2013-10-29 21:38:29 +00:00
|
|
|
/*
|
2015-04-13 07:36:54 +00:00
|
|
|
* This file is part of mpv.
|
2013-10-29 21:38:29 +00:00
|
|
|
*
|
2015-04-13 07:36:54 +00:00
|
|
|
* mpv is free software; you can redistribute it and/or modify
|
2013-10-29 21:38:29 +00:00
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
2015-04-13 07:36:54 +00:00
|
|
|
* mpv is distributed in the hope that it will be useful,
|
2013-10-29 21:38:29 +00:00
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
2015-04-13 07:36:54 +00:00
|
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
2013-10-29 21:38:29 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "config.h"
|
2016-01-11 18:03:40 +00:00
|
|
|
#include "mpv_talloc.h"
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2013-12-17 01:39:45 +00:00
|
|
|
#include "common/msg.h"
|
2013-12-17 01:02:25 +00:00
|
|
|
#include "options/options.h"
|
2013-12-17 01:39:45 +00:00
|
|
|
#include "common/common.h"
|
|
|
|
#include "common/encode.h"
|
2013-12-17 01:02:25 +00:00
|
|
|
#include "options/m_property.h"
|
2013-12-17 01:39:45 +00:00
|
|
|
#include "common/playlist.h"
|
2013-12-17 00:23:09 +00:00
|
|
|
#include "input/input.h"
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2014-04-23 18:37:57 +00:00
|
|
|
#include "misc/dispatch.h"
|
2013-12-19 20:31:27 +00:00
|
|
|
#include "osdep/terminal.h"
|
2013-10-29 21:38:29 +00:00
|
|
|
#include "osdep/timer.h"
|
|
|
|
|
|
|
|
#include "audio/decode/dec_audio.h"
|
|
|
|
#include "audio/filter/af.h"
|
|
|
|
#include "audio/out/ao.h"
|
|
|
|
#include "demux/demux.h"
|
|
|
|
#include "stream/stream.h"
|
2013-11-24 11:58:06 +00:00
|
|
|
#include "sub/osd.h"
|
2013-10-29 21:38:29 +00:00
|
|
|
#include "video/filter/vf.h"
|
|
|
|
#include "video/decode/dec_video.h"
|
|
|
|
#include "video/out/vo.h"
|
|
|
|
|
2013-12-17 00:08:53 +00:00
|
|
|
#include "core.h"
|
2014-08-28 15:35:50 +00:00
|
|
|
#include "client.h"
|
2013-10-29 21:38:29 +00:00
|
|
|
#include "command.h"
|
|
|
|
|
2014-09-06 14:57:46 +00:00
|
|
|
// Wait until mp_input_wakeup(mpctx->input) is called, since the last time
|
|
|
|
// mp_wait_events() was called. (But see mp_process_input().)
|
|
|
|
void mp_wait_events(struct MPContext *mpctx, double sleeptime)
|
|
|
|
{
|
2014-09-07 18:44:54 +00:00
|
|
|
mp_input_wait(mpctx->input, sleeptime);
|
2014-09-06 14:57:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Process any queued input, whether it's user input, or requests from client
|
|
|
|
// API threads. This also resets the "wakeup" flag used with mp_wait_events().
|
|
|
|
void mp_process_input(struct MPContext *mpctx)
|
|
|
|
{
|
2014-09-07 18:44:54 +00:00
|
|
|
mp_dispatch_queue_process(mpctx->dispatch, 0);
|
|
|
|
for (;;) {
|
|
|
|
mp_cmd_t *cmd = mp_input_read_cmd(mpctx->input);
|
|
|
|
if (!cmd)
|
|
|
|
break;
|
2015-04-20 21:00:12 +00:00
|
|
|
run_command(mpctx, cmd, NULL);
|
2014-09-06 14:57:46 +00:00
|
|
|
mp_cmd_free(cmd);
|
2014-09-07 18:44:54 +00:00
|
|
|
mp_dispatch_queue_process(mpctx->dispatch, 0);
|
2014-09-06 14:57:46 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Relicense some non-MPlayer source files to LGPL 2.1 or later
This covers source files which were added in mplayer2 and mpv times
only, and where all code is covered by LGPL relicensing agreements.
There are probably more files to which this applies, but I'm being
conservative here.
A file named ao_sdl.c exists in MPlayer too, but the mpv one is a
complete rewrite, and was added some time after the original ao_sdl.c
was removed. The same applies to vo_sdl.c, for which the SDL2 API is
radically different in addition (MPlayer supports SDL 1.2 only).
common.c contains only code written by me. But common.h is a strange
case: although it originally was named mp_common.h and exists in MPlayer
too, by now it contains only definitions written by uau and me. The
exceptions are the CONTROL_ defines - thus not changing the license of
common.h yet.
codec_tags.c contained once large tables generated from MPlayer's
codecs.conf, but all of these tables were removed.
From demux_playlist.c I'm removing a code fragment from someone who was
not asked; this probably could be done later (see commit 15dccc37).
misc.c is a bit complicated to reason about (it was split off mplayer.c
and thus contains random functions out of this file), but actually all
functions have been added post-MPlayer. Except get_relative_time(),
which was written by uau, but looks similar to 3 different versions of
something similar in each of the Unix/win32/OSX timer source files. I'm
not sure what that means in regards to copyright, so I've just moved it
into another still-GPL source file for now.
screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but
they're all gone.
2016-01-19 17:36:06 +00:00
|
|
|
double get_relative_time(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
int64_t new_time = mp_time_us();
|
|
|
|
int64_t delta = new_time - mpctx->last_time;
|
|
|
|
mpctx->last_time = new_time;
|
|
|
|
return delta * 0.000001;
|
|
|
|
}
|
|
|
|
|
2014-04-14 20:33:41 +00:00
|
|
|
void pause_player(struct MPContext *mpctx)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
mpctx->opts->pause = 1;
|
|
|
|
|
|
|
|
if (mpctx->video_out)
|
|
|
|
vo_control(mpctx->video_out, VOCTRL_RESTORE_SCREENSAVER, NULL);
|
|
|
|
|
|
|
|
if (mpctx->paused)
|
2014-02-24 21:49:07 +00:00
|
|
|
goto end;
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->paused = true;
|
|
|
|
mpctx->step_frames = 0;
|
|
|
|
mpctx->time_frame -= get_relative_time(mpctx);
|
|
|
|
mpctx->osd_function = 0;
|
2014-09-25 18:25:24 +00:00
|
|
|
mpctx->osd_force_update = true;
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->paused_for_cache = false;
|
|
|
|
|
2016-01-21 21:24:20 +00:00
|
|
|
if (mpctx->ao && mpctx->ao_chain)
|
video: add VO framedropping mode
This mostly uses the same idea as with vo_vdpau.c, but much simplified.
On X11, it tries to get the display framerate with XF86VM, and limits
the frequency of new video frames against it. Note that this is an old
extension, and is confirmed not to work correctly with multi-monitor
setups. But we're using it because it was already around (it is also
used by vo_vdpau).
This attempts to predict the next vsync event by using the time of the
last frame and the display FPS. Even if that goes completely wrong,
the results are still relatively good.
On other systems, or if the X11 code doesn't return a display FPS, a
framerate of 1000 is assumed. This is infinite for all practical
purposes, and means that only frames which are definitely too late are
dropped. This probably has worse results, but is still useful.
"--framedrop=yes" is basically replaced with "--framedrop=decoder". The
old framedropping mode is kept around, and should perhaps be improved.
Dropping on the decoder level is still useful if decoding itself is too
slow.
2014-08-15 21:33:33 +00:00
|
|
|
ao_pause(mpctx->ao);
|
|
|
|
if (mpctx->video_out)
|
|
|
|
vo_set_paused(mpctx->video_out, true);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2014-02-24 21:49:07 +00:00
|
|
|
end:
|
2014-04-14 20:33:41 +00:00
|
|
|
mp_notify(mpctx, mpctx->opts->pause ? MPV_EVENT_PAUSE : MPV_EVENT_UNPAUSE, 0);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2014-04-14 20:33:41 +00:00
|
|
|
void unpause_player(struct MPContext *mpctx)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
mpctx->opts->pause = 0;
|
|
|
|
|
|
|
|
if (mpctx->video_out && mpctx->opts->stop_screensaver)
|
|
|
|
vo_control(mpctx->video_out, VOCTRL_KILL_SCREENSAVER, NULL);
|
|
|
|
|
|
|
|
if (!mpctx->paused)
|
2014-02-24 21:49:07 +00:00
|
|
|
goto end;
|
2013-10-29 21:38:29 +00:00
|
|
|
// Don't actually unpause while cache is loading.
|
|
|
|
if (mpctx->paused_for_cache)
|
2014-02-24 21:49:07 +00:00
|
|
|
goto end;
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->paused = false;
|
|
|
|
mpctx->osd_function = 0;
|
2014-09-25 18:25:24 +00:00
|
|
|
mpctx->osd_force_update = true;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-01-21 21:24:20 +00:00
|
|
|
if (mpctx->ao && mpctx->ao_chain)
|
2013-10-29 21:38:29 +00:00
|
|
|
ao_resume(mpctx->ao);
|
video: add VO framedropping mode
This mostly uses the same idea as with vo_vdpau.c, but much simplified.
On X11, it tries to get the display framerate with XF86VM, and limits
the frequency of new video frames against it. Note that this is an old
extension, and is confirmed not to work correctly with multi-monitor
setups. But we're using it because it was already around (it is also
used by vo_vdpau).
This attempts to predict the next vsync event by using the time of the
last frame and the display FPS. Even if that goes completely wrong,
the results are still relatively good.
On other systems, or if the X11 code doesn't return a display FPS, a
framerate of 1000 is assumed. This is infinite for all practical
purposes, and means that only frames which are definitely too late are
dropped. This probably has worse results, but is still useful.
