2013-03-01 20:19:20 +00:00
|
|
|
/*
|
|
|
|
* This file is part of mpv.
|
|
|
|
*
|
|
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* mpv is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
* You can alternatively redistribute this file and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
2013-03-30 03:01:17 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include <libavutil/common.h>
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
#include "gl_video.h"
|
2013-03-30 03:01:17 +00:00
|
|
|
|
2013-08-06 20:41:30 +00:00
|
|
|
#include "mpvcore/bstr.h"
|
2013-03-01 20:19:20 +00:00
|
|
|
#include "gl_common.h"
|
|
|
|
#include "gl_osd.h"
|
|
|
|
#include "filter_kernels.h"
|
|
|
|
#include "aspect.h"
|
|
|
|
#include "video/memcpy_pic.h"
|
|
|
|
#include "bitmap_packer.h"
|
2013-05-25 23:48:39 +00:00
|
|
|
#include "dither.h"
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
static const char vo_opengl_shaders[] =
|
|
|
|
// Generated from gl_video_shaders.glsl
|
2013-07-16 11:28:28 +00:00
|
|
|
#include "video/out/gl_video_shaders.h"
|
2013-03-01 20:19:20 +00:00
|
|
|
;
|
|
|
|
|
|
|
|
// Pixel width of 1D lookup textures.
|
|
|
|
#define LOOKUP_TEXTURE_SIZE 256
|
|
|
|
|
2013-11-04 18:46:15 +00:00
|
|
|
// Texture units 0-3 are used by the video, with unit 0 for free use.
|
|
|
|
// Units 4-5 are used for scaler LUTs.
|
|
|
|
#define TEXUNIT_SCALERS 4
|
|
|
|
#define TEXUNIT_3DLUT 6
|
|
|
|
#define TEXUNIT_DITHER 7
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
// lscale/cscale arguments that map directly to shader filter routines.
|
|
|
|
// Note that the convolution filters are not included in this list.
|
|
|
|
static const char *fixed_scale_filters[] = {
|
|
|
|
"bilinear",
|
|
|
|
"bicubic_fast",
|
|
|
|
"sharpen3",
|
|
|
|
"sharpen5",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
struct lut_tex_format {
|
|
|
|
int pixels;
|
|
|
|
GLint internal_format;
|
|
|
|
GLenum format;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Indexed with filter_kernel->size.
|
|
|
|
// This must match the weightsN functions in the shader.
|
|
|
|
// Each entry uses (size+3)/4 pixels per LUT entry, and size/pixels components
|
|
|
|
// per pixel.
|
|
|
|
struct lut_tex_format lut_tex_formats[] = {
|
|
|
|
[2] = {1, GL_RG16F, GL_RG},
|
|
|
|
[4] = {1, GL_RGBA16F, GL_RGBA},
|
|
|
|
[6] = {2, GL_RGB16F, GL_RGB},
|
|
|
|
[8] = {2, GL_RGBA16F, GL_RGBA},
|
|
|
|
[12] = {3, GL_RGBA16F, GL_RGBA},
|
|
|
|
[16] = {4, GL_RGBA16F, GL_RGBA},
|
|
|
|
};
|
|
|
|
|
|
|
|
// must be sorted, and terminated with 0
|
|
|
|
static const int filter_sizes[] = {2, 4, 6, 8, 12, 16, 0};
|
|
|
|
|
|
|
|
struct vertex {
|
|
|
|
float position[2];
|
|
|
|
uint8_t color[4];
|
|
|
|
float texcoord[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
#define VERTEX_ATTRIB_POSITION 0
|
|
|
|
#define VERTEX_ATTRIB_COLOR 1
|
|
|
|
#define VERTEX_ATTRIB_TEXCOORD 2
|
|
|
|
|
|
|
|
// 2 triangles primitives per quad = 6 vertices per quad
|
|
|
|
// (GL_QUAD is deprecated, strips can't be used with OSD image lists)
|
|
|
|
#define VERTICES_PER_QUAD 6
|
|
|
|
|
|
|
|
struct texplane {
|
2013-03-28 19:40:19 +00:00
|
|
|
int w, h;
|
|
|
