mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-01 22:48:25 +00:00
Now si->update() is used to update any type of stream interface, whether it's an applet, a connection or even nothing. We don't call si_applet_call() anymore at the end of the resync and we don't have the risk that the stream's task is reinserted into the run queue, which makes the code a bit simpler. The stream_int_update_applet() function was simplified to ensure that it remained compatible with this standardized calling convention. It was almost copy-pasted from the update code dedicated to connections. Just like for si_applet_done(), it seems that it should be possible to merge the two functions except that it would require some slow operations, except maybe if the type of end point is tested inside the update function itself.
1679 lines
52 KiB
C
1679 lines
52 KiB
C
/*
|
|
* Functions managing stream_interface structures
|
|
*
|
|
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <common/buffer.h>
|
|
#include <common/compat.h>
|
|
#include <common/config.h>
|
|
#include <common/debug.h>
|
|
#include <common/standard.h>
|
|
#include <common/ticks.h>
|
|
#include <common/time.h>
|
|
|
|
#include <proto/applet.h>
|
|
#include <proto/channel.h>
|
|
#include <proto/connection.h>
|
|
#include <proto/pipe.h>
|
|
#include <proto/stream.h>
|
|
#include <proto/stream_interface.h>
|
|
#include <proto/task.h>
|
|
|
|
#include <types/pipe.h>
|
|
|
|
/* socket functions used when running a stream interface as a task */
|
|
static void stream_int_update_embedded(struct stream_interface *si);
|
|
static void stream_int_shutr(struct stream_interface *si);
|
|
static void stream_int_shutw(struct stream_interface *si);
|
|
static void stream_int_chk_rcv(struct stream_interface *si);
|
|
static void stream_int_chk_snd(struct stream_interface *si);
|
|
static void stream_int_update_conn(struct stream_interface *si);
|
|
static void stream_int_shutr_conn(struct stream_interface *si);
|
|
static void stream_int_shutw_conn(struct stream_interface *si);
|
|
static void stream_int_chk_rcv_conn(struct stream_interface *si);
|
|
static void stream_int_chk_snd_conn(struct stream_interface *si);
|
|
static void stream_int_update_applet(struct stream_interface *si);
|
|
static void stream_int_shutr_applet(struct stream_interface *si);
|
|
static void stream_int_shutw_applet(struct stream_interface *si);
|
|
static void stream_int_chk_rcv_applet(struct stream_interface *si);
|
|
static void stream_int_chk_snd_applet(struct stream_interface *si);
|
|
static void si_conn_recv_cb(struct connection *conn);
|
|
static void si_conn_send_cb(struct connection *conn);
|
|
static int si_conn_wake_cb(struct connection *conn);
|
|
static int si_idle_conn_wake_cb(struct connection *conn);
|
|
static void si_idle_conn_null_cb(struct connection *conn);
|
|
|
|
/* stream-interface operations for embedded tasks */
|
|
struct si_ops si_embedded_ops = {
|
|
.update = stream_int_update_embedded,
|
|
.chk_rcv = stream_int_chk_rcv,
|
|
.chk_snd = stream_int_chk_snd,
|
|
.shutr = stream_int_shutr,
|
|
.shutw = stream_int_shutw,
|
|
};
|
|
|
|
/* stream-interface operations for connections */
|
|
struct si_ops si_conn_ops = {
|
|
.update = stream_int_update_conn,
|
|
.chk_rcv = stream_int_chk_rcv_conn,
|
|
.chk_snd = stream_int_chk_snd_conn,
|
|
.shutr = stream_int_shutr_conn,
|
|
.shutw = stream_int_shutw_conn,
|
|
};
|
|
|
|
/* stream-interface operations for connections */
|
|
struct si_ops si_applet_ops = {
|
|
.update = stream_int_update_applet,
|
|
.chk_rcv = stream_int_chk_rcv_applet,
|
|
.chk_snd = stream_int_chk_snd_applet,
|
|
.shutr = stream_int_shutr_applet,
|
|
.shutw = stream_int_shutw_applet,
|
|
};
|
|
|
|
struct data_cb si_conn_cb = {
|
|
.recv = si_conn_recv_cb,
|
|
.send = si_conn_send_cb,
|
|
.wake = si_conn_wake_cb,
|
|
};
|
|
|
|
struct data_cb si_idle_conn_cb = {
|
|
.recv = si_idle_conn_null_cb,
|
|
.send = si_idle_conn_null_cb,
|
|
.wake = si_idle_conn_wake_cb,
|
|
};
|
|
|
|
/*
|
|
* This function only has to be called once after a wakeup event in case of
|
|
* suspected timeout. It controls the stream interface timeouts and sets
|
|
* si->flags accordingly. It does NOT close anything, as this timeout may
|
|
* be used for any purpose. It returns 1 if the timeout fired, otherwise
|
|
* zero.
|
|
*/
|
|
int stream_int_check_timeouts(struct stream_interface *si)
|
|
{
|
|
if (tick_is_expired(si->exp, now_ms)) {
|
|
si->flags |= SI_FL_EXP;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* to be called only when in SI_ST_DIS with SI_FL_ERR */
|
|
void stream_int_report_error(struct stream_interface *si)
|
|
{
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_DATA_ERR;
|
|
|
|
si_oc(si)->flags |= CF_WRITE_ERROR;
|
|
si_ic(si)->flags |= CF_READ_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Returns a message to the client ; the connection is shut down for read,
|
|
* and the request is cleared so that no server connection can be initiated.
|
|
* The buffer is marked for read shutdown on the other side to protect the
|
|
* message, and the buffer write is enabled. The message is contained in a
|
|
* "chunk". If it is null, then an empty message is used. The reply buffer does
|
|
* not need to be empty before this, and its contents will not be overwritten.
|
|
* The primary goal of this function is to return error messages to a client.
|
|
*/
|
|
void stream_int_retnclose(struct stream_interface *si, const struct chunk *msg)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
channel_auto_read(ic);
|
|
channel_abort(ic);
|
|
channel_auto_close(ic);
|
|
channel_erase(ic);
|
|
channel_truncate(oc);
|
|
|
|
if (likely(msg && msg->len))
|
|
bo_inject(oc, msg->str, msg->len);
|
|
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
channel_auto_read(oc);
|
|
channel_auto_close(oc);
|
|
channel_shutr_now(oc);
|
|
}
|
|
|
|
/* default update function for embedded tasks, to be used at the end of the i/o handler */
|
|
static void stream_int_update_embedded(struct stream_interface *si)
|
|
{
|
|
int old_flags = si->flags;
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, ic->flags, oc->flags);
|
|
|
|
if (si->state != SI_ST_EST)
|
|
return;
|
|
|
|
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(oc))
|
|
si_shutw(si);
|
|
|
|
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc))
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
|
|
/* we're almost sure that we need some space if the buffer is not
|
|
* empty, even if it's not full, because the applets can't fill it.