"--framedrop=yes" is basically replaced with "--framedrop=decoder". The
old framedropping mode is kept around, and should perhaps be improved.
Dropping on the decoder level is still useful if decoding itself is too
slow.
2014-08-15 21:33:33 +00:00
|
|
|
if (mpctx->video_out)
|
|
|
|
vo_set_paused(mpctx->video_out, false);
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
(void)get_relative_time(mpctx); // ignore time that passed during pause
|
2014-02-24 21:49:07 +00:00
|
|
|
|
|
|
|
end:
|
2014-04-14 20:33:41 +00:00
|
|
|
mp_notify(mpctx, mpctx->opts->pause ? MPV_EVENT_PAUSE : MPV_EVENT_UNPAUSE, 0);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void add_step_frame(struct MPContext *mpctx, int dir)
|
|
|
|
{
|
2016-01-17 17:07:50 +00:00
|
|
|
if (!mpctx->vo_chain)
|
2013-10-29 21:38:29 +00:00
|
|
|
return;
|
|
|
|
if (dir > 0) {
|
|
|
|
mpctx->step_frames += 1;
|
2014-04-14 20:33:41 +00:00
|
|
|
unpause_player(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
} else if (dir < 0) {
|
2016-04-27 15:01:17 +00:00
|
|
|
if (!mpctx->hrseek_active) {
|
2016-08-15 19:07:32 +00:00
|
|
|
queue_seek(mpctx, MPSEEK_BACKSTEP, 0, MPSEEK_VERY_EXACT, 0);
|
2014-04-14 20:33:41 +00:00
|
|
|
pause_player(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-07-30 21:01:55 +00:00
|
|
|
// Clear some playback-related fields on file loading or after seeks.
|
|
|
|
void reset_playback_state(struct MPContext *mpctx)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
2016-02-05 22:19:56 +00:00
|
|
|
if (mpctx->lavfi)
|
|
|
|
lavfi_seek_reset(mpctx->lavfi);
|
|
|
|
|
|
|
|
for (int n = 0; n < mpctx->num_tracks; n++) {
|
|
|
|
if (mpctx->tracks[n]->d_video)
|
|
|
|
video_reset(mpctx->tracks[n]->d_video);
|
|
|
|
if (mpctx->tracks[n]->d_audio)
|
|
|
|
audio_reset_decoding(mpctx->tracks[n]->d_audio);
|
|
|
|
}
|
|
|
|
|
2014-07-30 21:01:55 +00:00
|
|
|
reset_video_state(mpctx);
|
|
|
|
reset_audio_state(mpctx);
|
|
|
|
reset_subtitle_state(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
mpctx->hrseek_active = false;
|
|
|
|
mpctx->hrseek_framedrop = false;
|
2014-12-07 01:47:09 +00:00
|
|
|
mpctx->hrseek_lastframe = false;
|
2016-01-12 22:49:00 +00:00
|
|
|
mpctx->hrseek_backstep = false;
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->playback_pts = MP_NOPTS_VALUE;
|
2014-07-30 21:01:55 +00:00
|
|
|
mpctx->last_seek_pts = MP_NOPTS_VALUE;
|
2014-08-27 21:12:24 +00:00
|
|
|
mpctx->cache_wait_time = 0;
|
2014-11-28 23:24:51 +00:00
|
|
|
mpctx->step_frames = 0;
|
2016-08-18 18:40:23 +00:00
|
|
|
mpctx->ab_loop_clip = true;
|
2014-07-28 18:40:43 +00:00
|
|
|
mpctx->restart_complete = false;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2013-07-16 11:28:28 +00:00
|
|
|
#if HAVE_ENCODING
|
2013-10-29 21:38:29 +00:00
|
|
|
encode_lavc_discontinuity(mpctx->encode_lavc_ctx);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-06-08 10:04:56 +00:00
|
|
|
static void mp_seek(MPContext *mpctx, struct seek_params seek)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
if (!mpctx->demuxer || seek.type == MPSEEK_NONE || seek.amount == MP_NOPTS_VALUE)
|
2016-06-08 10:04:56 +00:00
|
|
|
return;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2013-11-03 18:21:47 +00:00
|
|
|
if (!mpctx->demuxer->seekable) {
|
2016-06-08 09:59:11 +00:00
|
|
|
MP_ERR(mpctx, "Cannot seek in this file.\n");
|
2016-07-05 22:11:57 +00:00
|
|
|
MP_ERR(mpctx, "You can forcibly enable it with '--force-seekable=yes'.\n");
|
2016-06-08 10:04:56 +00:00
|
|
|
return;
|
2013-11-03 18:21:47 +00:00
|
|
|
}
|
|
|
|
|
2015-03-04 16:21:05 +00:00
|
|
|
bool hr_seek_very_exact = seek.exact == MPSEEK_VERY_EXACT;
|
2016-02-28 18:43:07 +00:00
|
|
|
double current_time = get_current_time(mpctx);
|
|
|
|
if (current_time == MP_NOPTS_VALUE)
|
|
|
|
current_time = 0;
|
|
|
|
double seek_pts = MP_NOPTS_VALUE;
|
|
|
|
int demux_flags = 0;
|
2015-08-21 13:37:07 +00:00
|
|
|
|
|
|
|
switch (seek.type) {
|
|
|
|
case MPSEEK_ABSOLUTE:
|
2016-02-28 18:43:07 +00:00
|
|
|
seek_pts = seek.amount;
|
2015-08-21 13:37:07 +00:00
|
|
|
break;
|
2016-01-12 22:49:00 +00:00
|
|
|
case MPSEEK_BACKSTEP:
|
2016-02-28 18:43:07 +00:00
|
|
|
seek_pts = current_time;
|
|
|
|
hr_seek_very_exact = true;
|
2016-01-12 22:49:00 +00:00
|
|
|
break;
|
2015-08-21 13:37:07 +00:00
|
|
|
case MPSEEK_RELATIVE:
|
2016-02-28 18:43:07 +00:00
|
|
|
demux_flags = seek.amount > 0 ? SEEK_FORWARD : SEEK_BACKWARD;
|
|
|
|
seek_pts = current_time + seek.amount;
|
2015-08-21 13:37:07 +00:00
|
|
|
break;
|
|
|
|
case MPSEEK_FACTOR: ;
|
|
|
|
double len = get_time_length(mpctx);
|
|
|
|
if (len >= 0)
|
2016-02-28 18:43:07 +00:00
|
|
|
seek_pts = seek.amount * len;
|
|
|
|
demux_flags = seek_pts > current_time ? SEEK_FORWARD : SEEK_BACKWARD;
|
2015-08-21 13:37:07 +00:00
|
|
|
break;
|
2016-02-28 18:43:07 +00:00
|
|
|
default: abort();
|
2015-08-21 13:37:07 +00:00
|
|
|
}
|
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
double demux_pts = seek_pts;
|
|
|
|
|
|
|
|
bool hr_seek = opts->correct_pts && seek.exact != MPSEEK_KEYFRAME &&
|
|
|
|
((opts->hr_seek == 0 && seek.type == MPSEEK_ABSOLUTE) ||
|
|
|
|
opts->hr_seek > 0 || seek.exact >= MPSEEK_EXACT) &&
|
|
|
|
seek_pts != MP_NOPTS_VALUE;
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
if (seek.type == MPSEEK_FACTOR || seek.amount < 0 ||
|
|
|
|
(seek.type == MPSEEK_ABSOLUTE && seek.amount < mpctx->last_chapter_pts))
|
|
|
|
mpctx->last_chapter_seek = -2;
|
2015-08-21 13:37:07 +00:00
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
// Under certain circumstances, prefer SEEK_FACTOR.
|
|
|
|
if (seek.type == MPSEEK_FACTOR && !hr_seek &&
|
|
|
|
(mpctx->demuxer->ts_resets_possible || seek_pts == MP_NOPTS_VALUE))
|
2015-08-21 13:37:07 +00:00
|
|
|
{
|
2016-02-28 18:43:07 +00:00
|
|
|
demux_pts = seek.amount;
|
|
|
|
demux_flags |= SEEK_FACTOR;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
2015-08-21 13:37:07 +00:00
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
if (hr_seek) {
|
|
|
|
double hr_seek_offset = opts->hr_seek_demuxer_offset;
|
|
|
|
// Always try to compensate for possibly bad demuxers in "special"
|
|
|
|
// situations where we need more robustness from the hr-seek code, even
|
|
|
|
// if the user doesn't use --hr-seek-demuxer-offset.
|
|
|
|
// The value is arbitrary, but should be "good enough" in most situations.
