The nnedi3 prescaler requires a normalized range to work properly,
but the original implementation did the range normalization after
the first step of the first pass. This could lead to severe quality
degradation when debanding is not enabled for NNEDI3.
Fix this issue by passing `tex_mul` into the shader code.
Fixes#2464
vo_opengl_cb is a special case, because we somehow have to render video
asynchronously, all while "trusting" the API user to do it correctly.
This didn't quite work, and a while ago a compromise using a timeout to
prevent theoretically possible deadlocks was added.
Make it even more synchronous. Basically, go all the way, and
synchronize rendering between VO and user renderer thread to the
full extent possible.
This means the silly frame queue is dropped, and we event attempt to
synchronize the GL SwapBuffer call (via mpv_opengl_cb_report_flip()).
The changes introduced with commit dc33eb56 are effectively dropped. I
don't even remember if they mattered.
In the future, we might make all VOs fetch asynchronously from a frame
queue, which would mostly remove the differences between vo_opengl and
vo_opengl_cb, but this will take a while (if it will even be done).
Pick the correct GLSL version from the GL_SHADING_LANGUAGE_VERSION
string. Might be somewhat questionable, as we expect the minor version
number not to have leading 0s.
Should help with cases when the reported GLSL version is much higher
than the equivalent of the reported GL version. This problem was
observed in combination with GL_ARB_uniform_buffer_object, which
can't be used if the declared GLSL version is too low.
Simplifies some auto detection matters.
I _still_ don't want to remove the lazy loading mechanism, because it's
still slightly useful for filters using the hwdec APIs. My main
motivation for not always preloading them is actually that libva prints
random useless crap to the terminal with no way to prevent this.
Notes:
- Unfortunately the only way to talk to EGL from within DRM I could find
involves linking with GBM (generic buffer management for Mesa.)
Because of this, I'm pretty sure it won't work with proprietary NVidia
drivers, but then again, last time I checked NVidia didn't offer
proper screen resolution for VT.
- VT switching doesn't seem to work at all. It's worth mentioning that
using vo_drm before introduction of VT switcher had an anomaly where
user could switch to another VT and input text to it, while video
played on top of that VT. However, that isn't the case with drm_egl:
I can't switch to other VT during playback like this. This makes me
think that it's either a limitation coming from my firmware or from
EGL/KMS itself rather than a bug with my code. Nonetheless, I still
left (untestable) VT switching code in place, in case it's useful to
someone else.
- The mode_id, connector_id and device_path should be configurable for
power users and people who wish to watch videos on nonprimary screen.
Unfortunately I didn't see anything that would allow OpenGL backends
to register their own set of options. At the same time, adding them to
global namespace is pointless.
- A few dozens of lines could be shared with vo_drm (setting up VT
switching, most of code behind page flipping). I don't have any strong
opinion on this.
- Sometimes I get minor visual glitches. I'm not sure if there's a race
condition of some sort, unitialized variable (doubtful), or if it's
buggy driver. (I'm using integrated Intel HD Graphics 4400 with Mesa)
- .config and .control are very minimal.
Signed-off-by: wm4 <wm4@nowhere>
glXCreateContextAttribsARB() by design can throw some X11 errors. We
ignore these, but we generally still print error messages to the
terminal. This was confusing/annoying users, so silence it. The stupid
part is that the Xlib error handler is global, so we have to be slightly
careful here.
They are evil and should be eradicated. Some of these were pretty dumb
anyway.
There are probably some more around in platform specific code or other
code not enabled by default on Linux.
This is based on an older patch by James Ross-Gowan. It was rebased and
cleaned up. Also, the DWM API usage present in the older patch was
removed, because DWM reports nonsense rates at least on Windows 8.1
(they are rounded to integers, just like with the old GDI API - except
the GDI API had a good excuse, as it could report only integers).
Signed-off-by: wm4 <wm4@nowhere>
This simplifies update_screen_rect a bit. Unless --fs-screen=all is
used, it will always get an HMONITOR and call GetMonitorInfo to
determine its dimensions. This will make it easier for the next few
commits to determine the colour profile and the refresh rate from the
HMONITOR.
