has just completed. It is used by stream_sock_update_conn(), allowing
the sock_opt handlers not to manipulate the SI timeout nor the
BF_WRITE_NULL flag anymore.
It's better to have only stream_sock_update_conn() handle the conversion
of the CO_FL_ERROR flag to SI_FL_ERR than having it in each and every I/O
callback.
The socket data layer code must only focus on moving data between a
socket and a buffer. We need a special stream interface handler to
update the stream interface and the file descriptor status.
At the moment the code works but suffers from a race condition caused
by its API : the read/write callbacks still make use of the fd instead
of using the connection. And when a double shutdown is performed, a call
to ->write() after ->read() processed an error results in dereferencing
a NULL fdtab[]->owner. This is only a temporary issue which doesn't need
to be fixed now since this will automatically go away when the functions
change to use the connection instead.
This handshake handler must be independant, so move it away from
proto_tcp. It has a dedicated connection flag. It is tested before
I/O handlers and automatically removes the CO_FL_WAIT_L4_CONN flag
upon success.
It also sets the BF_WRITE_NULL flag on the stream interface and
stops the SI timeout. However it does not perform the task_wakeup(),
and relies on the data handler to do so for now. The SI wakeup will
have to be moved elsewhere anyway.
Herv Commowick reported a failure to resync upon restart caused by a
segfault on the old process. This is due to the data_ctx of the connection
being initialized after the stream interface.
This function will be called later when splitting the shutdown in two
steps. It will be needed by SSL and for remote socket operations to
release unused contexts.
The state and the private pointer are not specific to the applets, since SSL
will require exactly both of them. Move them to the connection layer now and
rename them. We also now ensure that both are NULL on first call.
We start to move everything needed to manage a connection to a special
entity "struct connection". We have the data layer operations and the
control operations there. We'll also have more info in the future such
as file descriptors and applet contexts, so that in the end it becomes
detachable from the stream interface, which will allow connections to
be reused between sessions.
For now on, we start with minimal changes.
Calling the init() function in sess_establish was a bad idea, it is
too late to allow it to fail on lack of resource and does not help at
all. Remove it for now before it's used.
Similarly to the previous patch, we don't need the socket-layer functions
outside of stream_interface. They could even move to a file dedicated to
applets, though that does not seem particularly useful at the moment.
We'll soon have an SSL socket layer, and in order to ease the difference
between the two, we use the name "sock_raw" to designate the one which
directly talks to the sockets without any conversion.
These operators are used regardless of the socket protocol family. Move
them to a "sock_ops" struct. ->read and ->write have been moved there too
as they have no reason to remain at the protocol level.
This is in fact where those parts belong to. The old data_state was replaced
by applet.state and is now initialized when the applet is registered. It's
worth noting that the applet does not need to know the session nor the
buffer anymore since everything is brought by the stream interface.
It is possible that having a separate applet struct would simplify the
code but that's not a big deal.
Now that we have the target pointer and type in the stream interface,
we don't need the applet.handler pointer anymore. That makes the code
somewhat cleaner because we know we're dealing with an applet by checking
its type instead of checking the pointer is not null.
When doing a connect() on a stream interface, some information is needed
from the server and from the backend. In some situations, we don't have
a server and only a backend (eg: peers). In other cases, we know we have
an applet and we don't want to connect to anything, but we'd still like
to have the info about the applet being used.
For this, we now store a pointer to the "target" into the stream interface.
The target describes what's on the other side before trying to connect. It
can be a server, a proxy or an applet for now. Later we'll probably have
descriptors for multiple-stage chains so that the final information may
still be found.
This will help removing many specific cases in the code. It already made
it possible to remove the "srv" and "be" parameters to tcpv4_connect_server().
I/O handlers are still delicate to manipulate. They have no type, they're
just raw functions which have no knowledge of themselves. Let's have them
declared as applets once for all. That way we can have multiple applets
share the same handler functions and we can store their names there. When
we later need to add more parameters (eg: usage stats), we'll be able to
do so in the applets themselves.
The CLI functions has been prefixed with "cli" instead of "stats" as it's
clearly what is going on there.