|
|
|
|
if (hr_seek_very_exact)
|
|
|
|
hr_seek_offset = MPMAX(hr_seek_offset, 0.5); // arbitrary
|
2016-08-04 09:26:57 +00:00
|
|
|
for (int n = 0; n < mpctx->num_tracks; n++) {
|
|
|
|
double offset = 0;
|
|
|
|
if (!mpctx->tracks[n]->is_external)
|
|
|
|
offset += get_track_seek_offset(mpctx, mpctx->tracks[n]);
|
|
|
|
hr_seek_offset = MPMAX(hr_seek_offset, -offset);
|
|
|
|
}
|
2016-02-28 18:43:07 +00:00
|
|
|
demux_pts -= hr_seek_offset;
|
|
|
|
demux_flags = (demux_flags | SEEK_HR | SEEK_BACKWARD) & ~SEEK_FORWARD;
|
2015-01-19 19:45:31 +00:00
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
demux_seek(mpctx->demuxer, demux_pts, demux_flags);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2013-12-24 10:08:26 +00:00
|
|
|
// Seek external, extra files too:
|
2013-12-23 19:14:54 +00:00
|
|
|
for (int t = 0; t < mpctx->num_tracks; t++) {
|
|
|
|
struct track *track = mpctx->tracks[t];
|
2013-12-24 10:08:26 +00:00
|
|
|
if (track->selected && track->is_external && track->demuxer) {
|
2016-02-28 18:43:07 +00:00
|
|
|
double main_new_pos = demux_pts;
|
2016-08-04 09:26:57 +00:00
|
|
|
if (!hr_seek || track->is_external)
|
|
|
|
main_new_pos += get_track_seek_offset(mpctx, track);
|
2016-02-28 18:43:07 +00:00
|
|
|
if (demux_flags & SEEK_FACTOR)
|
|
|
|
main_new_pos = seek_pts;
|
2016-02-28 18:14:23 +00:00
|
|
|
demux_seek(track->demuxer, main_new_pos, 0);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-18 18:40:23 +00:00
|
|
|
if (!(seek.flags & MPSEEK_FLAG_NOFLUSH))
|
|
|
|
clear_audio_output_buffers(mpctx);
|
|
|
|
|
2014-07-30 21:01:55 +00:00
|
|
|
reset_playback_state(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
/* Use the target time as "current position" for further relative
|
|
|
|
* seeks etc until a new video frame has been decoded */
|
2016-02-28 18:43:07 +00:00
|
|
|
mpctx->last_seek_pts = seek_pts;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-02-15 20:03:51 +00:00
|
|
|
if (hr_seek) {
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->hrseek_active = true;
|
2016-01-12 22:48:28 +00:00
|
|
|
mpctx->hrseek_framedrop = !hr_seek_very_exact && opts->hr_seek_framedrop;
|
2016-02-28 18:43:07 +00:00
|
|
|
mpctx->hrseek_backstep = seek.type == MPSEEK_BACKSTEP;
|
|
|
|
mpctx->hrseek_pts = seek_pts;
|
2015-06-18 20:31:55 +00:00
|
|
|
|
2016-01-12 22:49:00 +00:00
|
|
|
MP_VERBOSE(mpctx, "hr-seek, skipping to %f%s%s\n", mpctx->hrseek_pts,
|
|
|
|
mpctx->hrseek_framedrop ? "" : " (no framedrop)",
|
|
|
|
mpctx->hrseek_backstep ? " (backstep)" : "");
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2016-02-28 18:43:07 +00:00
|
|
|
if (mpctx->stop_play == AT_END_OF_FILE)
|
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->start_timestamp = mp_time_sec();
|
2014-07-21 17:31:25 +00:00
|
|
|
mpctx->sleeptime = 0;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2014-07-30 21:01:55 +00:00
|
|
|
mp_notify(mpctx, MPV_EVENT_SEEK, NULL);
|
2014-07-28 22:07:54 +00:00
|
|
|
mp_notify(mpctx, MPV_EVENT_TICK, NULL);
|
player: gross hack to improve non-hr seeking with external audio tracks
Relative seeks backwards with external audio tracks does not always work
well: it tends to happen that video seek back further than audio, so
audio will remain silent until the audio's after-seek position is
reached. This happens because we strictly seek both video and audio
demuxer to the approximate desirted target PTS, and then start decoding
from that.
Commit 81358380 removes an older method that was supposed to deal with
this. It was sort of bad, because it could lead to the playback core
freezing by waiting on network.
Ideally, the demuxer layer would probably somehow deal with such seeks,
and do them in a way the audio is seeked after video. Currently this is
infeasible, because the demuxer layer assumes a single demuxer, and
external tracks simply use separate demuxer layers. (MPlayer actually
had a pseudo-demuxer that joined external tracks into a single demuxer,
but this is not flexible enough - and also, the demuxer layer as it
currently exists can't deal with dynamically removing external tracks
either. Maybe some time in the future.)
Instead, add a gross hack, that essentially reseeks the audio if it
detects that it's too far off. The result is actually not too bad,
because we can reuse the mechanism that is used for instant track
switching. This way we can make sure of the right position, without
having to care about certain other issues.
It should be noted that if the audio demuxer is used for other tracks
too, and the demuxer does not support refresh seeking, audio will
probably be off by even a higher amount. But this should be rare.
2016-08-07 14:29:13 +00:00
|
|
|
|
|
|
|
mpctx->audio_allow_second_chance_seek =
|
|
|
|
!hr_seek && !(demux_flags & SEEK_FORWARD);
|
2016-08-18 18:40:23 +00:00
|
|
|
|
|
|
|
mpctx->ab_loop_clip = mpctx->last_seek_pts < opts->ab_loop[1];
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
player: handle seek delays differently
The code removed from handle_input_and_seek_coalesce() did two things:
1. If there's a queued seek, stop accepting non-seek commands, and delay
them to the next playloop iteration.
2. If a seek is executing (i.e. the seek was unqueued, and now it's
trying to decode and display the first video frame), stop accepting
seek commands (and in fact all commands that were queued after the
first seek command). This logic is disabled if seeking started longer
than 300ms ago. (To avoid starvation.)
I'm not sure why 1. would be needed. It's still possible that a command
immediately executed after a seek command sees a "seeking in progress"
state, because it affects queued seeks only, and not seeks in progress.
Drop this code, since it can easily lead to input starvation, and I'm
not aware of any disadvantages.
The logic in 2. is good to make seeking behave much better, as it
guarantees that the video display is updated frequently. Keep the core
idea, but implement it differently. Now this logic is applied to seeks
only. Commands after the seek can execute freely, and like with 1., I
don't see a reason why they couldn't. However, in some cases, seeks are
supposed to be executed instantly, so queue_seek() needs an additional
parameter to signal the need for immediate update.
One nice thing is that commands like sub_seek automatically profit from
the seek delay logic. On the other hand, hitting chapter seek multiple
times still does not update the video on chapter boundaries (as it
should be).
Note that the main goal of this commit is actually simplification of the
input processing logic and to allow all commands to be executed
immediately.
2014-02-07 21:29:50 +00:00
|
|
|
// This combines consecutive seek requests.
|
2013-10-29 21:38:29 +00:00
|
|
|
void queue_seek(struct MPContext *mpctx, enum seek_type type, double amount,
|
2016-08-15 19:07:32 +00:00
|
|
|
enum seek_precision exact, int flags)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
struct seek_params *seek = &mpctx->seek;
|
2015-06-16 21:07:46 +00:00
|
|
|
|
|
|
|
if (mpctx->stop_play == AT_END_OF_FILE)
|
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
switch (type) {
|
|
|
|
case MPSEEK_RELATIVE:
|
2016-08-15 19:07:32 +00:00
|
|
|
seek->flags |= flags;
|
2013-10-29 21:38:29 +00:00
|
|
|
if (seek->type == MPSEEK_FACTOR)
|
|
|
|
return; // Well... not common enough to bother doing better
|
|
|
|
seek->amount += amount;
|
|
|
|
seek->exact = MPMAX(seek->exact, exact);
|
|
|
|
if (seek->type == MPSEEK_NONE)
|
|
|
|
seek->exact = exact;
|
|
|
|
if (seek->type == MPSEEK_ABSOLUTE)
|
|
|
|
return;
|
|
|
|
seek->type = MPSEEK_RELATIVE;
|
|
|
|
return;
|
|
|
|
case MPSEEK_ABSOLUTE:
|
|
|
|
case MPSEEK_FACTOR:
|
2016-01-12 22:49:00 +00:00
|
|
|
case MPSEEK_BACKSTEP:
|
2013-10-29 21:38:29 +00:00
|
|
|
*seek = (struct seek_params) {
|
|
|
|
.type = type,
|
|
|
|
.amount = amount,
|
|
|
|
.exact = exact,
|
2016-08-15 19:07:32 +00:00
|
|
|
.flags = flags,
|
2013-10-29 21:38:29 +00:00
|
|
|
};
|
|
|
|
return;
|
|
|
|
case MPSEEK_NONE:
|
|
|
|
*seek = (struct seek_params){ 0 };
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
void execute_queued_seek(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
if (mpctx->seek.type) {
|
2014-07-29 17:59:56 +00:00
|
|
|
// Let explicitly imprecise seeks cancel precise seeks:
|
2015-03-04 16:21:05 +00:00
|
|
|
if (mpctx->hrseek_active && mpctx->seek.exact == MPSEEK_KEYFRAME)
|
2014-07-29 17:59:56 +00:00
|
|
|
mpctx->start_timestamp = -1e9;
|
player: handle seek delays differently
The code removed from handle_input_and_seek_coalesce() did two things:
1. If there's a queued seek, stop accepting non-seek commands, and delay
them to the next playloop iteration.
2. If a seek is executing (i.e. the seek was unqueued, and now it's
trying to decode and display the first video frame), stop accepting
seek commands (and in fact all commands that were queued after the
first seek command). This logic is disabled if seeking started longer
than 300ms ago. (To avoid starvation.)
I'm not sure why 1. would be needed. It's still possible that a command
immediately executed after a seek command sees a "seeking in progress"
state, because it affects queued seeks only, and not seeks in progress.
Drop this code, since it can easily lead to input starvation, and I'm
not aware of any disadvantages.
The logic in 2. is good to make seeking behave much better, as it
guarantees that the video display is updated frequently. Keep the core
idea, but implement it differently. Now this logic is applied to seeks
only. Commands after the seek can execute freely, and like with 1., I
don't see a reason why they couldn't. However, in some cases, seeks are
supposed to be executed instantly, so queue_seek() needs an additional
parameter to signal the need for immediate update.
One nice thing is that commands like sub_seek automatically profit from
the seek delay logic. On the other hand, hitting chapter seek multiple
times still does not update the video on chapter boundaries (as it
should be).
Note that the main goal of this commit is actually simplification of the
input processing logic and to allow all commands to be executed
immediately.
2014-02-07 21:29:50 +00:00
|
|
|
/* If the user seeks continuously (keeps arrow key down)
|
|
|
|
* try to finish showing a frame from one location before doing
|
|
|
|
* another seek (which could lead to unchanging display). */
|
2016-08-15 19:07:32 +00:00
|
|
|
bool delay = mpctx->seek.flags & MPSEEK_FLAG_DELAY;
|
|
|
|
if (delay && mpctx->video_status < STATUS_PLAYING &&
|
player: handle seek delays differently
The code removed from handle_input_and_seek_coalesce() did two things:
1. If there's a queued seek, stop accepting non-seek commands, and delay
them to the next playloop iteration.
