They are useless. Not only are they actually rarely in use; but
libavcodec doesn't even output them, as libavcodec has no such sample
formats for decoded audio.
Even if it should happen that we actually still need them (e.g. if doing
direct hardware output), there are better solutions. Swapping the sign
is a fast and lossless operation and can be done inplace, so AO actually
needing it could do this directly.
If you wonder why we keep U8 instead of S8: because libavcodec does it.
Channel maps reported by the device as SND_CHMAP_TYPE_VAR can be freely
reordered. We don't use this much (out of laziness), but in this case
it's a simple way to reduce necessary reordering (which would be an
extra libavresample invocation), and to make debug output more readable.
Until now, we didn't do this, because it required some effort, and
didn't seem to be necessary. It probably still isn't, but it sounds
like a good idea not to output arbitrary data on these channels.
The situation is complicated by the fact that just adding new channels
to a planar frame would require messing with buffers. So we would have
to allocate new buffers and add them to the frame. We could have to
maintain an extra buffer pool for this. Avoid this by being "clever",
and just allocate a frame with enough channels in the first place.
libav/swresample won't know about these channels and won't write to
them, but we can grab them in reorder_planes() and use them for the
NA channels.
This is just a conceptual issue, since for now every channel count has
an associated standard layout.
But should the max. channel count ever be bumped, some things would stop
function if mp_chmap_from_channels() refused to work for any channel
count within the allowed range.
In the AVFrame-style system (which we inreasingly map our internal data
stuctures on), buffers and plane pointers don't necessarily have a 1:1
correspondence. For example, a single buffer could cover 2 or more
planes, all while other planes are covered by a second buffer, and so
on. They don't need to be ordered in the same way.
Change mp_audio_get_allocated_size() to retrieve the maximum size all
planes provide. This also considers the case of planes not pointing to
buffer start.
Change mp_audio_realloc() to reset all planes, even if corresponding
buffers are not reallocated. (The caller has to be careful anyway if it
wants to be sure the contents are preserved on realloc calls.)
If you try to play surround with dmix, it will advertise surround and
lets you set more than 2 channels, but will report a stereo channel map,
with the extra channels identified as NA. We could handle this now, but
we don't want to (because it's excessively stupid).
Do it only if the channel map is not what we requested, instead of just
acting if it contains NA entries at all. This avoids that we hurt
ourselves in the unlikely but possible case we actually have to use
channel maps with NA entries.
If the audio API takes a while for starting the audio callback, the
current heuristic can be off. In particular, with very short files, it
can happen that the audio callback is not called before playback is
stopped, so no audio is output at all.
Change draining so that it essentially waits for the ringbuffer to
empty. The assumption is that once the audio API has read the data
via the callback, it will always output it, even if the audio API
is stopped right after the callback has returned.
If a frame could only be partially filled with real audio data, the
silence wasn't written at the correct offset. It could have happened
that the remainder of the frame contained garbage.
(This didn't happen in the more common case of playing dummy silence.)
This provides a new method for enabling spdif passthrough. The old
method via --ad (--ad=spdif:ac3 etc.) is deprecated. The deprecated
method will probably stop working at some point.
This also supports PCM fallback. One caveat is that it will lose at
least 1 audio packet in doing so. (I don't care enough to prevent this.)
(This is named after the old S/PDIF connector, because it uses the same
underlying technology as far as the higher level protoco is concerned.
Also, the user should be renamed that passthrough is backwards.)
This deprecates the --ad-spdif-dtshd option, and replaces it with a
pseudo decoder. This means ad_spdif will report two decoders, "dts" and
"dts-hd", of which the second simply enables what the option did.
The --ad-spdif-dtshd option will actually be deprecated in the next
commit.
This is better, because now we call swr_get_delay() with the output
samplerate, instead of with the input samplerate and then multiplying it
with the ratio and rounding it up.