|
int tex_w, tex_h;
|
2013-03-28 19:48:53 +00:00
|
|
|
GLint gl_internal_format;
|
|
|
|
GLenum gl_format;
|
|
|
|
GLenum gl_type;
|
2013-03-01 20:19:20 +00:00
|
|
|
GLuint gl_texture;
|
|
|
|
int gl_buffer;
|
|
|
|
int buffer_size;
|
|
|
|
void *buffer_ptr;
|
|
|
|
};
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image {
|
2013-03-28 20:02:53 +00:00
|
|
|
struct texplane planes[4];
|
2013-03-28 19:40:19 +00:00
|
|
|
bool image_flipped;
|
2013-11-03 23:00:18 +00:00
|
|
|
struct mp_image *hwimage; // if hw decoding is active
|
2013-03-28 19:40:19 +00:00
|
|
|
};
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
struct scaler {
|
|
|
|
int index;
|
|
|
|
const char *name;
|
|
|
|
float params[2];
|
|
|
|
struct filter_kernel *kernel;
|
|
|
|
GLuint gl_lut;
|
|
|
|
const char *lut_name;
|
|
|
|
|
|
|
|
// kernel points here
|
|
|
|
struct filter_kernel kernel_storage;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct fbotex {
|
|
|
|
GLuint fbo;
|
|
|
|
GLuint texture;
|
|
|
|
int tex_w, tex_h; // size of .texture
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
int vp_x, vp_y, vp_w, vp_h; // viewport of fbo / used part of the texture
|
2013-03-01 20:19:20 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct gl_video {
|
|
|
|
GL *gl;
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
struct mp_log *log;
|
2013-03-01 20:19:20 +00:00
|
|
|
struct gl_video_opts opts;
|
|
|
|
bool gl_debug;
|
|
|
|
|
|
|
|
int depth_g;
|
|
|
|
|
|
|
|
GLuint vertex_buffer;
|
|
|
|
GLuint vao;
|
|
|
|
|
|
|
|
GLuint osd_programs[SUBBITMAP_COUNT];
|
|
|
|
GLuint indirect_program, scale_sep_program, final_program;
|
|
|
|
|
|
|
|
struct mpgl_osd *osd;
|
|
|
|
|
|
|
|
GLuint lut_3d_texture;
|
|
|
|
bool use_lut_3d;
|
|
|
|
|
|
|
|
GLuint dither_texture;
|
|
|
|
float dither_quantization;
|
2013-05-30 11:36:11 +00:00
|
|
|
float dither_center;
|
2013-03-01 20:19:20 +00:00
|
|
|
int dither_size;
|
|
|
|
|
|
|
|
uint32_t image_w, image_h;
|
|
|
|
uint32_t image_dw, image_dh;
|
|
|
|
uint32_t image_format;
|
|
|
|
int texture_w, texture_h;
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct mp_imgfmt_desc image_desc;
|
|
|
|
|
2013-05-01 21:13:39 +00:00
|
|
|
bool is_yuv, is_rgb;
|
2013-03-01 20:19:20 +00:00
|
|
|
bool is_linear_rgb;
|
2013-07-18 11:52:38 +00:00
|
|
|
bool has_alpha;
|
|
|
|
char color_swizzle[5];
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-05-01 21:59:00 +00:00
|
|
|
float input_gamma, conv_gamma;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
// per pixel (full pixel when packed, each component when planar)
|
|
|
|
int plane_bits;
|
2013-03-28 19:40:19 +00:00
|
|
|
int plane_count;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image image;
|
video/out: always support redrawing VO window at any point
Before, a VO could easily refuse to respond to VOCTRL_REDRAW_FRAME,
which means the VO wouldn't redraw OSD and window contents, and the
player would appear frozen to the user. This was a bit stupid, and makes
dealing with some corner cases much harder (think of --keep-open, which
was hard to implement, because the VO gets into this state if there are
no new video frames after a seek reset).