2. If a seek is executing (i.e. the seek was unqueued, and now it's
trying to decode and display the first video frame), stop accepting
seek commands (and in fact all commands that were queued after the
first seek command). This logic is disabled if seeking started longer
than 300ms ago. (To avoid starvation.)
I'm not sure why 1. would be needed. It's still possible that a command
immediately executed after a seek command sees a "seeking in progress"
state, because it affects queued seeks only, and not seeks in progress.
Drop this code, since it can easily lead to input starvation, and I'm
not aware of any disadvantages.
The logic in 2. is good to make seeking behave much better, as it
guarantees that the video display is updated frequently. Keep the core
idea, but implement it differently. Now this logic is applied to seeks
only. Commands after the seek can execute freely, and like with 1., I
don't see a reason why they couldn't. However, in some cases, seeks are
supposed to be executed instantly, so queue_seek() needs an additional
parameter to signal the need for immediate update.
One nice thing is that commands like sub_seek automatically profit from
the seek delay logic. On the other hand, hitting chapter seek multiple
times still does not update the video on chapter boundaries (as it
should be).
Note that the main goal of this commit is actually simplification of the
input processing logic and to allow all commands to be executed
immediately.
2014-02-07 21:29:50 +00:00
|
|
|
mp_time_sec() - mpctx->start_timestamp < 0.3)
|
|
|
|
return;
|
2016-02-15 20:03:51 +00:00
|
|
|
mp_seek(mpctx, mpctx->seek);
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->seek = (struct seek_params){0};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-29 20:54:59 +00:00
|
|
|
// -1 if unknown
|
2013-10-29 21:38:29 +00:00
|
|
|
double get_time_length(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct demuxer *demuxer = mpctx->demuxer;
|
|
|
|
if (!demuxer)
|
2014-10-29 20:54:59 +00:00
|
|
|
return -1;
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
double len = demuxer_get_time_length(demuxer);
|
|
|
|
if (len >= 0)
|
|
|
|
return len;
|
|
|
|
|
2014-10-29 20:54:59 +00:00
|
|
|
return -1; // unknown
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
double get_current_time(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct demuxer *demuxer = mpctx->demuxer;
|
2015-10-16 14:16:10 +00:00
|
|
|
if (demuxer) {
|
|
|
|
if (mpctx->playback_pts != MP_NOPTS_VALUE)
|
|
|
|
return mpctx->playback_pts;
|
|
|
|
if (mpctx->last_seek_pts != MP_NOPTS_VALUE)
|
|
|
|
return mpctx->last_seek_pts;
|
|
|
|
}
|
|
|
|
return MP_NOPTS_VALUE;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2014-06-29 17:27:46 +00:00
|
|
|
double get_playback_time(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
double cur = get_current_time(mpctx);
|
2015-10-16 14:16:10 +00:00
|
|
|
if (cur == MP_NOPTS_VALUE)
|
|
|
|
return cur;
|
2015-04-28 20:03:18 +00:00
|
|
|
// During seeking, the time corresponds to the last seek time - apply some
|
|
|
|
// cosmetics to it.
|
|
|
|
if (mpctx->playback_pts == MP_NOPTS_VALUE) {
|
|
|
|
double length = get_time_length(mpctx);
|
|
|
|
if (length >= 0)
|
2015-11-16 21:47:17 +00:00
|
|
|
cur = MPCLAMP(cur, 0, length);
|
2015-04-28 20:03:18 +00:00
|
|
|
}
|
2015-11-16 21:47:17 +00:00
|
|
|
return cur;
|
2014-06-29 17:27:46 +00:00
|
|
|
}
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
// Return playback position in 0.0-1.0 ratio, or -1 if unknown.
|
|
|
|
double get_current_pos_ratio(struct MPContext *mpctx, bool use_range)
|
|
|
|
{
|
|
|
|
struct demuxer *demuxer = mpctx->demuxer;
|
|
|
|
if (!demuxer)
|
|
|
|
return -1;
|
|
|
|
double ans = -1;
|
2015-11-16 21:47:17 +00:00
|
|
|
double start = 0;
|
2013-10-29 21:38:29 +00:00
|
|
|
double len = get_time_length(mpctx);
|
|
|
|
if (use_range) {
|
2014-03-25 01:32:24 +00:00
|
|
|
double startpos = rel_time_to_abs(mpctx, mpctx->opts->play_start);
|
2013-10-29 21:38:29 +00:00
|
|
|
double endpos = get_play_end_pts(mpctx);
|
2015-11-16 21:47:17 +00:00
|
|
|
if (endpos == MP_NOPTS_VALUE || endpos > MPMAX(0, len))
|
|
|
|
endpos = MPMAX(0, len);
|
|
|
|
if (startpos == MP_NOPTS_VALUE || startpos < 0)
|
|
|
|
startpos = 0;
|
2013-10-29 21:38:29 +00:00
|
|
|
if (endpos < startpos)
|
|
|
|
endpos = startpos;
|
|
|
|
start = startpos;
|
|
|
|
len = endpos - startpos;
|
|
|
|
}
|
|
|
|
double pos = get_current_time(mpctx);
|
2015-01-14 21:14:20 +00:00
|
|
|
if (len > 0)
|
2013-10-29 21:38:29 +00:00
|
|
|
ans = MPCLAMP((pos - start) / len, 0, 1);
|
2015-01-14 21:14:20 +00:00
|
|
|
if (ans < 0 || demuxer->ts_resets_possible) {
|
2014-05-24 12:04:09 +00:00
|
|
|
int64_t size;
|
2014-07-16 20:40:21 +00:00
|
|
|
if (demux_stream_control(demuxer, STREAM_CTRL_GET_SIZE, &size) > 0) {
|
|
|
|
if (size > 0 && demuxer->filepos >= 0)
|
2014-07-05 15:00:48 +00:00
|
|
|
ans = MPCLAMP(demuxer->filepos / (double)size, 0, 1);
|
2014-05-24 12:04:09 +00:00
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
if (use_range) {
|
|
|
|
if (mpctx->opts->play_frames > 0)
|
|
|
|
ans = MPMAX(ans, 1.0 -
|
|
|
|
mpctx->max_frames / (double) mpctx->opts->play_frames);
|
|
|
|
}
|
|
|
|
return ans;
|
|
|
|
}
|
|
|
|
|
2014-12-20 16:31:58 +00:00
|
|
|
// 0-100, -1 if unknown
|
2013-10-29 21:38:29 +00:00
|
|
|
int get_percent_pos(struct MPContext *mpctx)
|
|
|
|
{
|
2014-12-20 16:31:58 +00:00
|
|
|
double pos = get_current_pos_ratio(mpctx, false);
|
|
|
|
return pos < 0 ? -1 : pos * 100;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// -2 is no chapters, -1 is before first chapter
|
|
|
|
int get_current_chapter(struct MPContext *mpctx)
|
|
|
|
{
|
2014-03-25 01:10:24 +00:00
|
|
|
if (!mpctx->num_chapters)
|
|
|
|
return -2;
|
2013-10-29 21:38:29 +00:00
|
|
|
double current_pts = get_current_time(mpctx);
|
2014-03-25 01:10:24 +00:00
|
|
|
int i;
|
2014-07-31 20:54:57 +00:00
|
|
|
for (i = 0; i < mpctx->num_chapters; i++)
|
2014-11-02 16:20:04 +00:00
|
|
|
if (current_pts < mpctx->chapters[i].pts)
|
2014-03-25 01:10:24 +00:00
|
|
|
break;
|
|
|
|
return MPMAX(mpctx->last_chapter_seek, i - 1);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
char *chapter_display_name(struct MPContext *mpctx, int chapter)
|
|
|
|
{
|
|
|
|
char *name = chapter_name(mpctx, chapter);
|
2014-08-27 22:16:03 +00:00
|
|
|
char *dname = NULL;
|
2013-10-29 21:38:29 +00:00
|
|
|
if (name) {
|
|
|
|
dname = talloc_asprintf(NULL, "(%d) %s", chapter + 1, name);
|
|
|
|
} else if (chapter < -1) {
|
|
|
|
dname = talloc_strdup(NULL, "(unavailable)");
|
|
|
|
} else {
|
|
|
|
int chapter_count = get_chapter_count(mpctx);
|
|
|
|
if (chapter_count <= 0)
|
|
|
|
dname = talloc_asprintf(NULL, "(%d)", chapter + 1);
|
|
|
|
else
|
|
|
|
dname = talloc_asprintf(NULL, "(%d) of %d", chapter + 1,
|
|
|
|
chapter_count);
|
|
|
|
}
|
|
|
|
return dname;
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns NULL if chapter name unavailable
|
|
|
|
char *chapter_name(struct MPContext *mpctx, int chapter)
|
|
|
|
{
|
2014-03-25 01:10:24 +00:00
|
|
|
if (chapter < 0 || chapter >= mpctx->num_chapters)
|
|
|
|
return NULL;
|
2015-08-12 09:10:45 +00:00
|
|
|
return mp_tags_get_str(mpctx->chapters[chapter].metadata, "title");
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2015-07-10 10:11:14 +00:00
|
|
|
// returns the start of the chapter in seconds (NOPTS if unavailable)
|
2013-10-29 21:38:29 +00:00
|
|
|
double chapter_start_time(struct MPContext *mpctx, int chapter)
|
|
|
|
{
|
|
|
|
if (chapter == -1)
|
2015-11-16 21:47:17 +00:00
|
|
|
return 0;
|
2014-03-25 01:10:24 +00:00
|
|
|
if (chapter >= 0 && chapter < mpctx->num_chapters)
|
2014-11-02 16:20:04 +00:00
|
|
|
return mpctx->chapters[chapter].pts;
|
2014-03-25 01:18:12 +00:00
|
|
|
return MP_NOPTS_VALUE;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int get_chapter_count(struct MPContext *mpctx)
|
|
|
|
{
|
2014-03-25 01:05:48 +00:00
|
|
|
return mpctx->num_chapters;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2014-08-03 17:09:22 +00:00
|
|
|
static void handle_osd_redraw(struct MPContext *mpctx)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
if (!mpctx->video_out || !mpctx->video_out->config_ok)
|
2014-08-03 17:09:22 +00:00
|
|
|
return;
|
|
|
|
// If we're playing normally, let OSD be redrawn naturally as part of
|
|
|
|
// video display.