There is a slight change in behaviour. When selecting a screen that is
out of range, such as --screen=9 on a machine with only two monitors,
the old code would silently select the last existing monitor. The new
code prints an error message and falls back to the default screen (same
as the Cocoa code.)
Signed-off-by: wm4 <wm4@nowhere>
The call to EnumDisplaySettings seems to be a relic from when MPlayer
ran on systems that didn't have GetMonitorInfo or SM_CX/CYVIRTUALSCREEN.
GetMonitorInfo was loaded dynamically, so it was possible for MPlayer to
run without it and use the values returned by EnumDisplaySettings.
These are always present in modern versions of Windows, so the values
returned from EnumDisplaySettings are always overwritten. Remove the
call to EnumDisplaySettings and assume SM_CX/CYVIRTUALSCREEN is always
present.
Signed-off-by: wm4 <wm4@nowhere>
Commit 27dc834f added it as such.
Also remove the check for glUniformBlockBinding() - it's part of an
extension, and the check glGetUniformBlockIndex() already checks whether
the extension is fully available.
Implement NNEDI3, a neural network based deinterlacer.
The shader is reimplemented in GLSL and supports both 8x4 and 8x6
sampling window now. This allows the shader to be licensed
under LGPL2.1 so that it can be used in mpv.
The current implementation supports uploading the NN weights (up to
51kb with placebo setting) in two different way, via uniform buffer
object or hard coding into shader source. UBO requires OpenGL 3.1,
which only guarantee 16kb per block. But I find that 64kb seems to be
a default setting for recent card/driver (which nnedi3 is targeting),
so I think we're fine here (with default nnedi3 setting the size of
weights is 9kb). Hard-coding into shader requires OpenGL 3.3, for the
"intBitsToFloat()" built-in function. This is necessary to precisely
represent these weights in GLSL. I tried several human readable
floating point number format (with really high precision as for
single precision float), but for some reason they are not working
nicely, bad pixels (with NaN value) could be produced with some
weights set.
We could also add support to upload these weights with texture, just
for compatibility reason (etc. upscaling a still image with a low end
graphics card). But as I tested, it's rather slow even with 1D
texture (we probably had to use 2D texture due to dimension size
limitation). Since there is always better choice to do NNEDI3
upscaling for still image (vapoursynth plugin), it's not implemented
in this commit. If this turns out to be a popular demand from the
user, it should be easy to add it later.
For those who wants to optimize the performance a bit further, the
bottleneck seems to be:
1. overhead to upload and access these weights, (in particular,
the shader code will be regenerated for each frame, it's on CPU
though).
2. "dot()" performance in the main loop.
3. "exp()" performance in the main loop, there are various fast
implementation with some bit tricks (probably with the help of the
intBitsToFloat function).
The code is tested with nvidia card and driver (355.11), on Linux.
Closes#2230
Add the Super-xBR filter for image doubling, and the prescaling framework
to support it.
The shader code was ported from MPDN extensions project, with
modification to process luma only.
This commit is largely inspired by code from #2266, with
`gl_transform_trans()` authored by @haasn taken directly.
The noframe event is logged whenever there is no new frame. This can
happen due to normal redraws, but also due to video frame queue
underflow.
The mpv_opengl_cb_report_flip() API function is currently pretty
useless, because blocking on the video frame queue is more reliable and
simpler. But at least we can log the actual vsync.
next_vsync/prev_vsync was only used to retrieve the vsync duration. We
can get this in a simpler way.
This also removes the vsync duration estimation from vo_opengl_cb.c,
which is probably worthless anyway. (And once interpolation is made
display-sync only, this won't matter at all.)
This affects only the display-sync code path, as for normal timing the
wakeup_pts stuff handles proper wakeup. It's probably mostly a
theoretical issue.
A hw decoder might fail to decode a frame for multiple reasons, and not
always just because decoding is impossible. We can't generally
distinguish these reasons well. Make it more tolerant by accepting
failures of 3 frames, but not more. The threshold can be adjusted by the
repurposed --vd-lavc-software-fallback option.