Change this, and require VOs to always react to VOCTRL_REDRAW_FRAME.
There are two aspects of this: First, behavior after a (successful)
vo_reconfig() call, but before any video frame has been displayed.
Second, behavior after a vo_seek_reset().
For the first issue, we define that sending VOCTRL_REDRAW_FRAME after
vo_reconfig() should clear the window with black. This requires minor
changes to some VOs. In particular vaapi makes this horribly
complicated, because OSD rendering is bound to a video surface. We
create a black dummy surface for this purpose.
The second issue is much simpler and works already with most VOs: they
simply redraw whatever has been uploaded previously. The exception is
vdpau, which has a complicated mechanism to track and filter video
frames. The state associated with this mechanism is completely cleared
with vo_seek_reset(), so implementing this to work as expected is not
trivial. For now, we just clear the window with black.
2013-10-01 21:35:51 +00:00
|
|
|
bool have_image;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
struct fbotex indirect_fbo; // RGB target
|
|
|
|
struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling
|
|
|
|
|
|
|
|
// state for luma (0) and chroma (1) scalers
|
|
|
|
struct scaler scalers[2];
|
|
|
|
|
|
|
|
struct mp_csp_details colorspace;
|
|
|
|
struct mp_csp_equalizer video_eq;
|
2013-07-25 22:26:04 +00:00
|
|
|
struct mp_image_params image_params;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
struct mp_rect src_rect; // displayed part of the source video
|
|
|
|
struct mp_rect dst_rect; // video rectangle on output window
|
|
|
|
struct mp_osd_res osd_rect; // OSD size/margins
|
|
|
|
int vp_x, vp_y, vp_w, vp_h; // GL viewport
|
|
|
|
|
|
|
|
int frames_rendered;
|
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
// Cached because computing it can take relatively long
|
|
|
|
int last_dither_matrix_size;
|
|
|
|
float *last_dither_matrix;
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
struct gl_hwdec *hwdec;
|
|
|
|
bool hwdec_active;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
void *scratch;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct fmt_entry {
|
|
|
|
int mp_format;
|
|
|
|
GLint internal_format;
|
|
|
|
GLenum format;
|
|
|
|
GLenum type;
|
|
|
|
};
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
// Very special formats, for which OpenGL happens to have direct support
|
2013-03-01 20:19:20 +00:00
|
|
|
static const struct fmt_entry mp_to_gl_formats[] = {
|
|
|
|
{IMGFMT_RGB15, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
|
|
|
|
{IMGFMT_RGB16, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV},
|
|
|
|
{IMGFMT_BGR15, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
|
|
|
|
{IMGFMT_BGR16, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5},
|
|
|
|
{0},
|
|
|
|
};
