Change all OPT_* macros such that they don't define the entire m_option
initializer, and instead expand only to a part of it, which sets certain
fields. This requires changing almost every option declaration, because
they all use these macros. A declaration now always starts with
{"name", ...
followed by designated initializers only (possibly wrapped in macros).
The OPT_* macros now initialize the .offset and .type fields only,
sometimes also .priv and others.
I think this change makes the option macros less tricky. The old code
had to stuff everything into macro arguments (and attempted to allow
setting arbitrary fields by letting the user pass designated
initializers in the vararg parts). Some of this was made messy due to
C99 and C11 not allowing 0-sized varargs with ',' removal. It's also
possible that this change is pointless, other than cosmetic preferences.
Not too happy about some things. For example, the OPT_CHOICE()
indentation I applied looks a bit ugly.
Much of this change was done with regex search&replace, but some places
required manual editing. In particular, code in "obscure" areas (which I
didn't include in compilation) might be broken now.
In wayland_common.c the author of some option declarations confused the
flags parameter with the default value (though the default value was
also properly set below). I fixed this with this change.
The s_size() function, whatever it was supposed to do, caused the
surface size to increase indefinitely. Fix by making it always use the
maximum size that was last used, which is less optimal (many surface
recreations when making the window slowly larger), but at least it
works.
The rotation code didn't mark the old surface as invalid when it was
freed, so it could destroy random other surfaces (let's call it dangling
ID).
Also, the required rotation surface size depends on the rotation mode,
so recreate the surfaces on rotation as well.
I really wouldn't care much about this, but some parts of the core code
are under HAVE_GPL, so there's some need to get rid of it. Simply turn
the video equalizer from its current fine-grained handling with vf/vo
fallbacks into global options. This makes updating them much simpler.
This removes any possibility of applying video equalizers in filters,
which affects vf_scale, and the previously removed vf_eq. Not a big
loss, since the preferred VOs have this builtin.
Remove video equalizer handling from vo_direct3d, vo_sdl, vo_vaapi, and
vo_xv. I'm not going to waste my time on these legacy VOs.
vo.eq_opts_cache exists _only_ to send a VOCTRL_SET_EQUALIZER, which
exists _only_ to trigger a redraw. This seems silly, but for now I feel
like this is less of a pain. The rest of the equalizer using code is
self-updating.
See commit 96b906a51d for how some video equalizer code was GPL only.
Some command line option names and ranges can probably be traced back to
a GPL only committer, but we don't consider these copyrightable.
Long planned. Leads to some sanity.
There still are some rather gross things. Especially g_groups is ugly,
and a hack that can hopefully be removed. (There is a plan for it, but
whether it's implemented depends on how much energy is left.)
It was used to determine whether the VO supports VOCTRL_SET_PANSCAN.
With all those changes to property semantics this became unnecessary,
and its only use was dropped at some point.
The main change is with video/hwdec.h. mp_hwdec_info is made opaque (and
renamed to mp_hwdec_devices). Its accessors are mainly thread-safe (or
documented where not), which makes the whole thing saner and cleaner. In
particular, thread-safety rules become less subtle and more obvious.
The new internal API makes it easier to support multiple OpenGL interop
backends. (Although this is not done yet, and it's not clear whether it
ever will.)
This also removes all the API-specific fields from mp_hwdec_ctx and
replaces them with a "ctx" field. For d3d in particular, we drop the
mp_d3d_ctx struct completely, and pass the interfaces directly.
Remove the emulation checks from vaapi.c and vdpau.c; they are
pointless, and the checks that matter are done on the VO layer.
The d3d hardware decoders might slightly change behavior: dxva2-copy
will not use the VO device anymore if the VO supports proper interop.
This pretty much assumes that any in such cases the VO will not use any
form of exclusive mode, which makes using the VO device in copy mode
unnecessary.
This is a big refactor. Some things may be untested and could be broken.
The vdpau_mixer could fail to be recreated properly if preemption
occured at some point before playback initialization (like when using
--hwdec-preload and the opengl-cb API).
Normally, the vdpau_mixer was supposed to be marked invalid when the
components using it detect a preemption, e.g. in hwdec_vdpau.c. This one
didn't mark the vdpau_mixer as invalid if preemption was detected in
reinit(), only in map_image().
