This introduces a new option linear-scaling, which is now implied by
srgb, icc-profile and sigmoid-upscaling.
Notably, this means (sigmoidized) linear upscaling is now enabled by
default in opengl-hq mode. The impact should be negligible, and there
has been no observation of negative side effects of sigmoidized scaling,
so it feels safe to do so.
At the time screenshot support was added, images weren't refcounted yet,
so screenshots required specialized implementations in the VOs. But now
we can handle these things much simpler. Also see commit 5bb24980.
If there are VOs in the future which can't do this (e.g. they need to
write to the image passed to vo_driver->draw_image), this still could be
disabled on a per-VO basis etc., so we lose no potential performance
advantages.
SmoothMotion is a way to time and blend frames made popular by MadVR. It's
intended behaviour is to remove stuttering caused by mismatches between the
display refresh rate and the video fps, while preserving the video's original
artistic qualities (no soap opera effect). It's supposed to make 24fps video
playback on 60hz monitors as close as possible to a 24hz monitor.
Instead of drawing a frame once once it's pts has passed the vsync time, we
redraw at the display refresh rate, and if we detect the vsync is between two
frames we interpolated them (depending on their position relative to the vsync).
We actually interpolate as few frames as possible to avoid a blur effect as
much as possible. For example, if we were to play back a 1fps video on a 60hz
monitor, we would blend at most on 1 vsync for each frame (while the other 59
vsyncs would be rendered as is).
Frame interpolation is always done before scaling and in linear light when
possible (an ICC profile is used, or :srgb is used).
These are now auto-detected sanely; and enabled whenever it would be a
performance or quality gain (which is pretty much everything except
bilinear/bilinear scaling).
Perhaps notably, with the absence of scale_sep, there's no more way to
use convolution filters on hardware without FBOs, but I don't think
there's hardware in existence that doesn't have FBOs but is still fast
enough to run the fallback (slow) 2D convolution filters, so I don't
think it's a net loss.
This is not quite the same thing as madVR's antiringing algorithm, but
it essentially does something similar.
Porting madVR's approach to elliptic coordinates will take some amount
of thought.
This avoids issues when upscaling directly in linear light, and is the
recommended way to upscale images according to imagemagick.
The default slope of 6.5 offers a reasonable compromise between
ringing artifacts eliminated and ringing artifacts introduced by
sigmoid-upscaling. Same goes for the default center of 0.75.
This makes vo_opengl_cb respond to controls like "gamma" and
"brightness". The commit includes an awkward refactor for vo_opengl to
make it easier for vo_opengl_cb.
One problem is a logical race condition. The set of supported controls
depends on the pixelformat, which in turn is set by reconfig(). But the
actual reconfig() call (on the renderer) happens asynchronously on the
renderer thread. At the time it happens, the player most likely already
tried to set some controls for command line options (see init_vo() in
video.c). So setting this command line options will fail most of the
time, though it could randomly succeed. This can't be fixed directly,
because the player can't wait on the renderer thread, because the
renderer thread might already wait on the player.
Obscure feature, and I've never heard of anyone using it.
The anaglyph effects can be reproduced with vf_stereo3d. The only thing
that can't be reproduced with it is "quadbuffer", which requires special
and expensive hardware.
This adds API to libmpv that lets host applications use the mpv opengl
renderer. This is a more flexible (and possibly more portable) option to
foreign window embedding (via --wid).
This assumes that methods like context sharing and multithreaded OpenGL
rendering are infeasible, and that a way is needed to integrate it with
an application that uses a single thread to render everything.
Add an example that does this with QtQuick/qml. The example is
relatively lazy, but still shows how relatively simple the integration
is. The FBO indirection could probably be avoided, but would require
more work (and would probably lead to worse QtQuick integration, because
it would have to ignore transformations like rotation).
Because this makes mpv directly use the host application's OpenGL
context, there is no platform specific code involved in mpv, except
for hw decoding interop.
main.qml is derived from some Qt example.
The following things are still missing:
- a way to do better video timing
- expose GL renderer options, allow changing them at runtime
- support for color equalizer controls
- support for screenshots
Always set the viewport on entry. The way the viewport is tracked is a
bit complicated in my opinion, and in fact it doesn't even reduce the
number of GL calls. Setting it on entry is actually redundant if video
covers the screen fully, because the handle_pass() unconditionally sets
it anyway, but avoiding it would complicate the cases gl->Clear() is
actually needed.
Add a fbo argument to gl_video_render_frame(). This allows you to render
into a FBO rather than the default framebuffer. It will be useful for
providing an API to render on an external GL context. (If that will
actually be added.)
After removing synchronous libdispatch calls, this looks like it doesn't
deadlock anymore. I also experimented with pthread_mutex_trylock liek wm4
suggested, but it leads to some annoying black flickering. I will fallback to
that only if some new deadlocks are discovered.