The applet descriptor in the stream interface should get all the applet
specific data (st0, ...) but this will be done in the next patch so that
we don't pollute this one too much.
When a client connection aborts while the server-side connection is in
turn-around after a failed connection attempt, the turn-around timeout
is reset in shutw() but the state is not changed. The session then
remains stuck in this state forever. Change the QUE and TAR states to
DIS just as we do for CER to fix this.
This patch should be backported to 1.4.
When an error message is returned to a client, all buffer contents
were left intact. Since the analysers were removed, the potentially
invalid data that were read had a chance to be sent too.
Now we ensure we only keep the already scheduled data in the buffer
and we truncate it after that. That means that responses with data
that must be blocked will really be blocked, and that incorrectly
chunked data will be stopped at the point where the chunking fails.
si->release() was called each time we closed one direction of a stream
interface, while it should only have been called when both sides are
closed. This bug is specific to 1.5 and only affects embedded tasks.
Now we stop relying on BF_READ_DONTWAIT, which is unrelated to the
wakeups, and only consider activity to decide whether to wake the task
up instead of considering the other side's activity. It is worth noting
that the local stream interface's flags were not updated consecutively
to a call to chk_snd(), which could possibly result in hung tasks from
time to time. This fix will avoid possible loops and uncaught events.
This will be used when an I/O handler running in a stream interface
needs to establish a connection somewhere. We want the session
processor to evaluate both I/O handlers, depending on which side has
one. Doing so also requires that stream_int_update_embedded() wakes
the session up only when the other side is established or has closed,
for instance in order to handle connection errors without looping
indefinitely during the connection setup time.
The session processor still relies on BF_READ_ATTACHED being set,
though we must do whatever is required to remove this dependency.
When a connection is closed on a stream interface, some iohandlers
will need to be informed in order to release some resources. This
normally happens upon a shutr+shutw. It is the equivalent of the
fd_delete() call which is done for real sockets, except that this
time we release internal resources.
It can also be used with real sockets because it does not cost
anything else and might one day be useful.
The 'client.c' file now only contained frontend-specific functions,
so it has naturally be renamed 'frontend.c'. Same for client.h. This
has also been an opportunity to remove some cross references from
files that should not have depended on it.
In the end, this file should contain a protocol-agnostic accept()
code, which would initialize a session, task, etc... based on an
accept() from a lower layer. Right now there are still references
to TCP.
The stream_int_cond_close() function was added to preserve the
contents of the response buffer because stream_int_retnclose()
was buggy. It flushed the response instead of flushing the
request. This caused issues with pipelined redirects followed
by error messages which ate the previous response.
This might even have caused object truncation on pipelined
requests followed by an error or by a server redirection.
Now that this is fixed, simply get rid of the now useless
function.
When processing a GET or HEAD request in close mode, we know we don't
need to read anything anymore on the socket, so we can disable it.
Doing this can save up to 40% of the recv calls, and half of the
epoll_ctl calls.
For this we need a buffer flag indicating that we're not interesting in
reading anymore. Right now, this flag also disables both polled reads.
We might benefit from disabling only speculative reads, but we will need
at least this flag when we want to support keepalive anyway.
Currently we don't disable the flag on completion, but it does not
matter as we close ASAP when performing the shutw().
By default, when data is sent over a socket, both the write timeout and the
read timeout for that socket are refreshed, because we consider that there is
activity on that socket, and we have no other means of guessing if we should
receive data or not.
While this default behaviour is desirable for almost all applications, there
exists a situation where it is desirable to disable it, and only refresh the
read timeout if there are incoming data. This happens on sessions with large
timeouts and low amounts of exchanged data such as telnet session. If the
server suddenly disappears, the output data accumulates in the system's
socket buffers, both timeouts are correctly refreshed, and there is no way
to know the server does not receive them, so we don't timeout. However, when
the underlying protocol always echoes sent data, it would be enough by itself
to detect the issue using the read timeout. Note that this problem does not
happen with more verbose protocols because data won't accumulate long in the
socket buffers.
When this option is set on the frontend, it will disable read timeout updates
on data sent to the client. There probably is little use of this case. When
the option is set on the backend, it will disable read timeout updates on
data sent to the server. Doing so will typically break large HTTP posts from
slow lines, so use it with caution.