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
static const struct fmt_entry gl_byte_formats[] = {
|
|
|
|
{0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8
|
|
|
|
{0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8
|
|
|
|
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
|
|
|
|
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
|
|
|
|
{0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16
|
|
|
|
{0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16
|
|
|
|
{0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16
|
|
|
|
{0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16
|
|
|
|
};
|
|
|
|
|
|
|
|
struct packed_fmt_entry {
|
|
|
|
int fmt;
|
|
|
|
int8_t component_size;
|
|
|
|
int8_t components[4]; // source component - 0 means unmapped
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct packed_fmt_entry mp_packed_formats[] = {
|
|
|
|
// R G B A
|
|
|
|
{IMGFMT_Y8, 1, {1, 0, 0, 0}},
|
|
|
|
{IMGFMT_Y16, 2, {1, 0, 0, 0}},
|
|
|
|
{IMGFMT_YA8, 1, {1, 0, 0, 2}},
|
|
|
|
{IMGFMT_ARGB, 1, {2, 3, 4, 1}},
|
|
|
|
{IMGFMT_0RGB, 1, {2, 3, 4, 0}},
|
|
|
|
{IMGFMT_BGRA, 1, {3, 2, 1, 4}},
|
|
|
|
{IMGFMT_BGR0, 1, {3, 2, 1, 0}},
|
|
|
|
{IMGFMT_ABGR, 1, {4, 3, 2, 1}},
|
|
|
|
{IMGFMT_0BGR, 1, {4, 3, 2, 0}},
|
|
|
|
{IMGFMT_RGBA, 1, {1, 2, 3, 4}},
|
|
|
|
{IMGFMT_RGB0, 1, {1, 2, 3, 0}},
|
|
|
|
{IMGFMT_BGR24, 1, {3, 2, 1, 0}},
|
|
|
|
{IMGFMT_RGB24, 1, {1, 2, 3, 0}},
|
|
|
|
{IMGFMT_RGB48, 2, {1, 2, 3, 0}},
|
|
|
|
{IMGFMT_RGBA64, 2, {1, 2, 3, 4}},
|
|
|
|
{IMGFMT_BGRA64, 2, {3, 2, 1, 4}},
|
|
|
|
{0},
|
|
|
|
};
|
2013-03-28 19:48:53 +00:00
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
static const char *osd_shaders[SUBBITMAP_COUNT] = {
|
|
|
|
[SUBBITMAP_LIBASS] = "frag_osd_libass",
|
|
|
|
[SUBBITMAP_RGBA] = "frag_osd_rgba",
|
|
|
|
};
|
|
|
|
|
2013-03-30 19:33:09 +00:00
|
|
|
static const struct gl_video_opts gl_video_opts_def = {
|
2013-03-01 20:19:20 +00:00
|
|
|
.npot = 1,
|
|
|
|
.dither_depth = -1,
|
2013-05-25 23:48:39 +00:00
|
|
|
.dither_size = 6,
|
2013-03-01 20:19:20 +00:00
|
|
|
.fbo_format = GL_RGB,
|
|
|
|
.scale_sep = 1,
|
|
|
|
.scalers = { "bilinear", "bilinear" },
|
|
|
|
.scaler_params = {NAN, NAN},
|
2013-09-19 14:55:56 +00:00
|
|
|
.alpha_mode = 2,
|
2013-03-01 20:19:20 +00:00
|
|
|
};
|
|
|
|
|
2013-10-24 20:20:16 +00:00
|
|
|
const struct gl_video_opts gl_video_opts_hq_def = {
|
|
|
|
.npot = 1,
|
|
|
|
.dither_depth = 0,
|
|
|
|
.dither_size = 6,
|
|
|
|
.fbo_format = GL_RGB16,
|
|
|
|
.scale_sep = 1,
|
|
|
|
.scalers = { "lanczos2", "bilinear" },
|
|
|
|
.scaler_params = {NAN, NAN},
|
|
|
|
.alpha_mode = 2,
|
|
|
|
};
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
static int validate_scaler_opt(const m_option_t *opt, struct bstr name,
|
|
|
|
struct bstr param);
|
|
|
|
|
|
|
|
#define OPT_BASE_STRUCT struct gl_video_opts
|
|
|
|