|
|
*/
|
|
if ((ic->flags & (CF_SHUTR|CF_DONT_READ)) == 0 && !channel_is_empty(ic))
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
|
|
if (oc->flags & CF_WRITE_ACTIVITY) {
|
|
if (tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
}
|
|
|
|
if (ic->flags & CF_READ_ACTIVITY ||
|
|
(oc->flags & CF_WRITE_ACTIVITY && !(si->flags & SI_FL_INDEP_STR))) {
|
|
if (tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
|
|
/* save flags to detect changes */
|
|
old_flags = si->flags;
|
|
if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL &&
|
|
channel_may_recv(oc) &&
|
|
(si_opposite(si)->flags & SI_FL_WAIT_ROOM)))
|
|
si_chk_rcv(si_opposite(si));
|
|
|
|
if (((ic->flags & CF_READ_PARTIAL) && !channel_is_empty(ic)) &&
|
|
(ic->pipe /* always try to send spliced data */ ||
|
|
(ic->buf->i == 0 && (si_opposite(si)->flags & SI_FL_WAIT_DATA)))) {
|
|
si_chk_snd(si_opposite(si));
|
|
/* check if the consumer has freed some space */
|
|
if (channel_may_recv(ic) && !ic->pipe)
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
}
|
|
|
|
/* Note that we're trying to wake up in two conditions here :
|
|
* - special event, which needs the holder task attention
|
|
* - status indicating that the applet can go on working. This
|
|
* is rather hard because we might be blocking on output and
|
|
* don't want to wake up on input and vice-versa. The idea is
|
|
* to only rely on the changes the chk_* might have performed.
|
|
*/
|
|
if (/* check stream interface changes */
|
|
((old_flags & ~si->flags) & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) ||
|
|
|
|
/* changes on the production side */
|
|
(ic->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
|
|
si->state != SI_ST_EST ||
|
|
(si->flags & SI_FL_ERR) ||
|
|
((ic->flags & CF_READ_PARTIAL) &&
|
|
(!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) ||
|
|
|
|
/* changes on the consumption side */
|
|
(oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
|
|
((oc->flags & CF_WRITE_ACTIVITY) &&
|
|
((oc->flags & CF_SHUTW) ||
|
|
((oc->flags & CF_WAKE_WRITE) &&
|
|
(si_opposite(si)->state != SI_ST_EST ||
|
|
(channel_is_empty(oc) && !oc->to_forward)))))) {
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
if (ic->flags & CF_READ_ACTIVITY)
|
|
ic->flags &= ~CF_READ_DONTWAIT;
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-read on a detached stream interface in a
|
|
* connected or init state (it does nothing for other states). It either shuts
|
|
* the read side or marks itself as closed. The buffer flags are updated to
|
|
* reflect the new state. If the stream interface has SI_FL_NOHALF, we also
|
|
* forward the close to the write side. The owner task is woken up if it exists.
|
|
*/
|
|
static void stream_int_shutr(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
if (ic->flags & CF_SHUTR)
|
|
return;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si_oc(si)->flags & CF_SHUTW) {
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
else if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
return stream_int_shutw(si);
|
|
}
|
|
|
|
/* note that if the task exists, it must unregister itself once it runs */
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-write on a detached stream interface in a
|
|
* connected or init state (it does nothing for other states). It either shuts
|
|
* the write side or marks itself as closed. The buffer flags are updated to
|
|
* reflect the new state. It does also close everything if the SI was marked as
|
|
* being in error state. The owner task is woken up if it exists.
|
|
*/
|
|
static void stream_int_shutw(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
oc->flags &= ~CF_SHUTW_NOW;
|
|
if (oc->flags & CF_SHUTW)
|
|
return;
|
|
oc->flags |= CF_SHUTW;
|
|
oc->wex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
|
|
switch (si->state) {
|
|
case SI_ST_EST:
|
|
/* we have to shut before closing, otherwise some short messages
|
|
* may never leave the system, especially when there are remaining
|
|
* unread data in the socket input buffer, or when nolinger is set.
|
|
* However, if SI_FL_NOLINGER is explicitly set, we know there is
|
|
* no risk so we close both sides immediately.
|
|
*/
|
|
if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
|
|
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
|
|
return;
|
|
|
|
/* fall through */
|
|
case SI_ST_CON:
|
|
case SI_ST_CER:
|
|
case SI_ST_QUE:
|
|
case SI_ST_TAR:
|
|
/* Note that none of these states may happen with applets */
|
|
si->state = SI_ST_DIS;
|
|
default:
|
|
si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER);
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
|
|
/* note that if the task exists, it must unregister itself once it runs */
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* default chk_rcv function for scheduled tasks */
|
|
static void stream_int_chk_rcv(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, ic->flags, si_oc(si)->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (ic->flags & (CF_SHUTR|CF_DONT_READ))))
|
|
return;
|
|
|
|
if (!channel_may_recv(ic) || ic->pipe) {
|
|
/* stop reading */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
}
|
|
else {
|
|
/* (re)start reading */
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
}
|
|
|
|
/* default chk_snd function for scheduled tasks */
|
|
static void stream_int_chk_snd(struct stream_interface *si)
|
|
{
|
|
struct channel *oc = si_oc(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si_ic(si)->flags, oc->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
|
|
return;
|
|
|
|
if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */
|
|
channel_is_empty(oc)) /* called with nothing to send ! */
|
|
return;
|
|
|
|
/* Otherwise there are remaining data to be sent in the buffer,
|
|
* so we tell the handler.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
if (!tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* Register an applet to handle a stream_interface as part of the
|
|
* stream interface's owner task. The SI will wake it up everytime it
|
|
* is solicited. The task's processing function must call the applet's
|
|
* function before returning. It must be deleted by the task handler
|
|
* using stream_int_unregister_handler(), possibly from within the
|
|
* function itself. It also pre-initializes the applet's context and
|
|
* returns it (or NULL in case it could not be allocated).
|
|
*/
|
|
struct appctx *stream_int_register_handler(struct stream_interface *si, struct applet *app)
|
|
{
|
|
struct appctx *appctx;
|
|
|
|
DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si_task(si));
|
|
|
|
appctx = si_alloc_appctx(si, app);
|
|
if (!appctx)
|
|
return NULL;
|
|
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
appctx_wakeup(appctx);
|
|
return si_appctx(si);
|
|
}
|
|
|
|
/* Unregister a stream interface handler. This must be called by the handler task
|
|
* itself when it detects that it is in the SI_ST_DIS state.