It's cleaner to detect preemption directly in the vdpau_mixer, which
ensures it's always recreated correctly.
They are evil and should be eradicated. Some of these were pretty dumb
anyway.
There are probably some more around in platform specific code or other
code not enabled by default on Linux.
This parameter has been unused for years (the last flag was removed in
commit d658b115). Get rid of it.
This affects the general VO API, as well as the vo_opengl backend API,
so it touches a lot of files.
The VOFLAGs are still used to control OpenGL context creation, so move
them to the OpenGL backend code.
This gets rid of an old hack, VOFLAG_HIDDEN. Although handling of it has
been sane for a while, it used to cause much pain, and is still
unintuitive and weird even today.
The main reason for this hack is that OpenGL selects a X11 Visual for
you, and you're supposed to use this Visual when creating the X window
for the OpenGL context. Which means the X window can't be created early
in the common X11 init code, but the OpenGL code needs to do something
before that. API-wise you need separate functions for X11 init and X11
window creation. The VOFLAG_HIDDEN hack conflated window creation and
the entrypoint for resizing on video resolution change into one
function, vo_x11_config_vo_window(). This required all platform backends
to handle this flag, even if they didn't need this mechanism.
Wayland still uses this for minor reasons (alpha support?), so the
wayland backend must be changed before the flag can be entirely removed.
The vf_format suboption is replaced with --video-output-levels (a global
option and property). In particular, the parameter is removed from
mp_image_params. The mechanism is moved to the "video equalizer", which
also handles common video output customization like brightness and
contrast controls.
The new code is slightly cleaner, and the top-level option is slightly
more user-friendly than as vf_format sub-option.
Pretty stupid: vo_get_vsync_interval() returns a negative value if the
display FPS is unknown (e.g. xrandr not compiled), and the comparison
whether the value is below 0 fails later because it's assigned to an
unsigned int.
Regression since commit e3d85ad4.
Also, fix some comments in vo.c.
Instead of calling it "future frames" and adding or subtracting 1 from
it, always call it "requested frames". This simplifies it a bit.
MPContext.next_frames had 2 added to it; this was mainly to ensure a
minimum size of 2. Drop it and assume VO_MAX_REQ_FRAMES is at least 2;
together with the other changes, this can be the exact size of the
array.
VDPAU has explicit support for rotating surfaces, and it is far less
expensive than using the normal rotation filter (which would require
reading video frames back into system memory), it is desirable to
implement the VO rotation capability.
To do this, we need to render the video frames to an output surface,
without rotation, and then render from that surface to the final
output surface to apply the rotation. It is important that the
intermediate surface is the same size as the final one (only not
rotated) so that hqscaling can be applied if requested by the user.
(hqscaling is a mixer capability and so takes effect when the video
surface is rendered to an output surface)
Finally, we must remember to explicitly clear the final output
surface as VDPAU only auto-clears output surfaces when rendering video
surfaces.
draw_image_timed is renamed to draw_frame. struct frame_timing is
renamed to vo_frame. flip_page_timed is merged into draw_frame (the
additional parameters are part of struct vo_frame). draw_frame also
deprecates VOCTRL_REDRAW_FRAME, and replaces it with a method that
works for both VOs which can cache the current frame, and VOs which
need to redraw it anyway.
This is preparation to making the interpolation and (work in progress)
display sync code saner.
Lots of other refactoring, and also some simplifications.
Now the VO can request a number of future frames with the last parameter
of vo_set_queue_params(). This will be helpful to fix the interpolation
code.
Note that the first frame (after playback start or seeking) will usually
not have any future frames (to make seeking fast). Near the end of the
file, the number of future frames will become lower as well.
When using --hwdec=auto, about half of all systems will print:
"[vdpau] Error when calling vdp_device_create_x11: 1"
this happens because usually mpv will be linked against both vdpau and
vaapi libs, but the drivers are not necessarily available. Then trying
to load a driver will fail. This is a normal part of probing, but the
error messages were printed anyway. Silence them by explicitly
distinguishing probing.