Unfortunately using dispatch_sync for synchronization turned out to be really
bad for us. It caused a wide array of race conditions, deadlocks, etc.
Moving to a very simple mutex. It's not clear to me how to do liveresizing
with this, for now it just flickers with is unacceptable (maybe I'll draw
black instead).
This should fix all the threading cocoa bugs. Reopen if it's not the case!
Fixes#751Fixes#1129
Add two new options, make it possible for user to set the radius
for some of the filters with no fixed radius.
Also add three new filters with the new radius parameter supported.
OSD used to be not thread-safe at all, so a track was used to get it
redrawn. This mostly reverts commit 6a2a8880, because OSD not being
thread-safe was the non-trivial part of it.
Mostly untested, because this code path is used on OSX only, and I don't
have OSX.
Let the VOs draw the OSD on their own, instead of making OSD drawing a
separate VO driver call. Further, let it be the VOs responsibility to
request subtitles with the correct PTS. We also basically allow the VO
to request OSD/subtitles at any time.
OSX changes untested.
Reduce most dependencies on struct mp_csp_details, which was a bad first
attempt at dealing with colorspace stuff. Instead, consistently use
mp_image_params.
Code which retrieves colorspace matrices from csputils.c still uses this
type, though.
This commit:
- Changes some of the #define and variable names for clarification and
adds comments where appropriate.
- Unifies :srgb and :icc-profile, making them fit into the same step of
the decoding process and removing the weird interactions between both
of them.
- Makes :icc-profile take precedence over :srgb (to significantly reduce
the number of confusing and useless special cases)
- Moves BT709 decompanding (approximate or actual) to the shader in all
cases, making it happen before upscaling (instead of the old 0.45
gamma function). This is the simpler and more proper way to do it.
- Enables the approx gamma function to work with :srgb as well due to
this (since they now share the gamma expansion code).
- Renames :icc-approx-gamma to :approx-gamma since it is no longer tied
to the ICC options or LittleCMS.
- Uses gamma 2.4 as input space for the actual 3DLUT, this is now a
pretty arbitrary factor but I picked 2.4 mainly because a higher pure
power value here seems to produce visually better results with wide
gamut profiles, rather then the previous 1.95 or BT.709.
- Adds the input gamma space to the 3dlut cache header in case we change
it more in the future, or even make it user customizable (though I
don't see why the latter would really be necessary).
- Fixes the OSD's gamma when using :srgb, which was previously still
using the old (0.45) approximation in all cases.
- Updates documentation on :srgb, it was still mentioning the old
behavior from circa a year ago.
This commit should serve to both open up and make the CMS/shader code much
more accessible and less confusing/error-prone and simultaneously also
improve the performance of 3DLUTs with wide gamut color spaces.
I would liked to have made it more modular but almost all of these
changes are interdependent, save for the documentation updates.
Note: Right now, the "3DLUT takes precedence over SRGB" logic is just
coded into gl_lcms.c's compile_shaders function. Ideally, this should be
done earlier, when parsing the options (by overriding the actual
opts.srgb flag) and output a warning to the user.
Note: I'm not sure how well this works together with real-world
subtitles that may need to be color corrected as well. I'm not sure
whether :approx-gamma needs to apply to subtitles as well. I'll need to
test this on proper files later.
Note: As of now, linear light scaling is still intrinsically tied to
either :srgb or :icc-profile. It would be thinkable to have this as an
extra option, :linear-scaling or similar, that could be used with or
without the two color management options.
The previous version of the gamma suboption was pretty useless. It could
be used to disable delayed gamma enabling, which is a mechanism to avoid
having to adjust gamma in the shader by default.
Repurpose the suboption and allow setting an exact gamma value with it.
You can already override gamma with the --gamma option as well as the
gamma input property, but these use a weird curve to create the
impression of a linear perceived brightness change when changing the
value. This suboption now allows setting an exact gamma value.
This allows vo_opengl to use GL_TEXTURE_RECTANGLE textures, either by
enabling it with the 'rectangle-textures' sub-option, or by having a
hwdec backend force it. By default it's off.
The _only_ reason we're adding this is because VDA can export rectangle
textures only.
Most hardware decoding APIs provide some OpenGL interop. This allows
using vo_opengl, without having to read the video data back from GPU.
This requires adding a backend for each hardware decoding API. (Each
backend is an entry in gl_hwdec_vaglx[].) The backends expose video data
as a set of OpenGL textures.
Add infrastructure to support this. The next commit will add support for
VA-API.
Keep track of the default values directly, instead of creating a new
instance of the option struct just to get the defaults.
Also get rid of the special handling of m_obj_desc.init_options.
Instead, handle it purely by the option parser. Originally, I wanted to
handle --vo=opengl-hq and --vo=direct3d_shaders with this (by making
them aliases to the real VOs with a different preset), but since --vo
=opengl-hq=help prints the wrong values (as consequence of the
simplification), I'm not doing that, and instead use something
different.