|
|
*/
|
|
void stream_int_unregister_handler(struct stream_interface *si)
|
|
{
|
|
si_detach(si);
|
|
}
|
|
|
|
/* This callback is used to send a valid PROXY protocol line to a socket being
|
|
* established. It returns 0 if it fails in a fatal way or needs to poll to go
|
|
* further, otherwise it returns non-zero and removes itself from the connection's
|
|
* flags (the bit is provided in <flag> by the caller). It is designed to be
|
|
* called by the connection handler and relies on it to commit polling changes.
|
|
* Note that it can emit a PROXY line by relying on the other end's address
|
|
* when the connection is attached to a stream interface, or by resolving the
|
|
* local address otherwise (also called a LOCAL line).
|
|
*/
|
|
int conn_si_send_proxy(struct connection *conn, unsigned int flag)
|
|
{
|
|
/* we might have been called just after an asynchronous shutw */
|
|
if (conn->flags & CO_FL_SOCK_WR_SH)
|
|
goto out_error;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
goto out_error;
|
|
|
|
/* If we have a PROXY line to send, we'll use this to validate the
|
|
* connection, in which case the connection is validated only once
|
|
* we've sent the whole proxy line. Otherwise we use connect().
|
|
*/
|
|
while (conn->send_proxy_ofs) {
|
|
int ret;
|
|
|
|
/* The target server expects a PROXY line to be sent first.
|
|
* If the send_proxy_ofs is negative, it corresponds to the
|
|
* offset to start sending from then end of the proxy string
|
|
* (which is recomputed every time since it's constant). If
|
|
* it is positive, it means we have to send from the start.
|
|
* We can only send a "normal" PROXY line when the connection
|
|
* is attached to a stream interface. Otherwise we can only
|
|
* send a LOCAL line (eg: for use with health checks).
|
|
*/
|
|
if (conn->data == &si_conn_cb) {
|
|
struct stream_interface *si = conn->owner;
|
|
struct connection *remote = objt_conn(si_opposite(si)->end);
|
|
ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), remote);
|
|
}
|
|
else {
|
|
/* The target server expects a LOCAL line to be sent first. Retrieving
|
|
* local or remote addresses may fail until the connection is established.
|
|
*/
|
|
conn_get_from_addr(conn);
|
|
if (!(conn->flags & CO_FL_ADDR_FROM_SET))
|
|
goto out_wait;
|
|
|
|
conn_get_to_addr(conn);
|
|
if (!(conn->flags & CO_FL_ADDR_TO_SET))
|
|
goto out_wait;
|
|
|
|
ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), conn);
|
|
}
|
|
|
|
if (!ret)
|
|
goto out_error;
|
|
|
|
if (conn->send_proxy_ofs > 0)
|
|
conn->send_proxy_ofs = -ret; /* first call */
|
|
|
|
/* we have to send trash from (ret+sp for -sp bytes). If the
|
|
* data layer has a pending write, we'll also set MSG_MORE.
|
|
*/
|
|
ret = conn_sock_send(conn, trash.str + ret + conn->send_proxy_ofs, -conn->send_proxy_ofs,
|
|
(conn->flags & CO_FL_DATA_WR_ENA) ? MSG_MORE : 0);
|
|
|
|
if (ret < 0)
|
|
goto out_error;
|
|
|
|
conn->send_proxy_ofs += ret; /* becomes zero once complete */
|
|
if (conn->send_proxy_ofs != 0)
|
|
goto out_wait;
|
|
|
|
/* OK we've sent the whole line, we're connected */
|
|
break;
|
|
}
|
|
|
|
/* The connection is ready now, simply return and let the connection
|
|
* handler notify upper layers if needed.
|
|
*/
|
|
if (conn->flags & CO_FL_WAIT_L4_CONN)
|
|
conn->flags &= ~CO_FL_WAIT_L4_CONN;
|
|
conn->flags &= ~flag;
|
|
return 1;
|
|
|
|
out_error:
|
|
/* Write error on the file descriptor */
|
|
conn->flags |= CO_FL_ERROR;
|
|
return 0;
|
|
|
|
out_wait:
|
|
__conn_sock_stop_recv(conn);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Tiny I/O callback called on recv/send I/O events on idle connections.
|
|
* It simply sets the CO_FL_SOCK_RD_SH flag so that si_idle_conn_wake_cb()
|
|
* is notified and can kill the connection.
|
|
*/
|
|
static void si_idle_conn_null_cb(struct connection *conn)
|
|
{
|
|
conn_sock_drain(conn);
|
|
}
|
|
|
|
/* Callback to be used by connection I/O handlers when some activity is detected
|
|
* on an idle server connection. Its main purpose is to kill the connection once
|
|
* a close was detected on it. It returns 0 if it did nothing serious, or -1 if
|
|
* it killed the connection.
|
|
*/
|
|
static int si_idle_conn_wake_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
return 0;
|
|
|
|
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) {
|
|
/* warning, we can't do anything on <conn> after this call ! */
|
|
conn_force_close(conn);
|
|
conn_free(conn);
|
|
si->end = NULL;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Callback to be used by connection I/O handlers upon completion. It differs from
|
|
* the update function in that it is designed to be called by lower layers after I/O
|
|
* events have been completed. It will also try to wake the associated task up if
|
|
* an important event requires special handling. It relies on the connection handler
|
|
* to commit any polling updates. The function always returns 0.
|
|
*/
|
|
static int si_conn_wake_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, ic->flags, oc->flags);
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
si->flags |= SI_FL_ERR;
|
|
|
|
/* check for recent connection establishment */
|
|
if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) {
|
|
si->exp = TICK_ETERNITY;
|
|
oc->flags |= CF_WRITE_NULL;
|
|
}
|
|
|
|
/* process consumer side */
|
|
if (channel_is_empty(oc)) {
|
|
if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) &&
|
|
(si->state == SI_ST_EST))
|
|
stream_int_shutw_conn(si);
|
|
__conn_data_stop_send(conn);
|
|
oc->wex = TICK_ETERNITY;
|
|
}
|
|
|
|
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc))
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
|
|
if (oc->flags & CF_WRITE_ACTIVITY) {
|
|
/* update timeouts if we have written something */
|
|
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
|
|
!channel_is_empty(oc))
|
|
if (tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
|
|
if (!(si->flags & SI_FL_INDEP_STR))
|
|
if (tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
|
|
if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL &&
|
|
channel_may_recv(oc) &&
|
|
(si_opposite(si)->flags & SI_FL_WAIT_ROOM)))
|
|
si_chk_rcv(si_opposite(si));
|
|
}
|
|
|
|
/* process producer side.
|
|
* We might have some data the consumer is waiting for.
|
|
* We can do fast-forwarding, but we avoid doing this for partial
|
|
* buffers, because it is very likely that it will be done again
|
|
* immediately afterwards once the following data is parsed (eg:
|
|
* HTTP chunking).