const struct m_sub_options gl_video_conf = {
|
|
|
|
.opts = (m_option_t[]) {
|
|
|
|
OPT_FLAG("gamma", gamma, 0),
|
|
|
|
OPT_FLAG("srgb", srgb, 0),
|
|
|
|
OPT_FLAG("npot", npot, 0),
|
|
|
|
OPT_FLAG("pbo", pbo, 0),
|
2013-07-22 00:14:15 +00:00
|
|
|
OPT_CHOICE("stereo", stereo_mode, 0,
|
|
|
|
({"no", 0},
|
|
|
|
{"red-cyan", GL_3D_RED_CYAN},
|
|
|
|
{"green-magenta", GL_3D_GREEN_MAGENTA},
|
|
|
|
{"quadbuffer", GL_3D_QUADBUFFER})),
|
2013-03-01 20:19:20 +00:00
|
|
|
OPT_STRING_VALIDATE("lscale", scalers[0], 0, validate_scaler_opt),
|
|
|
|
OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt),
|
|
|
|
OPT_FLOAT("lparam1", scaler_params[0], 0),
|
|
|
|
OPT_FLOAT("lparam2", scaler_params[1], 0),
|
2013-05-25 21:47:55 +00:00
|
|
|
OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0),
|
2013-03-01 20:19:20 +00:00
|
|
|
OPT_FLAG("fancy-downscaling", fancy_downscaling, 0),
|
|
|
|
OPT_FLAG("indirect", indirect, 0),
|
|
|
|
OPT_FLAG("scale-sep", scale_sep, 0),
|
|
|
|
OPT_CHOICE("fbo-format", fbo_format, 0,
|
|
|
|
({"rgb", GL_RGB},
|
|
|
|
{"rgba", GL_RGBA},
|
|
|
|
{"rgb8", GL_RGB8},
|
|
|
|
{"rgb10", GL_RGB10},
|
2013-10-23 15:46:57 +00:00
|
|
|
{"rgb10_a2", GL_RGB10_A2},
|
2013-03-01 20:19:20 +00:00
|
|
|
{"rgb16", GL_RGB16},
|
|
|
|
{"rgb16f", GL_RGB16F},
|
2013-03-28 20:44:33 +00:00
|
|
|
{"rgb32f", GL_RGB32F},
|
|
|
|
{"rgba12", GL_RGBA12},
|
|
|
|
{"rgba16", GL_RGBA16},
|
|
|
|
{"rgba16f", GL_RGBA16F},
|
|
|
|
{"rgba32f", GL_RGBA32F})),
|
2013-03-28 20:39:17 +00:00
|
|
|
OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16,
|
|
|
|
({"no", -1}, {"auto", 0})),
|
2013-05-25 23:48:39 +00:00
|
|
|
OPT_CHOICE("dither", dither_algo, 0,
|
|
|
|
({"fruit", 0}, {"ordered", 1}, {"no", -1})),
|
|
|
|
OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8),
|
|
|
|
OPT_FLAG("temporal-dither", temporal_dither, 0),
|
vo_opengl: handle chroma location
Use the video decoder chroma location flags and render chroma locations
other than centered. Until now, we've always used the intuitive and
obvious centered chroma location, but H.264 uses something else.
FFmpeg provides a small overview in libavcodec/avcodec.h:
-----------
/**
* X X 3 4 X X are luma samples,
* 1 2 1-6 are possible chroma positions
* X X 5 6 X 0 is undefined/unknown position
*/
enum AVChromaLocation{
AVCHROMA_LOC_UNSPECIFIED = 0,
AVCHROMA_LOC_LEFT = 1, ///< mpeg2/4, h264 default
AVCHROMA_LOC_CENTER = 2, ///< mpeg1, jpeg, h263
AVCHROMA_LOC_TOPLEFT = 3, ///< DV
AVCHROMA_LOC_TOP = 4,
AVCHROMA_LOC_BOTTOMLEFT = 5,
AVCHROMA_LOC_BOTTOM = 6,
AVCHROMA_LOC_NB , ///< Not part of ABI
};
-----------
The visual difference is literally minimal, but since videophiles
apparently consider this detail as quality mark of a video renderer,
support it anyway. We don't bother with chroma locations other than
centered and left, though.
Not sure about correctness, but it's probably ok.