|
2014-08-10 11:11:46 +00:00
|
|
|
if (!mpctx->paused) {
|
|
|
|
if (mpctx->sleeptime < 0.1 && mpctx->video_status == STATUS_PLAYING)
|
|
|
|
return;
|
|
|
|
}
|
2014-08-03 17:09:22 +00:00
|
|
|
// Don't redraw immediately during a seek (makes it significantly slower).
|
2016-04-23 14:39:46 +00:00
|
|
|
bool use_video = mpctx->vo_chain && !mpctx->vo_chain->is_coverart;
|
|
|
|
if (use_video && mp_time_sec() - mpctx->start_timestamp < 0.1) {
|
2014-10-03 19:57:16 +00:00
|
|
|
mpctx->sleeptime = MPMIN(mpctx->sleeptime, 0.1);
|
2014-08-03 17:09:22 +00:00
|
|
|
return;
|
2014-10-03 19:57:16 +00:00
|
|
|
}
|
2014-10-03 19:53:32 +00:00
|
|
|
bool want_redraw = osd_query_and_reset_want_redraw(mpctx->osd) ||
|
|
|
|
vo_want_redraw(mpctx->video_out);
|
2014-06-15 18:46:57 +00:00
|
|
|
if (!want_redraw)
|
2014-08-03 17:09:22 +00:00
|
|
|
return;
|
2014-06-15 18:46:57 +00:00
|
|
|
vo_redraw(mpctx->video_out);
|
2014-08-03 17:09:22 +00:00
|
|
|
mpctx->sleeptime = 0;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_pause_on_low_cache(struct MPContext *mpctx)
|
|
|
|
{
|
2016-04-19 20:01:30 +00:00
|
|
|
bool force_update = false;
|
2013-10-29 21:38:29 +00:00
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2014-07-16 20:40:21 +00:00
|
|
|
if (!mpctx->demuxer)
|
2014-05-19 21:27:09 +00:00
|
|
|
return;
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
|
2016-04-20 08:50:22 +00:00
|
|
|
double now = mp_time_sec();
|
|
|
|
|
2016-04-20 08:41:09 +00:00
|
|
|
struct stream_cache_info c = {.idle = true};
|
|
|
|
demux_stream_control(mpctx->demuxer, STREAM_CTRL_GET_CACHE_INFO, &c);
|
2014-08-27 08:55:59 +00:00
|
|
|
|
2014-08-27 20:42:28 +00:00
|
|
|
struct demux_ctrl_reader_state s = {.idle = true, .ts_duration = -1};
|
|
|
|
demux_control(mpctx->demuxer, DEMUXER_CTRL_GET_READER_STATE, &s);
|
|
|
|
|
2016-04-19 20:01:30 +00:00
|
|
|
int cache_buffer = 100;
|
|
|
|
|
2016-04-20 08:41:09 +00:00
|
|
|
if (mpctx->restart_complete && c.size > 0) {
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
if (mpctx->paused && mpctx->paused_for_cache) {
|
2014-08-27 21:12:24 +00:00
|
|
|
if (!opts->cache_pausing || s.ts_duration >= mpctx->cache_wait_time
|
|
|
|
|| s.idle)
|
|
|
|
{
|
2016-04-20 08:50:22 +00:00
|
|
|
double elapsed_time = now - mpctx->cache_stop_time;
|
2014-08-27 21:12:24 +00:00
|
|
|
if (elapsed_time > mpctx->cache_wait_time) {
|
|
|
|
mpctx->cache_wait_time *= 1.5 + 0.1;
|
|
|
|
} else {
|
|
|
|
mpctx->cache_wait_time /= 1.5 - 0.1;
|
|
|
|
}
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
mpctx->paused_for_cache = false;
|
|
|
|
if (!opts->pause)
|
|
|
|
unpause_player(mpctx);
|
2016-04-19 20:01:30 +00:00
|
|
|
force_update = true;
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
}
|
|
|
|
mpctx->sleeptime = MPMIN(mpctx->sleeptime, 0.2);
|
|
|
|
} else {
|
2014-08-27 20:51:06 +00:00
|
|
|
if (opts->cache_pausing && s.underrun) {
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
bool prev_paused_user = opts->pause;
|
|
|
|
pause_player(mpctx);
|
|
|
|
mpctx->paused_for_cache = true;
|
|
|
|
opts->pause = prev_paused_user;
|
2016-04-20 08:50:22 +00:00
|
|
|
mpctx->cache_stop_time = now;
|
2016-04-19 20:01:30 +00:00
|
|
|
force_update = true;
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
2014-10-07 20:07:07 +00:00
|
|
|
mpctx->cache_wait_time = MPCLAMP(mpctx->cache_wait_time, 1, 10);
|
2016-04-19 20:01:30 +00:00
|
|
|
if (mpctx->paused_for_cache) {
|
|
|
|
cache_buffer =
|
|
|
|
100 * MPCLAMP(s.ts_duration / mpctx->cache_wait_time, 0, 0.99);
|
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
|
2014-07-31 02:19:41 +00:00
|
|
|
// Also update cache properties.
|
2016-04-20 08:41:09 +00:00
|
|
|
bool busy = !s.idle || !c.idle;
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
if (busy || mpctx->next_cache_update > 0) {
|
2014-07-31 02:19:41 +00:00
|
|
|
if (mpctx->next_cache_update <= now) {
|
player: redo how stream caching and pausing on low cache works
Add the --cache-secs option, which literally overrides the value of
--demuxer-readahead-secs if the stream cache is active. The default
value is very high (10 seconds), which means it can act as network
cache.
Remove the old behavior of trying to pause once the byte cache runs
low. Instead, do something similar wit the demuxer cache. The nice
thing is that we can guess how many seconds of video it has cached,
and we can make better decisions. But for now, apply a relatively
naive heuristic: if the cache is below 0.5 secs, pause, and wait
until at least 2 secs are available.
Note that due to timestamp reordering, the estimated cached duration
of video might be inaccurate, depending on the file format. If the
file format has DTS, it's easy, otherwise the duration will seemingly
jump back and forth.
2014-08-26 23:13:20 +00:00
|
|
|
mpctx->next_cache_update = busy ? now + 0.25 : 0;
|
2016-04-19 20:01:30 +00:00
|
|
|
force_update = true;
|
2014-07-31 02:19:41 +00:00
|
|
|
}
|
|
|
|
if (mpctx->next_cache_update > 0) {
|
|
|
|
mpctx->sleeptime =
|
|
|
|
MPMIN(mpctx->sleeptime, mpctx->next_cache_update - now);
|
|
|
|
}
|
|
|
|
}
|
2016-04-19 20:01:30 +00:00
|
|
|
|
|
|
|
if (mpctx->cache_buffer != cache_buffer) {
|
|
|
|
if (mpctx->cache_buffer >= 0 &&
|
|
|
|
(mpctx->cache_buffer == 100) != (cache_buffer == 100))
|
|
|
|
{
|
|
|
|
if (cache_buffer < 100) {
|
|
|
|
MP_VERBOSE(mpctx, "Enter buffering.\n");
|
|
|
|
} else {
|
2016-04-20 08:50:22 +00:00
|
|
|
double t = now - mpctx->cache_stop_time;
|
2016-04-19 20:01:30 +00:00
|
|
|
MP_VERBOSE(mpctx, "End buffering (waited %f secs).\n", t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mpctx->cache_buffer = cache_buffer;
|
|
|
|
force_update = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (force_update)
|
|
|
|
mp_notify(mpctx, MP_EVENT_CACHE_UPDATE, NULL);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2016-04-19 20:01:30 +00:00
|
|
|
int get_cache_buffering_percentage(struct MPContext *mpctx)
|
2014-10-07 20:07:07 +00:00
|
|
|
{
|
2016-04-19 20:01:30 +00:00
|
|
|
return mpctx->demuxer ? mpctx->cache_buffer : -1;
|
2014-10-07 20:07:07 +00:00
|
|
|
}
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
static void handle_heartbeat_cmd(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2014-07-30 21:24:08 +00:00
|
|
|
if (opts->heartbeat_cmd && !mpctx->paused && mpctx->video_out) {
|
2013-10-29 21:38:29 +00:00
|
|
|
double now = mp_time_sec();
|
2014-07-18 13:04:46 +00:00
|
|
|
if (mpctx->next_heartbeat <= now) {
|
|
|
|
mpctx->next_heartbeat = now + opts->heartbeat_interval;
|
2016-06-07 11:39:43 +00:00
|
|
|
(void)system(opts->heartbeat_cmd);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
2014-07-18 13:04:46 +00:00
|
|
|
mpctx->sleeptime = MPMIN(mpctx->sleeptime, mpctx->next_heartbeat - now);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_cursor_autohide(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
|
|
|
struct vo *vo = mpctx->video_out;
|
|
|
|
|
|
|
|
if (!vo)
|
|
|
|
return;
|
|
|
|
|
|
|
|
bool mouse_cursor_visible = mpctx->mouse_cursor_visible;
|
2014-07-18 13:04:46 +00:00
|
|
|
double now = mp_time_sec();
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
unsigned mouse_event_ts = mp_input_get_mouse_event_counter(mpctx->input);
|
|
|
|
if (mpctx->mouse_event_ts != mouse_event_ts) {
|
|
|
|
mpctx->mouse_event_ts = mouse_event_ts;
|
2014-07-18 13:04:46 +00:00
|
|
|
mpctx->mouse_timer = now + opts->cursor_autohide_delay / 1000.0;
|
2013-10-29 21:38:29 +00:00
|
|
|