|
|
*/
|
|
if (((ic->flags & CF_READ_PARTIAL) && !channel_is_empty(ic)) &&
|
|
(ic->pipe /* always try to send spliced data */ ||
|
|
(si_ib(si)->i == 0 && (si_opposite(si)->flags & SI_FL_WAIT_DATA)))) {
|
|
int last_len = ic->pipe ? ic->pipe->data : 0;
|
|
|
|
si_chk_snd(si_opposite(si));
|
|
|
|
/* check if the consumer has freed some space either in the
|
|
* buffer or in the pipe.
|
|
*/
|
|
if (channel_may_recv(ic) &&
|
|
(!last_len || !ic->pipe || ic->pipe->data < last_len))
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
}
|
|
|
|
if (si->flags & SI_FL_WAIT_ROOM) {
|
|
__conn_data_stop_recv(conn);
|
|
ic->rex = TICK_ETERNITY;
|
|
}
|
|
else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ)) == CF_READ_PARTIAL &&
|
|
channel_may_recv(ic)) {
|
|
/* we must re-enable reading if si_chk_snd() has freed some space */
|
|
__conn_data_want_recv(conn);
|
|
if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
|
|
/* wake the task up only when needed */
|
|
if (/* changes on the production side */
|
|
(ic->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
|
|
si->state != SI_ST_EST ||
|
|
(si->flags & SI_FL_ERR) ||
|
|
((ic->flags & CF_READ_PARTIAL) &&
|
|
(!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) ||
|
|
|
|
/* changes on the consumption side */
|
|
(oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
|
|
((oc->flags & CF_WRITE_ACTIVITY) &&
|
|
((oc->flags & CF_SHUTW) ||
|
|
((oc->flags & CF_WAKE_WRITE) &&
|
|
(si_opposite(si)->state != SI_ST_EST ||
|
|
(channel_is_empty(oc) && !oc->to_forward)))))) {
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
if (ic->flags & CF_READ_ACTIVITY)
|
|
ic->flags &= ~CF_READ_DONTWAIT;
|
|
|
|
stream_release_buffers(si_strm(si));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called to send buffer data to a stream socket.
|
|
* It calls the transport layer's snd_buf function. It relies on the
|
|
* caller to commit polling changes. The caller should check conn->flags
|
|
* for errors.
|
|
*/
|
|
static void si_conn_send(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *oc = si_oc(si);
|
|
int ret;
|
|
|
|
if (oc->pipe && conn->xprt->snd_pipe) {
|
|
ret = conn->xprt->snd_pipe(conn, oc->pipe);
|
|
if (ret > 0)
|
|
oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA;
|
|
|
|
if (!oc->pipe->data) {
|
|
put_pipe(oc->pipe);
|
|
oc->pipe = NULL;
|
|
}
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
}
|
|
|
|
/* At this point, the pipe is empty, but we may still have data pending
|
|
* in the normal buffer.
|
|
*/
|
|
if (!oc->buf->o)
|
|
return;
|
|
|
|
/* when we're here, we already know that there is no spliced
|
|
* data left, and that there are sendable buffered data.
|
|
*/
|
|
if (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_DATA_WR_SH | CO_FL_WAIT_DATA | CO_FL_HANDSHAKE))) {
|
|
/* check if we want to inform the kernel that we're interested in
|
|
* sending more data after this call. We want this if :
|
|
* - we're about to close after this last send and want to merge
|
|
* the ongoing FIN with the last segment.
|
|
* - we know we can't send everything at once and must get back
|
|
* here because of unaligned data
|
|
* - there is still a finite amount of data to forward
|
|
* The test is arranged so that the most common case does only 2
|
|
* tests.
|
|
*/
|
|
unsigned int send_flag = 0;
|
|
|
|
if ((!(oc->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) &&
|
|
((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
|
|
(oc->flags & CF_EXPECT_MORE))) ||
|
|
((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW))
|
|
send_flag |= CO_SFL_MSG_MORE;
|
|
|
|
if (oc->flags & CF_STREAMER)
|
|
send_flag |= CO_SFL_STREAMER;
|
|
|
|
ret = conn->xprt->snd_buf(conn, oc->buf, send_flag);
|
|
if (ret > 0) {
|
|
oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA;
|
|
|
|
if (!oc->buf->o) {
|
|
/* Always clear both flags once everything has been sent, they're one-shot */
|
|
oc->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT);
|
|
}
|
|
|
|
/* if some data remain in the buffer, it's only because the
|
|
* system buffers are full, we will try next time.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Updates the timers and flags of a stream interface attached to a connection,
|
|
* depending on the buffers' flags. It should only be called once after the
|
|
* buffer flags have settled down, and before they are cleared. It doesn't
|
|
* harm to call it as often as desired (it just slightly hurts performance).
|
|
* It is only meant to be called by upper layers after buffer flags have been
|
|
* manipulated by analysers.
|
|
*/
|
|
void stream_int_update_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
/* Check if we need to close the read side */
|
|
if (!(ic->flags & CF_SHUTR)) {
|
|
/* Read not closed, update FD status and timeout for reads */
|
|
if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) {
|
|
/* stop reading */
|
|
if (!(si->flags & SI_FL_WAIT_ROOM)) {
|
|
if (!(ic->flags & CF_DONT_READ)) /* full */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
conn_data_stop_recv(conn);
|
|
ic->rex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start reading and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
conn_data_want_recv(conn);
|
|
if (!(ic->flags & (CF_READ_NOEXP|CF_DONT_READ)) && !tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
}
|
|
|
|
/* Check if we need to close the write side */
|
|
if (!(oc->flags & CF_SHUTW)) {
|
|
/* Write not closed, update FD status and timeout for writes */
|
|
if (channel_is_empty(oc)) {
|
|
/* stop writing */
|
|
if (!(si->flags & SI_FL_WAIT_DATA)) {
|
|
if ((oc->flags & CF_SHUTW_NOW) == 0)
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
conn_data_stop_send(conn);
|
|
oc->wex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start writing and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
conn_data_want_send(conn);
|
|
if (!tick_isset(oc->wex)) {
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
|
|
/* Note: depending on the protocol, we don't know if we're waiting
|
|
* for incoming data or not. So in order to prevent the socket from
|
|
* expiring read timeouts during writes, we refresh the read timeout,
|
|
* except if it was already infinite or if we have explicitly setup
|
|
* independent streams.
|
|
*/
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-read on a stream interface attached to
|
|
* a connection in a connected or init state (it does nothing for other
|
|
* states). It either shuts the read side or marks itself as closed. The buffer
|
|
* flags are updated to reflect the new state. If the stream interface has
|
|
* SI_FL_NOHALF, we also forward the close to the write side. If a control
|
|
* layer is defined, then it is supposed to be a socket layer and file
|
|
* descriptors are then shutdown or closed accordingly. The function
|
|
* automatically disables polling if needed.