Listening to kAudioDevicePropertyDeviceHasChanged does not send any
property change notifications when the device dies. Makes no sense,
but I suppose in CoreAudio logic a dead/removed device can't send
any notifications.
This caused the player to essentially pause playback if the audio
device was removed during playback.
Fix by listening to the kAudioHardwarePropertyDevices property too,
which will actually be sent in this specific case. Then, if
querying the already dead device fails, we know we have to reload.
In short, instead of letting the coreaudio property listener set atomic
flags (which are then polled), make the property listeners actually
active.
The format change listener used during audio output now simply calls
ao_request_reload() on its own. All code involved is thread-safe, so
there's no need to do it during this audio callback (we assumed the
callback was never run concurrently with itself).
The listener installed temporarily during ca_change_format() is changed
to post a semaphore. Get rid of the weird retry logic and replace it
with a flat loop + timeout. It appears the maximum wait time could be
2500ms; reduce the total timeout to 500ms instead.
This manually retrieved the remaining audio from the resampler. It
subtly missed a conversion which could leave to an unsubtle crash.
This could happen if reorder_planes() was supposed to insert NA
channels, and the resampler/actual output format were different.
Simplify it by reusing the normal drain path. One oddness is that
the filter will add an output frame outside of normal filtering,
but that should be fine.
This brings the volume control closer to what is percepted as linear
volume change.
Adjust the --softvol-max default to roughly the old maximum (roughly
doubles the gain).
Now --volume takes an absolute volume, meaning it doesn't depend on
--softvol-max. 0 is still silence, and 100 now always means unchanged
volume. The OSD and the "volume" property are changed accordingly.
Also raise the minimum value of --softvol-max. A value below 100 makes
no sense and breaks the OSD.
Apparently some A/V receivers do not behave well if "normal" DTS is
passed through using the high bitrate spdif format normally used for
DTS-HD (other receivers are fine with it).
Parse the first packet passed to ad_spdif by decoding it with libavcodec
in order to get the profile. Ignore the --ad-spdif-dtshd if it's not
DTS-HD. (If the codec profile changes midstream, the user is out of
luck. But this is probably an insignificant corner case.)
I thought about parsing the bitstream, but let's not. While it probably
wouldn't be that much effort, we are trying to keep it down on codec
details here - otherwise we could just do our own spdif framing instead
of using libavformat's spdif pseudo-muxer.
Another possibility, using the codec parameters signalled by
libavformat, is disregarded. Our builtin Matroska decoder doesn't do
this, and also we do not want on the demuxer having to decode some
packets in order to retrieve codec params (as libavformat does).
Fixes#1949.
There is not much of a reason to have these wrappers around. Use POSIX
standard functions directly, and use a separate utility function to take
care of the timespec calculations. (Course POSIX for using this weird
format for time values.)
Drop mp_chmap_diff() (which is unused too now), and implement
mp_chmap_diffn() in a slightly simpler way. (Too bad there is no
standard function for counting set bits.)
Instead of somehow having 4 different cases with each their own weight,
do it with a single function that decides which channel layout is the
better fallback.
This is simpler, and also introduces new (fixed) semantics. The new test
added to test/chmap_sel.c actually works now. This is a mixed case with
no perfect upmix or downmix, but the better choice is the one which
loses the least channels from the original layout.
One test also changes. If the input is 7.1(wide-side), and the available
layouts are 7.1 and 5.1(side), the latter is now chosen instead of the
former. This makes sense: both layouts contain 6 out of 8 channels from
the original layout, but the 5.1(side) one is smaller. This follows the
general logic. The 7.1 layout has FLC/RLC speakers instead of BL/BR,
and judging by the names, "front left center" is completely different
from "back left". If these should be exchangeable, a separate exception
would have to be added.
Reuse MP_SPEAKER_ID_NA for this. If all mp_chmap entries are set to NA,
the channel layout has special "unknown channel layout" semantics, which
are used to deal with some corner cases.