mouse_cursor_visible = true;
|
|
|
|
}
|
|
|
|
|
2014-07-18 13:04:46 +00:00
|
|
|
if (mpctx->mouse_timer > now) {
|
|
|
|
mpctx->sleeptime = MPMIN(mpctx->sleeptime, mpctx->mouse_timer - now);
|
|
|
|
} else {
|
2013-10-29 21:38:29 +00:00
|
|
|
mouse_cursor_visible = false;
|
2014-07-18 13:04:46 +00:00
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
if (opts->cursor_autohide_delay == -1)
|
|
|
|
mouse_cursor_visible = true;
|
|
|
|
|
|
|
|
if (opts->cursor_autohide_delay == -2)
|
|
|
|
mouse_cursor_visible = false;
|
|
|
|
|
2016-08-30 21:50:57 +00:00
|
|
|
if (opts->cursor_autohide_fs && !opts->vo->fullscreen)
|
2013-10-29 21:38:29 +00:00
|
|
|
mouse_cursor_visible = true;
|
|
|
|
|
|
|
|
if (mouse_cursor_visible != mpctx->mouse_cursor_visible)
|
|
|
|
vo_control(vo, VOCTRL_SET_CURSOR_VISIBILITY, &mouse_cursor_visible);
|
|
|
|
mpctx->mouse_cursor_visible = mouse_cursor_visible;
|
|
|
|
}
|
|
|
|
|
2014-11-02 19:26:51 +00:00
|
|
|
static void handle_vo_events(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct vo *vo = mpctx->video_out;
|
2014-11-09 09:00:21 +00:00
|
|
|
int events = vo ? vo_query_and_reset_events(vo, VO_EVENTS_USER) : 0;
|
2014-11-02 19:26:51 +00:00
|
|
|
if (events & VO_EVENT_RESIZE)
|
|
|
|
mp_notify(mpctx, MP_EVENT_WIN_RESIZE, NULL);
|
2014-11-02 19:48:45 +00:00
|
|
|
if (events & VO_EVENT_WIN_STATE)
|
|
|
|
mp_notify(mpctx, MP_EVENT_WIN_STATE, NULL);
|
2014-11-02 19:26:51 +00:00
|
|
|
}
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
static void handle_sstep(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2014-08-03 18:25:03 +00:00
|
|
|
if (mpctx->stop_play || !mpctx->restart_complete)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (opts->step_sec > 0 && !mpctx->paused) {
|
2013-10-29 21:38:29 +00:00
|
|
|
set_osd_function(mpctx, OSD_FFW);
|
2016-08-15 19:07:32 +00:00
|
|
|
queue_seek(mpctx, MPSEEK_RELATIVE, opts->step_sec, MPSEEK_DEFAULT, 0);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
2014-08-03 18:25:03 +00:00
|
|
|
|
2014-08-26 18:45:41 +00:00
|
|
|
if (mpctx->video_status >= STATUS_EOF) {
|
2015-07-08 19:31:31 +00:00
|
|
|
if (mpctx->max_frames >= 0 && !mpctx->stop_play)
|
2014-10-14 11:29:38 +00:00
|
|
|
mpctx->stop_play = AT_END_OF_FILE; // force EOF even if audio left
|
2014-08-03 18:25:03 +00:00
|
|
|
if (mpctx->step_frames > 0 && !mpctx->paused)
|
|
|
|
pause_player(mpctx);
|
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2014-04-17 21:55:04 +00:00
|
|
|
static void handle_loop_file(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2016-08-18 18:40:23 +00:00
|
|
|
|
|
|
|
if (mpctx->stop_play == AT_END_OF_FILE &&
|
|
|
|
(opts->ab_loop[0] != MP_NOPTS_VALUE || opts->ab_loop[1] != MP_NOPTS_VALUE))
|
|
|
|
{
|
|
|
|
// Assumes execute_queued_seek() happens before next audio/video is
|
|
|
|
// attempted to be decoded or filtered.
|
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
|
|
|
double start = 0;
|
|
|
|
if (opts->ab_loop[0] != MP_NOPTS_VALUE)
|
|
|
|
start = opts->ab_loop[0];
|
|
|
|
mark_seek(mpctx);
|
|
|
|
queue_seek(mpctx, MPSEEK_ABSOLUTE, start, MPSEEK_EXACT,
|
|
|
|
MPSEEK_FLAG_NOFLUSH);
|
|
|
|
}
|
|
|
|
|
2014-04-17 21:55:04 +00:00
|
|
|
if (opts->loop_file && mpctx->stop_play == AT_END_OF_FILE) {
|
2014-08-13 19:50:01 +00:00
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
2014-04-17 21:55:04 +00:00
|
|
|
set_osd_function(mpctx, OSD_FFW);
|
2016-08-18 18:40:23 +00:00
|
|
|
queue_seek(mpctx, MPSEEK_ABSOLUTE, 0, MPSEEK_DEFAULT, MPSEEK_FLAG_NOFLUSH);
|
2014-09-22 20:56:00 +00:00
|
|
|
if (opts->loop_file > 0)
|
|
|
|
opts->loop_file--;
|
2014-04-17 21:55:04 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-08 16:27:07 +00:00
|
|
|
void seek_to_last_frame(struct MPContext *mpctx)
|
2014-12-07 01:47:09 +00:00
|
|
|
{
|
2016-01-17 17:07:50 +00:00
|
|
|
if (!mpctx->vo_chain)
|
2014-12-07 01:47:09 +00:00
|
|
|
return;
|
player: hack against --keep-open misbehaving with broken files
If a file (or a demuxer) is broken, seeking close to the end of the file
doesn't work, and seek_to_last_frame() will be called over and over
again, burning CPU for no reason.
Observed with incomplete mp4 files. That this can happen was already
mentioned in commit 090f6cfc, but I guess now I'll do something against
it.
hrseek_lastframe is cleared by reset_playback_state(), so it's only set
if seek_to_last_frame() was called, and no other seek happened since
then. If finding the last frame succeeds, no EOF will happen (unless the
user unpauses, but then it will simply remain at the last frame). If it
fails, then it will return immediately, without retrying.
2014-12-24 14:12:11 +00:00
|
|
|
if (mpctx->hrseek_lastframe) // exit if we already tried this
|
|
|
|
return;
|
2014-12-07 01:47:09 +00:00
|
|
|
MP_VERBOSE(mpctx, "seeking to last frame...\n");
|
|
|
|
// Approximately seek close to the end of the file.
|
|
|
|
// Usually, it will seek some seconds before end.
|
|
|
|
double end = get_play_end_pts(mpctx);
|
|
|
|
if (end == MP_NOPTS_VALUE)
|
|
|
|
end = get_time_length(mpctx);
|
|
|
|
mp_seek(mpctx, (struct seek_params){
|
|
|
|
.type = MPSEEK_ABSOLUTE,
|
|
|
|
.amount = end,
|
2015-03-04 16:21:05 +00:00
|
|
|
.exact = MPSEEK_VERY_EXACT,
|
2016-02-15 20:03:51 +00:00
|
|
|
});
|
2014-12-07 01:47:09 +00:00
|
|
|
// Make it exact: stop seek only if last frame was reached.
|
|
|
|
if (mpctx->hrseek_active) {
|
|
|
|
mpctx->hrseek_pts = 1e99; // "infinite"
|
|
|
|
mpctx->hrseek_lastframe = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
static void handle_keep_open(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2014-09-23 23:56:53 +00:00
|
|
|
if (opts->keep_open && mpctx->stop_play == AT_END_OF_FILE &&
|
2014-12-12 22:45:16 +00:00
|
|
|
(opts->keep_open == 2 || !playlist_get_next(mpctx->playlist, 1)) &&
|
2015-02-12 21:41:45 +00:00
|
|
|
opts->loop_times == 1)
|
2014-09-23 23:56:53 +00:00
|
|
|
{
|
2013-10-29 21:38:29 +00:00
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
2016-01-17 17:07:50 +00:00
|
|
|
if (mpctx->vo_chain) {
|
2014-12-07 01:47:09 +00:00
|
|
|
if (!vo_has_frame(mpctx->video_out)) // EOF not reached normally
|
|
|
|
seek_to_last_frame(mpctx);
|
2014-09-23 23:37:07 +00:00
|
|
|
mpctx->playback_pts = mpctx->last_vo_pts;
|
2014-12-07 01:47:09 +00:00
|
|
|
}
|
2014-07-29 22:22:25 +00:00
|
|
|
if (!mpctx->opts->pause)
|
|
|
|
pause_player(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-27 20:28:07 +00:00
|
|
|
static void handle_chapter_change(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
int chapter = get_current_chapter(mpctx);
|
|
|
|
if (chapter != mpctx->last_chapter) {
|
|
|
|
mpctx->last_chapter = chapter;
|
|
|
|
mp_notify(mpctx, MPV_EVENT_CHAPTER_CHANGE, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-21 19:22:20 +00:00
|
|
|
// Execute a forceful refresh of the VO window. This clears the window from
|
|
|
|
// the previous video. It also creates/destroys the VO on demand.
|
|
|
|
// It tries to make the change only in situations where the window is
|
|
|
|
// definitely needed or not needed, or if the force parameter is set (the
|
|
|
|
// latter also decides whether to clear an existing window, because there's
|
|
|
|
// no way to know if this has already been done or not).
|
|
|
|
int handle_force_window(struct MPContext *mpctx, bool force)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
2015-09-21 19:22:20 +00:00
|
|
|
// True if we're either in idle mode, or loading of the file has finished.