|
|
*/
|
|
static void stream_int_shutr_conn(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
struct channel *ic = si_ic(si);
|
|
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
if (ic->flags & CF_SHUTR)
|
|
return;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si_oc(si)->flags & CF_SHUTW) {
|
|
conn_full_close(conn);
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
else if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
return stream_int_shutw_conn(si);
|
|
}
|
|
else if (conn->ctrl) {
|
|
/* we want the caller to disable polling on this FD */
|
|
conn_data_stop_recv(conn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-write on a stream interface attached to
|
|
* a connection in a connected or init state (it does nothing for other
|
|
* states). It either shuts the write side or marks itself as closed. The
|
|
* buffer flags are updated to reflect the new state. It does also close
|
|
* everything if the SI was marked as being in error state. If there is a
|
|
* data-layer shutdown, it is called.
|
|
*/
|
|
static void stream_int_shutw_conn(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
oc->flags &= ~CF_SHUTW_NOW;
|
|
if (oc->flags & CF_SHUTW)
|
|
return;
|
|
oc->flags |= CF_SHUTW;
|
|
oc->wex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
|
|
switch (si->state) {
|
|
case SI_ST_EST:
|
|
/* we have to shut before closing, otherwise some short messages
|
|
* may never leave the system, especially when there are remaining
|
|
* unread data in the socket input buffer, or when nolinger is set.
|
|
* However, if SI_FL_NOLINGER is explicitly set, we know there is
|
|
* no risk so we close both sides immediately.
|
|
*/
|
|
if (si->flags & SI_FL_ERR) {
|
|
/* quick close, the socket is alredy shut anyway */
|
|
}
|
|
else if (si->flags & SI_FL_NOLINGER) {
|
|
/* unclean data-layer shutdown */
|
|
conn_data_shutw_hard(conn);
|
|
}
|
|
else {
|
|
/* clean data-layer shutdown */
|
|
conn_data_shutw(conn);
|
|
|
|
/* If the stream interface is configured to disable half-open
|
|
* connections, we'll skip the shutdown(), but only if the
|
|
* read size is already closed. Otherwise we can't support
|
|
* closed write with pending read (eg: abortonclose while
|
|
* waiting for the server).
|
|
*/
|
|
if (!(si->flags & SI_FL_NOHALF) || !(ic->flags & (CF_SHUTR|CF_DONT_READ))) {
|
|
/* We shutdown transport layer */
|
|
conn_sock_shutw(conn);
|
|
|
|
if (!(ic->flags & (CF_SHUTR|CF_DONT_READ))) {
|
|
/* OK just a shutw, but we want the caller
|
|
* to disable polling on this FD if exists.
|
|
*/
|
|
conn_cond_update_polling(conn);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* fall through */
|
|
case SI_ST_CON:
|
|
/* we may have to close a pending connection, and mark the
|
|
* response buffer as shutr
|
|
*/
|
|
conn_full_close(conn);
|
|
/* fall through */
|
|
case SI_ST_CER:
|
|
case SI_ST_QUE:
|
|
case SI_ST_TAR:
|
|
si->state = SI_ST_DIS;
|
|
/* fall through */
|
|
default:
|
|
si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER);
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
}
|
|
|
|
/* This function is used for inter-stream-interface calls. It is called by the
|
|
* consumer to inform the producer side that it may be interested in checking
|
|
* for free space in the buffer. Note that it intentionally does not update
|
|
* timeouts, so that we can still check them later at wake-up. This function is
|
|
* dedicated to connection-based stream interfaces.
|
|
*/
|
|
static void stream_int_chk_rcv_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
if (unlikely(si->state > SI_ST_EST || (ic->flags & CF_SHUTR)))
|
|
return;
|
|
|
|
conn_refresh_polling_flags(conn);
|
|
|
|
if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) {
|
|
/* stop reading */
|
|
if (!(ic->flags & CF_DONT_READ)) /* full */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
}
|
|
else {
|
|
/* (re)start reading */
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
__conn_data_want_recv(conn);
|
|
}
|
|
conn_cond_update_data_polling(conn);
|
|
}
|
|
|
|
|
|
/* This function is used for inter-stream-interface calls. It is called by the
|
|
* producer to inform the consumer side that it may be interested in checking
|
|
* for data in the buffer. Note that it intentionally does not update timeouts,
|
|
* so that we can still check them later at wake-up.
|
|
*/
|
|
static void stream_int_chk_snd_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *oc = si_oc(si);
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
if (unlikely(si->state > SI_ST_EST || (oc->flags & CF_SHUTW)))
|
|
return;
|
|
|
|
if (unlikely(channel_is_empty(oc))) /* called with nothing to send ! */
|
|
return;
|
|
|
|
if (!oc->pipe && /* spliced data wants to be forwarded ASAP */
|
|
!(si->flags & SI_FL_WAIT_DATA)) /* not waiting for data */
|
|
return;
|
|
|
|
if (conn->flags & (CO_FL_DATA_WR_ENA|CO_FL_CURR_WR_ENA)) {
|
|
/* already subscribed to write notifications, will be called
|
|
* anyway, so let's avoid calling it especially if the reader
|
|
* is not ready.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Before calling the data-level operations, we have to prepare
|
|
* the polling flags to ensure we properly detect changes.
|
|
*/
|
|
conn_refresh_polling_flags(conn);
|
|
__conn_data_want_send(conn);
|
|
|
|
if (!(conn->flags & (CO_FL_HANDSHAKE|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN))) {
|
|
si_conn_send(conn);
|
|
if (conn->flags & CO_FL_ERROR) {
|
|
/* Write error on the file descriptor */
|
|
__conn_data_stop_both(conn);
|
|
si->flags |= SI_FL_ERR;
|
|
goto out_wakeup;
|
|
}
|
|
}
|
|
|
|
/* OK, so now we know that some data might have been sent, and that we may
|
|
* have to poll first. We have to do that too if the buffer is not empty.
|
|
*/
|
|
if (channel_is_empty(oc)) {
|
|
/* the connection is established but we can't write. Either the
|
|
* buffer is empty, or we just refrain from sending because the
|
|
* ->o limit was reached. Maybe we just wrote the last
|
|
* chunk and need to close.
|
|
*/
|
|
__conn_data_stop_send(conn);
|
|
if (((oc->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTW_NOW)) &&
|
|
(si->state == SI_ST_EST)) {
|
|
si_shutw(si);
|
|
goto out_wakeup;
|
|
}
|
|
|
|
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0)
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
oc->wex = TICK_ETERNITY;
|
|
}
|
|
else {
|
|
/* Otherwise there are remaining data to be sent in the buffer,
|
|
* which means we have to poll before doing so.