This pretty much goes through all the layers. We actually consider
loading hw backends for vo_opengl always "auto probed", even if a hw
backend is explicitly requested. In this case vd_lavc will print a
warning message anyway (adjust this message a bit).
read_output_surface() could fail and return NULL.
Also, make sure we don't set the image to a size larger than the
allocated size. Normally this shouldn't happen, but in theory it could
in corner cases; this is for robustness.
We can't do much in this case, but at least we can not call the vdpau
API functions with too large sizes. Apparently the API considers this
undefined behavior, and random stuff might happen.
The previous code was not wrong, but I'd claim this makes the code more
robust. If a situation could happen in which the passed surface size is
incorrect, we could have passed a too small image, and
VdpOutputSurfaceGetBitsNative could have randomly overwritten memory.
Check the maximum size of video surfaces, and refuse initialization if
the video is too large for them.
Maybe we could do something more sophisticated, like inserting a
software scaler. On the other hand, this would have a very questionable
benefit, as it would be guaranteed to be too slow.
Always configure the vdpau mixer based on the current surface sent to
it. Before this, we just hardcoded the chroma type, and the surface size
was essentially a guess.
Calling VdpVideoSurfaceGetParameters() on every surface is a bit
suspicious, but it appears it's a cheap function (just requiring some
locks and a table lookup). This way we avoid creating another
complicated mechanism to carry around the actual surface parameters
with a mp_image/AVFrame.
I think this used to be quite important, because the ancient VfW support
in MPlayer used to output flipped frames. This code has been dead in mpv
for quite some time (because VfW decoders were removed, and the --flip
option was dropped too), so get rid of it.
Rarely used and essentially useless. The only VO for which this was
implemented correctly and for which this did anything was vo_xv, but you
shouldn't use vo_xv anyway (plus it support BT.601 only, plus a vendor
specific extension for BT.709, whose presence this function essentially
reported - use xvinfo instead).
There was a somewhat obscure optimization in the OSD and subtitle
rendering path: if only the position of the sub-images changed, and not
the actual image data, uploading of the image data could be skipped. In
theory, this could speed up things like scrolling subtitles.
But it turns out that even in the rare cases subtitles have such scrolls
or axis-aligned movement, modern libass rarely signals this kind of
change. Possibly this is because of sub-pixel handling and such, which
break this.
As such, it's a worthless optimization and just introduces additional
complexity and subtle bugs (especially in cases libass does the
opposite: incorrectly signaling a position change only, which happened
before). Remove this optimization, and rename bitmap_pos_id to
change_id.
This warning wasn't overly helpful in the past, and warned against
perfectly fine code. But at least with recent gcc versions, this is the
warning that complains about assignments in if expressions (why???), so
we want to enable it.
Also change all the code this warning complains about for no reason.
At the time screenshot support was added, images weren't refcounted yet,
so screenshots required specialized implementations in the VOs. But now
we can handle these things much simpler. Also see commit 5bb24980.
If there are VOs in the future which can't do this (e.g. they need to
write to the image passed to vo_driver->draw_image), this still could be
disabled on a per-VO basis etc., so we lose no potential performance
advantages.
Use different VOCTRLs for "window" and normal screenshot modes. The
normal one will probably be removed, and replaced by generic code in
vo.c, and this commit is preparation for this. (Doing it the other way
around would be slightly simpler, but I haven't decided yet about the
second one, and touching every VO is needed anyway in order to remove
the unneeded crap. E.g. has_osd has been unused for a long time.)
vo.c queried the VO at initialization whether it wants to be updated on
every display frame, or every video frame. If the smoothmotion option
was changed at runtime, the rendering mode in vo.c wasn't updated.
Just let vo_opengl set the mode directly. Abuse the existing
vo_set_flip_queue_offset() function for this.
Also add a comment suggesting the use of --display-fps to the manpage,
which doesn't have anything to do with the rest of this commit, but is
important to make smoothmotion run well.
There was a case when we could have rendered to an output surface while
it's still used for display. Not sure why the API doesn't do this
automatically.
Instead of converting the hw surface to an image in the VO, provide a
generic way to convet hw surfaces, and use this in the screenshot code.
It's all relatively straightforward, except vdpau is being terrible. It
needs a huge chunk of new code, because copying back is not simple.