|
|
|
|
// It's also set via force in some stages during file loading.
|
|
|
|
bool act = !mpctx->playing || mpctx->playback_initialized || force;
|
|
|
|
|
2016-02-24 21:19:00 +00:00
|
|
|
// On the other hand, if a video track is selected, but no video is ever
|
|
|
|
// decoded on it, then create the window.
|
|
|
|
bool stalled_video = mpctx->playback_initialized && mpctx->restart_complete &&
|
|
|
|
mpctx->video_status == STATUS_EOF && mpctx->vo_chain &&
|
2016-02-25 10:21:54 +00:00
|
|
|
!mpctx->video_out->config_ok;
|
2016-02-24 21:19:00 +00:00
|
|
|
|
|
|
|
// Don't interfere with real video playback
|
|
|
|
if (mpctx->vo_chain && !stalled_video)
|
|
|
|
return 0;
|
|
|
|
|
2015-09-20 15:58:02 +00:00
|
|
|
if (!mpctx->opts->force_vo) {
|
2016-02-25 10:21:54 +00:00
|
|
|
if (act && !mpctx->vo_chain)
|
2015-09-20 21:03:00 +00:00
|
|
|
uninit_video_out(mpctx);
|
2015-09-20 15:58:02 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2015-09-21 19:22:20 +00:00
|
|
|
if (mpctx->opts->force_vo != 2 && !act)
|
|
|
|
return 0;
|
|
|
|
|
2015-09-20 15:58:02 +00:00
|
|
|
if (!mpctx->video_out) {
|
|
|
|
struct vo_extra ex = {
|
|
|
|
.input_ctx = mpctx->input,
|
|
|
|
.osd = mpctx->osd,
|
|
|
|
.encode_lavc_ctx = mpctx->encode_lavc_ctx,
|
2016-08-30 21:44:28 +00:00
|
|
|
.opengl_cb_context = mpctx->gl_cb_ctx,
|
2015-09-20 15:58:02 +00:00
|
|
|
};
|
|
|
|
mpctx->video_out = init_best_video_out(mpctx->global, &ex);
|
|
|
|
if (!mpctx->video_out)
|
|
|
|
goto err;
|
|
|
|
mpctx->mouse_cursor_visible = true;
|
|
|
|
}
|
|
|
|
|
2015-09-21 19:22:20 +00:00
|
|
|
if (!mpctx->video_out->config_ok || force) {
|
2014-10-03 17:57:49 +00:00
|
|
|
struct vo *vo = mpctx->video_out;
|
2013-10-29 21:38:29 +00:00
|
|
|
// Pick whatever works
|
|
|
|
int config_format = 0;
|
2015-01-03 16:23:01 +00:00
|
|
|
uint8_t fmts[IMGFMT_END - IMGFMT_START] = {0};
|
|
|
|
vo_query_formats(vo, fmts);
|
2013-10-29 21:38:29 +00:00
|
|
|
for (int fmt = IMGFMT_START; fmt < IMGFMT_END; fmt++) {
|
2015-01-03 16:23:01 +00:00
|
|
|
if (fmts[fmt - IMGFMT_START]) {
|
2013-10-29 21:38:29 +00:00
|
|
|
config_format = fmt;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int w = 960;
|
|
|
|
int h = 480;
|
|
|
|
struct mp_image_params p = {
|
|
|
|
.imgfmt = config_format,
|
|
|
|
.w = w, .h = h,
|
2015-12-19 19:04:31 +00:00
|
|
|
.p_w = 1, .p_h = 1,
|
2013-10-29 21:38:29 +00:00
|
|
|
};
|
2015-10-03 16:20:16 +00:00
|
|
|
if (vo_reconfig(vo, &p) < 0)
|
2015-09-20 15:58:02 +00:00
|
|
|
goto err;
|
2014-09-08 22:54:34 +00:00
|
|
|
vo_control(vo, VOCTRL_RESTORE_SCREENSAVER, NULL);
|
|
|
|
vo_set_paused(vo, true);
|
2014-06-15 18:46:57 +00:00
|
|
|
vo_redraw(vo);
|
2014-02-17 01:52:26 +00:00
|
|
|
mp_notify(mpctx, MPV_EVENT_VIDEO_RECONFIG, NULL);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
2015-09-20 15:58:02 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
|
|
|
mpctx->opts->force_vo = 0;
|
|
|
|
uninit_video_out(mpctx);
|
|
|
|
MP_FATAL(mpctx, "Error opening/initializing the VO window.\n");
|
|
|
|
return -1;
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
|
2014-08-03 18:25:03 +00:00
|
|
|
// Potentially needed by some Lua scripts, which assume TICK always comes.
|
|
|
|
static void handle_dummy_ticks(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
if (mpctx->video_status == STATUS_EOF || mpctx->paused) {
|
2015-06-23 17:21:20 +00:00
|
|
|
if (mp_time_sec() - mpctx->last_idle_tick > 0.050) {
|
2014-08-03 18:25:03 +00:00
|
|
|
mpctx->last_idle_tick = mp_time_sec();
|
|
|
|
mp_notify(mpctx, MPV_EVENT_TICK, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-05-09 20:54:49 +00:00
|
|
|
// Update current playback time.
|
|
|
|
static void handle_playback_time(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
if (mpctx->vo_chain && !mpctx->vo_chain->is_coverart &&
|
|
|
|
mpctx->video_status >= STATUS_PLAYING &&
|
|
|
|
mpctx->video_status < STATUS_EOF)
|
|
|
|
{
|
|
|
|
mpctx->playback_pts = mpctx->video_pts;
|
|
|
|
} else if (mpctx->audio_status >= STATUS_PLAYING &&
|
|
|
|
mpctx->audio_status < STATUS_EOF)
|
|
|
|
{
|
|
|
|
mpctx->playback_pts = playing_audio_pts(mpctx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-29 11:37:10 +00:00
|
|
|
// We always make sure audio and video buffers are filled before actually
|
|
|
|
// starting playback. This code handles starting them at the same time.
|
2016-02-27 19:02:51 +00:00
|
|
|
static void handle_playback_restart(struct MPContext *mpctx)
|
2013-10-29 21:38:29 +00:00
|
|
|
{
|
|
|
|
struct MPOpts *opts = mpctx->opts;
|
2015-01-29 11:37:10 +00:00
|
|
|
|
|
|
|
if (mpctx->audio_status < STATUS_READY ||
|
|
|
|
mpctx->video_status < STATUS_READY)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (mpctx->video_status == STATUS_READY) {
|
|
|
|
mpctx->video_status = STATUS_PLAYING;
|
|
|
|
get_relative_time(mpctx);
|
|
|
|
mpctx->sleeptime = 0;
|
|
|
|
}
|
|
|
|
|
2016-05-09 20:54:49 +00:00
|
|
|
if (mpctx->audio_status == STATUS_READY) {
|
|
|
|
// If a new seek is queued while the current one finishes, don't
|
|
|
|
// actually play the audio, but resume seeking immediately.
|
|
|
|
if (mpctx->seek.type && mpctx->video_status == STATUS_PLAYING) {
|
|
|
|
handle_playback_time(mpctx);
|
|
|
|
execute_queued_seek(mpctx);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2016-02-27 19:02:51 +00:00
|
|
|
fill_audio_out_buffers(mpctx); // actually play prepared buffer
|
2016-05-09 20:54:49 +00:00
|
|
|
}
|
2015-01-29 11:37:10 +00:00
|
|
|
|
|
|
|
if (!mpctx->restart_complete) {
|
|
|
|
mpctx->hrseek_active = false;
|
|
|
|
mpctx->restart_complete = true;
|
player: gross hack to improve non-hr seeking with external audio tracks
Relative seeks backwards with external audio tracks does not always work
well: it tends to happen that video seek back further than audio, so
audio will remain silent until the audio's after-seek position is
reached. This happens because we strictly seek both video and audio
demuxer to the approximate desirted target PTS, and then start decoding
from that.
Commit 81358380 removes an older method that was supposed to deal with
this. It was sort of bad, because it could lead to the playback core
freezing by waiting on network.
Ideally, the demuxer layer would probably somehow deal with such seeks,
and do them in a way the audio is seeked after video. Currently this is
infeasible, because the demuxer layer assumes a single demuxer, and
external tracks simply use separate demuxer layers. (MPlayer actually
had a pseudo-demuxer that joined external tracks into a single demuxer,
but this is not flexible enough - and also, the demuxer layer as it
currently exists can't deal with dynamically removing external tracks
either. Maybe some time in the future.)
Instead, add a gross hack, that essentially reseeks the audio if it
detects that it's too far off. The result is actually not too bad,
because we can reuse the mechanism that is used for instant track
switching. This way we can make sure of the right position, without
having to care about certain other issues.
It should be noted that if the audio demuxer is used for other tracks
too, and the demuxer does not support refresh seeking, audio will
probably be off by even a higher amount. But this should be rare.