|
|
*/
|
|
__conn_data_want_send(conn);
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
if (!tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
}
|
|
|
|
if (likely(oc->flags & CF_WRITE_ACTIVITY)) {
|
|
struct channel *ic = si_ic(si);
|
|
|
|
/* update timeout if we have written something */
|
|
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
|
|
!channel_is_empty(oc))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
|
|
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
|
|
/* Note: to prevent the client from expiring read timeouts
|
|
* during writes, we refresh it. We only do this if the
|
|
* interface is not configured for "independent streams",
|
|
* because for some applications it's better not to do this,
|
|
* for instance when continuously exchanging small amounts
|
|
* of data which can full the socket buffers long before a
|
|
* write timeout is detected.
|
|
*/
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
}
|
|
|
|
/* in case of special condition (error, shutdown, end of write...), we
|
|
* have to notify the task.
|
|
*/
|
|
if (likely((oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) ||
|
|
((oc->flags & CF_WAKE_WRITE) &&
|
|
((channel_is_empty(oc) && !oc->to_forward) ||
|
|
si->state != SI_ST_EST)))) {
|
|
out_wakeup:
|
|
if (!(si->flags & SI_FL_DONT_WAKE))
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* commit possible polling changes */
|
|
conn_cond_update_polling(conn);
|
|
}
|
|
|
|
/*
|
|
* This is the callback which is called by the connection layer to receive data
|
|
* into the buffer from the connection. It iterates over the transport layer's
|
|
* rcv_buf function.
|
|
*/
|
|
static void si_conn_recv_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *ic = si_ic(si);
|
|
int ret, max, cur_read;
|
|
int read_poll = MAX_READ_POLL_LOOPS;
|
|
|
|
/* stop immediately on errors. Note that we DON'T want to stop on
|
|
* POLL_ERR, as the poller might report a write error while there
|
|
* are still data available in the recv buffer. This typically
|
|
* happens when we send too large a request to a backend server
|
|
* which rejects it before reading it all.
|
|
*/
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
/* stop here if we reached the end of data */
|
|
if (conn_data_read0_pending(conn))
|
|
goto out_shutdown_r;
|
|
|
|
/* maybe we were called immediately after an asynchronous shutr */
|
|
if (ic->flags & CF_SHUTR)
|
|
return;
|
|
|
|
cur_read = 0;
|
|
|
|
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !ic->buf->o &&
|
|
global.tune.idle_timer &&
|
|
(unsigned short)(now_ms - ic->last_read) >= global.tune.idle_timer) {
|
|
/* The buffer was empty and nothing was transferred for more
|
|
* than one second. This was caused by a pause and not by
|
|
* congestion. Reset any streaming mode to reduce latency.
|
|
*/
|
|
ic->xfer_small = 0;
|
|
ic->xfer_large = 0;
|
|
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
|
|
/* First, let's see if we may splice data across the channel without
|
|
* using a buffer.
|
|
*/
|
|
if (conn->xprt->rcv_pipe &&
|
|
(ic->pipe || ic->to_forward >= MIN_SPLICE_FORWARD) &&
|
|
ic->flags & CF_KERN_SPLICING) {
|
|
if (buffer_not_empty(ic->buf)) {
|
|
/* We're embarrassed, there are already data pending in
|
|
* the buffer and we don't want to have them at two
|
|
* locations at a time. Let's indicate we need some
|
|
* place and ask the consumer to hurry.
|
|
*/
|
|
goto abort_splice;
|
|
}
|
|
|
|
if (unlikely(ic->pipe == NULL)) {
|
|
if (pipes_used >= global.maxpipes || !(ic->pipe = get_pipe())) {
|
|
ic->flags &= ~CF_KERN_SPLICING;
|
|
goto abort_splice;
|
|
}
|
|
}
|
|
|
|
ret = conn->xprt->rcv_pipe(conn, ic->pipe, ic->to_forward);
|
|
if (ret < 0) {
|
|
/* splice not supported on this end, let's disable it */
|
|
ic->flags &= ~CF_KERN_SPLICING;
|
|
goto abort_splice;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
if (ic->to_forward != CHN_INFINITE_FORWARD)
|
|
ic->to_forward -= ret;
|
|
ic->total += ret;
|
|
cur_read += ret;
|
|
ic->flags |= CF_READ_PARTIAL;
|
|
}
|
|
|
|
if (conn_data_read0_pending(conn))
|
|
goto out_shutdown_r;
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (conn->flags & CO_FL_WAIT_ROOM) {
|
|
/* the pipe is full or we have read enough data that it
|
|
* could soon be full. Let's stop before needing to poll.
|
|
*/
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
}
|
|
|
|
/* splice not possible (anymore), let's go on on standard copy */
|
|
}
|
|
|
|
abort_splice:
|
|
if (ic->pipe && unlikely(!ic->pipe->data)) {
|
|
put_pipe(ic->pipe);
|
|
ic->pipe = NULL;
|
|
}
|
|
|
|
/* now we'll need a buffer */
|
|
if (!stream_alloc_recv_buffer(ic)) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
goto end_recv;
|
|
}
|
|
|
|
/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
|
|
* was enabled, which implies that the recv buffer was not full. So we have a guarantee
|
|
* that if such an event is not handled above in splice, it will be handled here by
|
|
* recv().
|
|
*/
|
|
while (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_DATA_RD_SH | CO_FL_WAIT_ROOM | CO_FL_HANDSHAKE))) {
|
|
max = channel_recv_max(ic);
|
|
|
|
if (!max) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
break;
|
|
}
|
|
|
|
ret = conn->xprt->rcv_buf(conn, ic->buf, max);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
cur_read += ret;
|
|
|
|
/* if we're allowed to directly forward data, we must update ->o */
|
|
if (ic->to_forward && !(ic->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
|
|
unsigned long fwd = ret;
|
|
if (ic->to_forward != CHN_INFINITE_FORWARD) {
|
|
if (fwd > ic->to_forward)
|
|
fwd = ic->to_forward;
|
|
ic->to_forward -= fwd;
|
|
}
|
|
b_adv(ic->buf, fwd);
|
|
}
|
|
|
|
ic->flags |= CF_READ_PARTIAL;
|
|
ic->total += ret;
|
|
|
|
if (!channel_may_recv(ic)) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
break;
|
|
}
|
|
|
|
if ((ic->flags & CF_READ_DONTWAIT) || --read_poll <= 0) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
break;
|
|
}
|
|
|
|
/* if too many bytes were missing from last read, it means that
|
|
* it's pointless trying to read again because the system does
|
|
* not have them in buffers.
|
|
*/
|
|
if (ret < max) {
|
|
/* if a streamer has read few data, it may be because we
|
|
* have exhausted system buffers. It's not worth trying
|
|
* again.