(This behavior was suggested much earlier in some PR, but at the time
the "proper" hwdec fallback was indistinguishable from decoding error.
With the current situation, "proper" fallback is still instantious.)
The uninit() function was called twice if the uninit() function failed
(once by init(), once by vd_lavc.c code), which caused crashes due to
double-free. (This failure is a corner case, and all other hwdec
backends appear to handle this case gracefully.)
I do not think this code should be able to deal with uninit() being
called other than once. Guarantee that it's called exactly once.
Quoting MSDN: "Notifies the Desktop Window Manager (DWM) to opt in to or
out of Multimedia Class Schedule Service (MMCSS) scheduling while the
calling process is alive.". Whatever this means. (An application can
change the scheduling priority of the window manager?)
Does this improve anything? I have no idea. Certainly this is a program
that does multimedia and graphics, so we seem to be a good match for
this.
Is it bad if we enable this even while playback is inactive or paused? I
have no idea either.
Is there a magic cargo cult function that will mark our renderer thread
as multimedia thing? I have no idea. (We use a function to enable MMCSS
for our audio thread in ao_wasapi.)
Enable it by default, but not unconditionally. Add an "auto" mode, which
disable DwmFlush if the compositor is (probably) inactive. Let's see how
this goes.
Since I accidentally enabled DwmFlush always by default (more or less)
in a previous commit touching this code, this is probably mostly just
cargo-culting, and it's uncertain whether it does anything.
Note that I still got bad vsync behavior when fullscreening mpv, and
making another window visible on the same screen. This happens even if
forcing DWM.
Commit acd5816a broke this. It was stopping playback occasionally.
Another case where the non-display-sync interpolation mode
(in->vsync_timed==true) is causing a lot of subtle issues and will be
removed soon.
PAL8 is the only format that is RGB, has only 1 component, is byte-
aligned. It was accidentally detected by the GBRP case as planar RGB.
(It would have been ok if it were gray; what ruins it is that it's
actually paletted, and the color values do not correspond to colors (but
palette entries).
Pseudo-pal formats are ok; in fact AV_PIX_FMT_GRAY is rightfully marked
as MP_IMGFLAG_YUV_P.
Regression since commit 93db4233. I think the bit that was forgotten
here was to remove the vo_w32_config() return value completely. The VO
failed to init because that function always returned 0. This commit
removes these bits and fixes the VO.
Fixes#2434.
Yet another relatively useless option that tries to make OpenGL's sync
behavior somewhat sane. The results are not too encouraging. With a
value of 1, vsync jitter is gone on nVidia, but there are frame drops
(less than with glfinish). With 2, I get the usual vsync jitter _and_
frame drops.
There's still some hope that it might prevent too deep queuing with some
GPUs, I guess.
The timeout for the wait call is 1 second. The value is pretty
arbitrary; it should just not be too high to freeze the process (if
the GPU is un-nice), and not too low to trigger the timeout in normal
cases, even if the GPU load is very high. So I guess 1 second is ok
as a timeout.
The idea to use fences this way to control the queue depth was stolen
from RetroArch:
df01279cf3/gfx/drivers/gl.c (L1856)
Commit a1315c76 broke this slightly. Frame drops got counted multiple
times, and also vo.c was actually trying to "render" the dropped frame
over and over again (normally not a problem, since frames are always
queued "tightly" in display-sync mode, but could have caused 100% CPU
usage in some rare corner cases).
Do not repeat already dropped frames, but still treat new frames with
num_vsyncs==0 as dropped frames. Also, strictly count dropped frames in
the VO. This means we don't count "soft" dropped frames anymore (frames
that are shown, but for fewer vsyncs than intended). This will be
adjusted in the next commit.
vo_frame.num_vsyncs can be != 1 in some cases in normal sync mode too.
This is not a very exact fix, but in exchange it's robust. (These
vo_frame flags are way too tricky in combination with redrawing and
such.)