Improves display of images and video with alpha channel, especially if
the transparent regions contain (supposed to be invisible) garbage
color values.
Until now, video output levels (obscure feature, like using TV screens
that require RGB output in limited range, similar to YUY) still required
handling of VOCTRL_SET_YUV_COLORSPACE. Simplify this, and use the new
mp_image_params code. This gets rid of some code. VOCTRL_SET_YUV_COLORSPACE
is not needed at all anymore in VOs that use the reconfig callback. The
result of VOCTRL_GET_YUV_COLORSPACE is now used only used for the
colormatrix related properties (basically, for display on OSD). For
other VOs, VOCTRL_SET_YUV_COLORSPACE will be sent only once after config
instead of twice.
Use the video decoder chroma location flags and render chroma locations
other than centered. Until now, we've always used the intuitive and
obvious centered chroma location, but H.264 uses something else.
FFmpeg provides a small overview in libavcodec/avcodec.h:
-----------
/**
* X X 3 4 X X are luma samples,
* 1 2 1-6 are possible chroma positions
* X X 5 6 X 0 is undefined/unknown position
*/
enum AVChromaLocation{
AVCHROMA_LOC_UNSPECIFIED = 0,
AVCHROMA_LOC_LEFT = 1, ///< mpeg2/4, h264 default
AVCHROMA_LOC_CENTER = 2, ///< mpeg1, jpeg, h263
AVCHROMA_LOC_TOPLEFT = 3, ///< DV
AVCHROMA_LOC_TOP = 4,
AVCHROMA_LOC_BOTTOMLEFT = 5,
AVCHROMA_LOC_BOTTOM = 6,
AVCHROMA_LOC_NB , ///< Not part of ABI
};
-----------
The visual difference is literally minimal, but since videophiles
apparently consider this detail as quality mark of a video renderer,
support it anyway. We don't bother with chroma locations other than
centered and left, though.
Not sure about correctness, but it's probably ok.
The filter chain and the video ouputs have config() functions. They are
strictly limited to transfering the video size and format. Other
parameters (like color levels) have to be transferred separately.
Improve upon this by introducing a separate set of reconfig() functions,
which use mp_image_params to carry format parameters. This struct
contains all image format related parameters from config(), plus
additional parameters such as colorspace.
Change vf_rotate to use it, as well as vo_opengl. vf_rotate is just
an example/test case, but vo_opengl will need it later.
The intention is also to get rid of VOCTRL_SET_YUV_COLORSPACE. This
information is now handed to the VOs via reconfig(). The getter,
VOCTRL_GET_YUV_COLORSPACE, will still be needed though.
Use a different algorithm to generate the dithering matrix. This
looks much better than the previous ordered dither matrix with its
cross-hatch artifacts.
The matrix generation algorithm as well as its implementation was
contributed by Wessel Dankers aka Fruit. The code in dither.c is
his implementation, reformatted and with static global variables
removed by me.
The new matrix is uploaded as float texture - before this commit, it
was a normal integer fixed point matrix. This means dithering will
be disabled on systems without float textures.
The size of the dithering matrix can be configured, as the matrix is
generated at runtime. The generation of the matrix can take rather
long, and is already unacceptable with size 8. The default is at 6,
which takes about 100 ms on a Core2 Duo system with dither.c compiled
at -O2, which I consider just about acceptable.
The old ordered dithering is still available and can be selected by
putting the dither=ordered sub-option. The ordered dither matrix
generation code was moved to dither.c. This function was originally
written by Uoti Urpala.
gl_video_resize_redraw() simply resizes and redraws (but without
invoking swapGlBuffers()). The VO is not involved in any way, so this
can simply be called from inside the mpgl lock from any thread.
Requires a minor refactor of the GL OSD code in order to redraw without
an OSD object.
Allows playing video with alpha information on X11, as long as the video
contains alpha and the window manager does compositing. See vo.rst.
Whether a window can be transparent is decided by the choice of the X
Visual used for window creation. Unfortunately, there's no direct way to
request such a Visual through the GLX or the X API, and use of the
XRender extension is required to find out whether a Visual implies a
framebuffer with alpha used by XRender (see for example [1]). Instead of
depending on the XRender wrapper library (which would require annoying
configure checks, even though XRender is virtually always supported),
use a simple heuristics to find out whether a Visual has alpha. Since
getting it wrong just means an optional feature will not work as
expected, we consider this ok.
[1] http://stackoverflow.com/questions/4052940/how-to-make-an-opengl-rendering-context-with-transparent-background/9215724#9215724
gl_video.c contains all rendering code, gl_lcms.c the .icc loader and
creation of 3D LUT (and all LittleCMS specific code). vo_opengl.c is
reduced to interfacing between the various parts.