|
|
*/
|
|
if (ic->flags & CF_STREAMER)
|
|
break;
|
|
|
|
/* if we read a large block smaller than what we requested,
|
|
* it's almost certain we'll never get anything more.
|
|
*/
|
|
if (ret >= global.tune.recv_enough)
|
|
break;
|
|
}
|
|
} /* while !flags */
|
|
|
|
if (cur_read) {
|
|
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
|
|
(cur_read <= ic->buf->size / 2)) {
|
|
ic->xfer_large = 0;
|
|
ic->xfer_small++;
|
|
if (ic->xfer_small >= 3) {
|
|
/* we have read less than half of the buffer in
|
|
* one pass, and this happened at least 3 times.
|
|
* This is definitely not a streamer.
|
|
*/
|
|
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
else if (ic->xfer_small >= 2) {
|
|
/* if the buffer has been at least half full twice,
|
|
* we receive faster than we send, so at least it
|
|
* is not a "fast streamer".
|
|
*/
|
|
ic->flags &= ~CF_STREAMER_FAST;
|
|
}
|
|
}
|
|
else if (!(ic->flags & CF_STREAMER_FAST) &&
|
|
(cur_read >= ic->buf->size - global.tune.maxrewrite)) {
|
|
/* we read a full buffer at once */
|
|
ic->xfer_small = 0;
|
|
ic->xfer_large++;
|
|
if (ic->xfer_large >= 3) {
|
|
/* we call this buffer a fast streamer if it manages
|
|
* to be filled in one call 3 consecutive times.
|
|
*/
|
|
ic->flags |= (CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
}
|
|
else {
|
|
ic->xfer_small = 0;
|
|
ic->xfer_large = 0;
|
|
}
|
|
ic->last_read = now_ms;
|
|
}
|
|
|
|
end_recv:
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (conn_data_read0_pending(conn))
|
|
/* connection closed */
|
|
goto out_shutdown_r;
|
|
|
|
return;
|
|
|
|
out_shutdown_r:
|
|
/* we received a shutdown */
|
|
ic->flags |= CF_READ_NULL;
|
|
if (ic->flags & CF_AUTO_CLOSE)
|
|
channel_shutw_now(ic);
|
|
stream_sock_read0(si);
|
|
conn_data_read0(conn);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the callback which is called by the connection layer to send data
|
|
* from the buffer to the connection. It iterates over the transport layer's
|
|
* snd_buf function.
|
|
*/
|
|
static void si_conn_send_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (conn->flags & CO_FL_HANDSHAKE)
|
|
/* a handshake was requested */
|
|
return;
|
|
|
|
/* we might have been called just after an asynchronous shutw */
|
|
if (si_oc(si)->flags & CF_SHUTW)
|
|
return;
|
|
|
|
/* OK there are data waiting to be sent */
|
|
si_conn_send(conn);
|
|
|
|
/* OK all done */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This function propagates a null read received on a socket-based connection.
|
|
* It updates the stream interface. If the stream interface has SI_FL_NOHALF,
|
|
* the close is also forwarded to the write side as an abort.
|
|
*/
|
|
void stream_sock_read0(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
if (ic->flags & CF_SHUTR)
|
|
return;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (oc->flags & CF_SHUTW)
|
|
goto do_close;
|
|
|
|
if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
/* force flag on ssl to keep stream in cache */
|
|
conn_data_shutw_hard(conn);
|
|
goto do_close;
|
|
}
|
|
|
|
/* otherwise that's just a normal read shutdown */
|
|
__conn_data_stop_recv(conn);
|
|
return;
|
|
|
|
do_close:
|
|
/* OK we completely close the socket here just as if we went through si_shut[rw]() */
|
|
conn_full_close(conn);
|
|
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
|
|
oc->flags &= ~CF_SHUTW_NOW;
|
|
oc->flags |= CF_SHUTW;
|
|
oc->wex = TICK_ETERNITY;
|
|
|
|
si->flags &= ~(SI_FL_WAIT_DATA | SI_FL_WAIT_ROOM);
|
|
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
return;
|
|
}
|
|
|
|
/* notifies the stream interface that the applet has completed its work */
|
|
void si_applet_done(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
/* process consumer side */
|
|
if (channel_is_empty(oc)) {
|
|
if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) &&
|
|
(si->state == SI_ST_EST))
|
|
stream_int_shutw_applet(si);
|
|
oc->wex = TICK_ETERNITY;
|
|
}
|
|
|
|
/* indicate that we may be waiting for data from the output channel */
|
|
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc))
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
|
|
/* update OC timeouts and wake the other side up if it's waiting for room */
|
|
if (oc->flags & CF_WRITE_ACTIVITY) {
|
|
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
|
|
!channel_is_empty(oc))
|
|
if (tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
|
|
if (!(si->flags & SI_FL_INDEP_STR))
|
|
if (tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
|
|
if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL &&
|
|
channel_may_recv(oc) &&
|
|
(si_opposite(si)->flags & SI_FL_WAIT_ROOM)))
|
|
si_chk_rcv(si_opposite(si));
|
|
}
|
|
|
|
/* Notify the other side when we've injected data into the IC that
|
|
* needs to be forwarded. We can do fast-forwarding as soon as there
|
|
* are output data, but we avoid doing this for partial buffers,
|
|
* because it is very likely that it will be done again immediately
|
|
* afterwards once the following data are parsed (eg: HTTP chunking).
|
|
* We only remove SI_FL_WAIT_ROOM once we've emptied the whole output
|
|
* buffer, because applets are often forced to stop before the buffer
|
|
* is full. We must not stop based on input data alone because an HTTP
|
|
* parser might need more data to complete the parsing.
|
|
*/
|
|
if (!channel_is_empty(ic) &&
|
|
(si_opposite(si)->flags & SI_FL_WAIT_DATA) &&
|
|
(si_ib(si)->i == 0 || ic->pipe)) {
|
|
si_chk_snd(si_opposite(si));
|
|
if (channel_is_empty(ic))
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
}
|
|
|
|
if (si->flags & SI_FL_WAIT_ROOM) {
|
|
ic->rex = TICK_ETERNITY;
|
|
}
|
|
else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ)) == CF_READ_PARTIAL &&
|
|
channel_may_recv(ic)) {
|
|
/* we must re-enable reading if si_chk_snd() has freed some space */
|
|
if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
|
|
/* get away from the active list if we can't work anymore, that is
|
|
* we're blocked both for reads or writes or once both sides are closed.
|
|
* FIXME: we may have a problem here with bidirectional applets which
|
|
* might block on a single direction while the other one is still free.