2013-06-08 00:15:24 +00:00
|
|
|
OPT_CHOICE("chroma-location", chroma_location, 0,
|
|
|
|
({"auto", MP_CHROMA_AUTO},
|
|
|
|
{"center", MP_CHROMA_CENTER},
|
|
|
|
{"left", MP_CHROMA_LEFT})),
|
2013-09-19 14:55:56 +00:00
|
|
|
OPT_CHOICE("alpha", alpha_mode, M_OPT_OPTIONAL_PARAM,
|
|
|
|
({"no", 0},
|
|
|
|
{"yes", 1}, {"", 1},
|
|
|
|
{"blend", 2})),
|
2013-03-01 20:19:20 +00:00
|
|
|
{0}
|
|
|
|
},
|
|
|
|
.size = sizeof(struct gl_video_opts),
|
|
|
|
.defaults = &gl_video_opts_def,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void uninit_rendering(struct gl_video *p);
|
|
|
|
static void delete_shaders(struct gl_video *p);
|
|
|
|
static void check_gl_features(struct gl_video *p);
|
|
|
|
static bool init_format(int fmt, struct gl_video *init);
|
|
|
|
|
|
|
|
|
|
|
|
static void default_tex_params(struct GL *gl, GLenum target, GLint filter)
|
|
|
|
{
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void debug_check_gl(struct gl_video *p, const char *msg)
|
|
|
|
{
|
|
|
|
if (p->gl_debug)
|
2013-09-11 22:57:32 +00:00
|
|
|
glCheckError(p->gl, p->log, msg);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_set_debug(struct gl_video *p, bool enable)
|
|
|
|
{
|
|
|
|
p->gl_debug = enable;
|
|
|
|
}
|
|
|
|
|
2013-11-01 16:33:11 +00:00
|
|
|
static void texture_size(struct gl_video *p, int w, int h, int *texw, int *texh)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
if (p->opts.npot) {
|
|
|
|
*texw = w;
|
|
|
|
*texh = h;
|
|
|
|
} else {
|
|
|
|
*texw = 32;
|
|
|
|
while (*texw < w)
|
|
|
|
*texw *= 2;
|
|
|
|
*texh = 32;
|
|
|
|
while (*texh < h)
|
|
|
|
*texh *= 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void draw_triangles(struct gl_video *p, struct vertex *vb, int vert_count)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
assert(vert_count % 3 == 0);
|
|
|
|
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
|
|
|
|
gl->BufferData(GL_ARRAY_BUFFER, vert_count * sizeof(struct vertex), vb,
|
|
|
|
GL_DYNAMIC_DRAW);
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
|
|
|
|
if (gl->BindVertexArray)
|
|
|
|
gl->BindVertexArray(p->vao);
|
|
|
|
|
|
|
|
gl->DrawArrays(GL_TRIANGLES, 0, vert_count);
|
|
|
|
|
|
|
|
if (gl->BindVertexArray)
|
|
|
|
gl->BindVertexArray(0);
|
|
|
|
|
|
|
|
debug_check_gl(p, "after rendering");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write a textured quad to a vertex array.
|
|
|
|
// va = destination vertex array, VERTICES_PER_QUAD entries will be overwritten
|
|
|
|
// x0, y0, x1, y1 = destination coordinates of the quad
|
|
|
|
// tx0, ty0, tx1, ty1 = source texture coordinates (usually in pixels)
|
|
|
|
// texture_w, texture_h = size of the texture, or an inverse factor
|
|
|
|
// color = optional color for all vertices, NULL for opaque white
|
|
|
|
// flip = flip vertically
|
|
|
|
static void write_quad(struct vertex *va,
|
|
|
|
float x0, float y0, float x1, float y1,
|
|
|
|
float tx0, float ty0, float tx1, float ty1,
|
|
|
|
float texture_w, float texture_h,
|
|
|
|
const uint8_t color[4], bool flip)
|
|
|
|
{
|
|
|
|
static const uint8_t white[4] = { 255, 255, 255, 255 };
|
|
|
|
|
|
|
|
if (!color)
|
|
|
|
color = white;
|
|
|
|
|
|
|
|
tx0 /= texture_w;
|
|
|
|
ty0 /= texture_h;
|
|
|
|
tx1 /= texture_w;
|
|
|
|
ty1 /= texture_h;
|
|
|
|
|
|
|
|
if (flip) {
|
|
|
|
float tmp = ty0;
|
|
|
|
ty0 = ty1;
|
|
|
|