2016-08-07 14:29:13 +00:00
|
|
|
mpctx->audio_allow_second_chance_seek = false;
|
2016-08-18 18:40:23 +00:00
|
|
|
handle_playback_time(mpctx);
|
2015-01-29 11:37:10 +00:00
|
|
|
mp_notify(mpctx, MPV_EVENT_PLAYBACK_RESTART, NULL);
|
|
|
|
if (!mpctx->playing_msg_shown) {
|
2015-02-18 20:10:08 +00:00
|
|
|
if (opts->playing_msg && opts->playing_msg[0]) {
|
2015-01-29 11:37:10 +00:00
|
|
|
char *msg =
|
|
|
|
mp_property_expand_escaped_string(mpctx, opts->playing_msg);
|
2015-07-13 11:06:09 +00:00
|
|
|
struct mp_log *log = mp_log_new(NULL, mpctx->log, "!term-msg");
|
|
|
|
mp_info(log, "%s\n", msg);
|
|
|
|
talloc_free(log);
|
2015-01-29 11:37:10 +00:00
|
|
|
talloc_free(msg);
|
|
|
|
}
|
2015-02-18 20:10:08 +00:00
|
|
|
if (opts->osd_playing_msg && opts->osd_playing_msg[0]) {
|
2015-01-29 11:37:10 +00:00
|
|
|
char *msg =
|
|
|
|
mp_property_expand_escaped_string(mpctx, opts->osd_playing_msg);
|
|
|
|
set_osd_msg(mpctx, 1, opts->osd_duration, "%s", msg);
|
|
|
|
talloc_free(msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mpctx->playing_msg_shown = true;
|
2016-04-20 11:11:11 +00:00
|
|
|
mpctx->sleeptime = 0;
|
2016-08-18 18:40:23 +00:00
|
|
|
mpctx->ab_loop_clip = mpctx->playback_pts < opts->ab_loop[1];
|
2015-06-18 20:31:55 +00:00
|
|
|
MP_VERBOSE(mpctx, "playback restart complete\n");
|
2015-01-29 11:37:10 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-02-15 20:03:51 +00:00
|
|
|
static void handle_eof(struct MPContext *mpctx)
|
2015-01-29 11:37:10 +00:00
|
|
|
{
|
|
|
|
/* Don't quit while paused and we're displaying the last video frame. On the
|
|
|
|
* other hand, if we don't have a video frame, then the user probably seeked
|
|
|
|
* outside of the video, and we do want to quit. */
|
|
|
|
bool prevent_eof =
|
|
|
|
mpctx->paused && mpctx->video_out && vo_has_frame(mpctx->video_out);
|
|
|
|
/* It's possible for the user to simultaneously switch both audio
|
|
|
|
* and video streams to "disabled" at runtime. Handle this by waiting
|
|
|
|
* rather than immediately stopping playback due to EOF.
|
|
|
|
*/
|
2016-01-21 21:24:20 +00:00
|
|
|
if ((mpctx->ao_chain || mpctx->vo_chain) && !prevent_eof &&
|
2015-01-29 11:37:10 +00:00
|
|
|
mpctx->audio_status == STATUS_EOF &&
|
2016-02-15 20:03:51 +00:00
|
|
|
mpctx->video_status == STATUS_EOF &&
|
|
|
|
!mpctx->stop_play)
|
2015-01-29 11:37:10 +00:00
|
|
|
{
|
2016-02-15 20:03:51 +00:00
|
|
|
mpctx->stop_play = AT_END_OF_FILE;
|
2015-01-29 11:37:10 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-02-05 22:19:56 +00:00
|
|
|
static void handle_complex_filter_decoders(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
if (!mpctx->lavfi)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (int n = 0; n < mpctx->num_tracks; n++) {
|
|
|
|
struct track *track = mpctx->tracks[n];
|
|
|
|
if (!track->selected)
|
|
|
|
continue;
|
|
|
|
if (!track->sink || !lavfi_needs_input(track->sink))
|
|
|
|
continue;
|
|
|
|
if (track->d_audio) {
|
|
|
|
audio_work(track->d_audio);
|
|
|
|
struct mp_audio *fr;
|
|
|
|
int res = audio_get_frame(track->d_audio, &fr);
|
|
|
|
if (res == DATA_OK) {
|
|
|
|
lavfi_send_frame_a(track->sink, fr);
|
|
|
|
} else {
|
|
|
|
lavfi_send_status(track->sink, res);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (track->d_video) {
|
|
|
|
video_work(track->d_video);
|
|
|
|
struct mp_image *fr;
|
|
|
|
int res = video_get_frame(track->d_video, &fr);
|
|
|
|
if (res == DATA_OK) {
|
|
|
|
lavfi_send_frame_v(track->sink, fr);
|
|
|
|
} else {
|
|
|
|
lavfi_send_status(track->sink, res);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-29 11:37:10 +00:00
|
|
|
void run_playloop(struct MPContext *mpctx)
|
|
|
|
{
|
2013-07-16 11:28:28 +00:00
|
|
|
#if HAVE_ENCODING
|
2013-10-29 21:38:29 +00:00
|
|
|
if (encode_lavc_didfail(mpctx->encode_lavc_ctx)) {
|
|
|
|
mpctx->stop_play = PT_QUIT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2014-07-16 20:40:21 +00:00
|
|
|
update_demuxer_properties(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-02-05 22:19:56 +00:00
|
|
|
handle_complex_filter_decoders(mpctx);
|
|
|
|
|
2014-07-30 21:24:08 +00:00
|
|
|
handle_cursor_autohide(mpctx);
|
2014-11-02 19:26:51 +00:00
|
|
|
handle_vo_events(mpctx);
|
2014-07-30 21:24:08 +00:00
|
|
|
handle_heartbeat_cmd(mpctx);
|
2015-02-14 14:13:58 +00:00
|
|
|
handle_command_updates(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-02-05 22:19:56 +00:00
|
|
|
if (mpctx->lavfi) {
|
|
|
|
if (lavfi_process(mpctx->lavfi))
|
|
|
|
mpctx->sleeptime = 0;
|
|
|
|
if (lavfi_has_failed(mpctx->lavfi))
|
|
|
|
mpctx->stop_play = AT_END_OF_FILE;
|
|
|
|
}
|
|
|
|
|
2016-05-09 20:54:49 +00:00
|
|
|
fill_audio_out_buffers(mpctx);
|
|
|
|
write_video(mpctx);
|
|
|
|
|
2016-02-27 19:02:51 +00:00
|
|
|
handle_playback_restart(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-05-09 20:54:49 +00:00
|
|
|
handle_playback_time(mpctx);
|
|
|
|
|
2014-08-03 18:25:03 +00:00
|
|
|
handle_dummy_ticks(mpctx);
|
|
|
|
|
2014-07-28 18:40:43 +00:00
|
|
|
update_osd_msg(mpctx);
|
2015-12-29 00:35:52 +00:00
|
|
|
if (!mpctx->video_out)
|
|
|
|
update_subtitles(mpctx, mpctx->playback_pts);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-02-15 20:03:51 +00:00
|
|
|
handle_eof(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2014-09-23 23:31:45 +00:00
|
|
|
handle_loop_file(mpctx);
|
|
|
|
|
2014-07-29 22:22:25 +00:00
|
|
|
handle_keep_open(mpctx);
|
|
|
|
|
2014-08-03 18:25:03 +00:00
|
|
|
handle_sstep(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2016-04-18 19:32:58 +00:00
|
|
|
if (mpctx->stop_play == AT_END_OF_FILE && mpctx->seek.type)
|
|
|
|
mpctx->stop_play = KEEP_PLAYING;
|
|
|
|
|
2014-07-18 13:04:46 +00:00
|
|
|
if (mpctx->stop_play)
|
2014-08-03 17:14:30 +00:00
|
|
|
return;
|
2014-07-18 13:04:46 +00:00
|
|
|
|
2014-08-03 17:09:22 +00:00
|
|
|
handle_osd_redraw(mpctx);
|
2014-07-18 13:04:46 +00:00
|
|
|
|
2014-09-06 14:57:46 +00:00
|
|
|
mp_wait_events(mpctx, mpctx->sleeptime);
|
2015-08-07 00:41:02 +00:00
|
|
|
mpctx->sleeptime = 1e9; // infinite for all practical purposes
|
2013-10-29 21:38:29 +00:00
|
|
|
|
|
|
|
handle_pause_on_low_cache(mpctx);
|
|
|
|
|
2014-09-06 14:57:46 +00:00
|
|
|
mp_process_input(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
|
2014-04-27 20:28:07 +00:00
|
|
|
handle_chapter_change(mpctx);
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
handle_force_window(mpctx, false);
|
|
|
|
|
|
|
|
execute_queued_seek(mpctx);
|
|
|
|
}
|
|
|
|
|
2014-10-06 19:20:38 +00:00
|
|
|
void mp_idle(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
handle_dummy_ticks(mpctx);
|
|
|
|
mp_wait_events(mpctx, mpctx->sleeptime);
|
|
|
|
mpctx->sleeptime = 100.0;
|
|
|
|
mp_process_input(mpctx);
|
2015-05-02 15:53:25 +00:00
|
|
|
handle_command_updates(mpctx);
|
2014-10-10 16:51:44 +00:00
|
|
|
handle_cursor_autohide(mpctx);
|
2014-11-02 19:26:51 +00:00
|
|
|
handle_vo_events(mpctx);
|
2014-10-06 19:20:38 +00:00
|
|
|
update_osd_msg(mpctx);
|
|
|
|
handle_osd_redraw(mpctx);
|
|
|
|
}
|
|
|
|
|
2013-10-29 21:38:29 +00:00
|
|
|
// Waiting for the slave master to send us a new file to play.
|
|
|
|
void idle_loop(struct MPContext *mpctx)
|
|
|
|
{
|
|
|
|
// ================= idle loop (STOP state) =========================
|
|
|
|
bool need_reinit = true;
|
|
|
|
while (mpctx->opts->player_idle_mode && !mpctx->playlist->current
|
|
|
|
&& mpctx->stop_play != PT_QUIT)
|
|
|
|
{
|
2014-02-26 19:45:24 +00:00
|
|
|
if (need_reinit) {
|
2014-10-03 17:57:49 +00:00
|
|
|
uninit_audio_out(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
handle_force_window(mpctx, true);
|
2014-09-12 23:13:36 +00:00
|
|
|
mpctx->sleeptime = 0;
|
2015-08-20 13:25:32 +00:00
|
|
|
mp_notify(mpctx, MPV_EVENT_IDLE, NULL);
|
2014-09-12 23:13:36 +00:00
|
|
|
need_reinit = false;
|
2014-02-26 19:45:24 +00:00
|
|
|
}
|
2014-10-06 19:20:38 +00:00
|
|
|
mp_idle(mpctx);
|
2013-10-29 21:38:29 +00:00
|
|
|
}
|
|
|
|
}
|