|
|
*/
|
|
if ((si->flags & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) ||
|
|
(ic->flags & CF_DONT_READ) ||
|
|
(ic->flags & CF_SHUTR && oc->flags & CF_SHUTW))
|
|
appctx_pause(si_appctx(si));
|
|
|
|
/* wake the task up only when needed */
|
|
if (/* changes on the production side */
|
|
(ic->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
|
|
si->state != SI_ST_EST ||
|
|
(si->flags & SI_FL_ERR) ||
|
|
((ic->flags & CF_READ_PARTIAL) &&
|
|
(!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) ||
|
|
|
|
/* changes on the consumption side */
|
|
(oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
|
|
((oc->flags & CF_WRITE_ACTIVITY) &&
|
|
((oc->flags & CF_SHUTW) ||
|
|
((oc->flags & CF_WAKE_WRITE) &&
|
|
(si_opposite(si)->state != SI_ST_EST ||
|
|
(channel_is_empty(oc) && !oc->to_forward)))))) {
|
|
task_wakeup(si_task(si), TASK_WOKEN_IO);
|
|
}
|
|
if (ic->flags & CF_READ_ACTIVITY)
|
|
ic->flags &= ~CF_READ_DONTWAIT;
|
|
|
|
stream_release_buffers(si_strm(si));
|
|
}
|
|
|
|
/* updates the timers and flags of a stream interface attached to an applet.
|
|
* it's called from the upper layers after the buffers/channels have been
|
|
* updated.
|
|
*/
|
|
void stream_int_update_applet(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
/* Check if we need to close the read side */
|
|
if (!(ic->flags & CF_SHUTR)) {
|
|
/* Read not closed, update FD status and timeout for reads */
|
|
if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) {
|
|
/* stop reading */
|
|
if (!(si->flags & SI_FL_WAIT_ROOM)) {
|
|
if (!(ic->flags & CF_DONT_READ)) /* full */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
ic->rex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start reading and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
if (!(ic->flags & (CF_READ_NOEXP|CF_DONT_READ)) && !tick_isset(ic->rex))
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
}
|
|
|
|
/* Check if we need to close the write side */
|
|
if (!(oc->flags & CF_SHUTW)) {
|
|
/* Write not closed, update FD status and timeout for writes */
|
|
if (channel_is_empty(oc)) {
|
|
/* stop writing */
|
|
if (!(si->flags & SI_FL_WAIT_DATA)) {
|
|
if ((oc->flags & CF_SHUTW_NOW) == 0)
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
oc->wex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start writing and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
if (!tick_isset(oc->wex)) {
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
|
|
/* Note: depending on the protocol, we don't know if we're waiting
|
|
* for incoming data or not. So in order to prevent the socket from
|
|
* expiring read timeouts during writes, we refresh the read timeout,
|
|
* except if it was already infinite or if we have explicitly setup
|
|
* independent streams.
|
|
*/
|
|
ic->rex = tick_add_ifset(now_ms, ic->rto);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!(si->flags & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) &&
|
|
!(ic->flags & CF_DONT_READ) &&
|
|
(!(ic->flags & CF_SHUTR) || !(oc->flags & CF_SHUTW)))
|
|
appctx_wakeup(si_appctx(si));
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-read on a stream interface attached to an
|
|
* applet in a connected or init state (it does nothing for other states). It
|
|
* either shuts the read side or marks itself as closed. The buffer flags are
|
|
* updated to reflect the new state. If the stream interface has SI_FL_NOHALF,
|
|
* we also forward the close to the write side. The owner task is woken up if
|
|
* it exists.
|
|
*/
|
|
static void stream_int_shutr_applet(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
if (ic->flags & CF_SHUTR)
|
|
return;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
/* Note: on shutr, we don't call the applet */
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si_oc(si)->flags & CF_SHUTW) {
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
si_applet_release(si);
|
|
}
|
|
else if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
return stream_int_shutw_applet(si);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-write on a stream interface attached to an
|
|
* applet in a connected or init state (it does nothing for other states). It
|
|
* either shuts the write side or marks itself as closed. The buffer flags are
|
|
* updated to reflect the new state. It does also close everything if the SI
|
|
* was marked as being in error state. The owner task is woken up if it exists.
|
|
*/
|
|
static void stream_int_shutw_applet(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
struct channel *oc = si_oc(si);
|
|
|
|
oc->flags &= ~CF_SHUTW_NOW;
|
|
if (oc->flags & CF_SHUTW)
|
|
return;
|
|
oc->flags |= CF_SHUTW;
|
|
oc->wex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
|
|
/* on shutw we always wake the applet up */
|
|
appctx_wakeup(si_appctx(si));
|
|
|
|
switch (si->state) {
|
|
case SI_ST_EST:
|
|
/* we have to shut before closing, otherwise some short messages
|
|
* may never leave the system, especially when there are remaining
|
|
* unread data in the socket input buffer, or when nolinger is set.
|
|
* However, if SI_FL_NOLINGER is explicitly set, we know there is
|
|
* no risk so we close both sides immediately.
|
|
*/
|
|
if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
|
|
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
|
|
return;
|
|
|
|
/* fall through */
|
|
case SI_ST_CON:
|
|
case SI_ST_CER:
|
|
case SI_ST_QUE:
|
|
case SI_ST_TAR:
|
|
/* Note that none of these states may happen with applets */
|
|
si->state = SI_ST_DIS;
|
|
si_applet_release(si);
|
|
default:
|
|
si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER);
|
|
ic->flags &= ~CF_SHUTR_NOW;
|
|
ic->flags |= CF_SHUTR;
|
|
ic->rex = TICK_ETERNITY;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
}
|
|
|
|
/* chk_rcv function for applets */
|
|
static void stream_int_chk_rcv_applet(struct stream_interface *si)
|
|
{
|
|
struct channel *ic = si_ic(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, ic->flags, si_oc(si)->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (ic->flags & (CF_SHUTR|CF_DONT_READ))))
|
|
return;
|
|
/* here we only wake the applet up if it was waiting for some room */
|
|
if (!(si->flags & SI_FL_WAIT_ROOM))
|
|
return;
|
|
|
|
if (channel_may_recv(ic) && !ic->pipe) {
|
|
/* (re)start reading */
|
|
appctx_wakeup(si_appctx(si));
|
|
}
|
|
}
|
|
|
|
/* chk_snd function for applets */
|
|
static void stream_int_chk_snd_applet(struct stream_interface *si)
|
|
{
|
|
struct channel *oc = si_oc(si);
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si_ic(si)->flags, oc->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
|
|
return;
|
|
|
|
/* we only wake the applet up if it was waiting for some data */
|
|
|
|
if (!(si->flags & SI_FL_WAIT_DATA))
|
|
return;
|
|
|
|
if (!tick_isset(oc->wex))
|
|
oc->wex = tick_add_ifset(now_ms, oc->wto);
|
|
|
|
if (!channel_is_empty(oc)) {
|
|
/* (re)start sending */
|
|
appctx_wakeup(si_appctx(si));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|