It will soon be necessary to have stream interfaces running as part of
the current task, or as independant tasks. For instance when we want to
implement compression or SSL. It will also be used for applets running
as stream interfaces.
These new functions are used to perform exactly that. Note that it's
still not easy to write a simple echo applet and more functions will
likely be needed.
The BF_WRITE_ENA buffer flag became very complex to deal with, because
it was used to :
- enable automatic connection
- enable close forwarding
- enable data forwarding
The last point was not very true anymore since we introduced ->send_max,
but still the test remained everywhere. This was causing issues such as
impossibility to connect without forwarding data, impossibility to prevent
closing when data was forwarded, etc...
This patch clarifies the situation by getting rid of this multi-purpose
flag and replacing it with :
- data forwarding based only on ->send_max || ->pipe ;
- a new BF_AUTO_CONNECT flag to allow automatic connection and only
that ;
- ability to perform an automatic connection when ->send_max or ->pipe
indicate that data is waiting to leave the buffer ;
- a new BF_AUTO_CLOSE flag to let the producer automatically set the
BF_SHUTW_NOW flag when it gets a BF_SHUTR.
During this cleanup, it was discovered that some tests were performed
twice, or that the BF_HIJACK flag was still tested, which is not needed
anymore since ->send_max replcaed it. These places have been fixed too.
These cleanups have also revealed a few areas where the other flags
such as BF_EMPTY are not cleanly used. This will be an opportunity for
a second patch.
The stream_int_return() function used to call buffer_erase() on the response
buffer, which completely wipes it without taking care about whatever could
have been there. Now we more carefully strip only data not scheduled to be
sent.
All the processing has now completely been split in layers. As of
now, everything is still in process_session() which is not the right
place, but the code sequence works. Timeouts, retries, errors, all
work.
The shutdown sequence has been strictly applied: BF_SHUTR/BF_SHUTW
are only assigned by lower layers. Upper layers can only indicate
their wish to close using BF_SHUTR_NOW and BF_SHUTW_NOW.
When a shutdown is performed on a stream interface, the buffer flags
are updated accordingly and re-checked by upper layers. A lot of care
has been taken to ensure that aborts during intermediate connection
setups are correctly handled and shutdowns correctly propagated to
both buffers.
A future evolution would consist in ensuring that BF_SHUT?_NOW may
be set at any time, and applies only when the buffer is empty. This
might help with error messages, but might complicate the processing
of data remaining in buffers.
Some useless buffer flag combinations have been removed.
Stat counters are still broken (eg: per-server total number of sessions).
Error messages should be delayed to the close instant and be produced by
protocol.
Many functions must now move to proper locations.
Tracking connection status changes was hard, and some code was
redundant. A new SI_ST_CER state was added to the stream interface
to indicate a past connection error, and an SI_FL_ERR flag was
added to report past I/O error. The stream_sock code does not set
the connection to SI_ST_CLO anymore in case of I/O error, it's
the upper layer which does it. This makes it possible to know
exactly when the file descriptors are allocated.
The new SI_ST_CER state permitted to split tcp_connection_status()
in two parts, one processing SI_ST_CON and the other one SI_ST_CER.
Synchronous connection errors now make use of this last state, hence
eliminating duplicate code.
Some ib<->ob copy paste errors were found and fixed, and all entities
setting SI_ST_CLO also shut the buffers down.
Some of these stream_interface specific functions and structures
have migrated to a new stream_interface.c file.
Some types of errors are still not detected by the buffers. For
instance, let's assume the following scenario in one single pass
of process_session: a connection sits in SI_ST_TAR state during
a retry. At TAR expiration, a new connection attempt is made, the
connection is obtained and srv->cur_sess is increased. Then the
buffer timeout is fires and everything is cleared, the new state
becomes SI_ST_CLO. The cleaning code checks that previous state
was either SI_ST_CON or SI_ST_EST to release the connection. But
that's wrong because last state is still SI_ST_TAR. So the
server's connection count does not get decreased.
This means that prev_state must not be used, and must be replaced
by some transition detection instead of level detection.
The following debugging line was useful to track state changes :
fprintf(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s-> rep->flags);