ty1 = tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define COLOR_INIT {color[0], color[1], color[2], color[3]}
|
|
|
|
va[0] = (struct vertex) { {x0, y0}, COLOR_INIT, {tx0, ty0} };
|
|
|
|
va[1] = (struct vertex) { {x0, y1}, COLOR_INIT, {tx0, ty1} };
|
|
|
|
va[2] = (struct vertex) { {x1, y0}, COLOR_INIT, {tx1, ty0} };
|
|
|
|
va[3] = (struct vertex) { {x1, y1}, COLOR_INIT, {tx1, ty1} };
|
|
|
|
va[4] = va[2];
|
|
|
|
va[5] = va[1];
|
|
|
|
#undef COLOR_INIT
|
|
|
|
}
|
|
|
|
|
2013-05-30 13:37:13 +00:00
|
|
|
static bool fbotex_init(struct gl_video *p, struct fbotex *fbo, int w, int h,
|
|
|
|
GLenum iformat)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
bool res = true;
|
|
|
|
|
|
|
|
assert(!fbo->fbo);
|
|
|
|
assert(!fbo->texture);
|
|
|
|
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
*fbo = (struct fbotex) {
|
|
|
|
.vp_w = w,
|
|
|
|
.vp_h = h,
|
|
|
|
};
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-11-01 16:33:11 +00:00
|
|
|
texture_size(p, w, h, &fbo->tex_w, &fbo->tex_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-08-28 10:32:29 +00:00
|
|
|
if (!(gl->mpgl_caps & MPGL_CAP_FB))
|
|
|
|
return false;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->GenFramebuffers(1, &fbo->fbo);
|
|
|
|
gl->GenTextures(1, &fbo->texture);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, fbo->texture);
|
2013-05-30 13:37:13 +00:00
|
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, iformat,
|
2013-03-01 20:19:20 +00:00
|
|
|
fbo->tex_w, fbo->tex_h, 0,
|
|
|
|
GL_RGB, GL_UNSIGNED_BYTE, NULL);
|
|
|
|
default_tex_params(gl, GL_TEXTURE_2D, GL_LINEAR);
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
|
|
|
|
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
|
|
|
GL_TEXTURE_2D, fbo->texture, 0);
|
|
|
|
|
|
|
|
if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_ERR(p, "Error: framebuffer completeness check failed!\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
res = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
|
|
|
|
|
|
debug_check_gl(p, "after creating framebuffer & associated texture");
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fbotex_uninit(struct gl_video *p, struct fbotex *fbo)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
if (gl->mpgl_caps & MPGL_CAP_FB) {
|
|
|
|
gl->DeleteFramebuffers(1, &fbo->fbo);
|
|
|
|
gl->DeleteTextures(1, &fbo->texture);
|
|
|
|
*fbo = (struct fbotex) {0};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void matrix_ortho2d(float m[3][3], float x0, float x1,
|
|
|
|
float y0, float y1)
|
|
|
|
{
|
|
|
|
memset(m, 0, 9 * sizeof(float));
|
|
|
|
m[0][0] = 2.0f / (x1 - x0);
|
|
|
|
m[1][1] = 2.0f / (y1 - y0);
|
|
|
|
m[2][0] = -(x1 + x0) / (x1 - x0);
|
|
|
|
m[2][1] = -(y1 + y0) / (y1 - y0);
|
|
|
|
m[2][2] = 1.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_uniforms(struct gl_video *p, GLuint program)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
GLint loc;
|
|
|
|
|
|
|
|
if (program == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
gl->UseProgram(program);
|
|
|
|
|
|
|
|
struct mp_csp_params cparams = {
|
|
|
|
.colorspace = p->colorspace,
|
|
|
|
.input_bits = p->plane_bits,
|
|
|
|
.texture_bits = (p->plane_bits + 7) & ~7,
|
|
|
|
};
|
|
|
|
mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
|
2013-05-01 21:59:00 +00:00
|
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
|
|
|
|
cparams.colorspace.format = MP_CSP_XYZ;
|
|
|
|
cparams.input_bits = 8;
|
|
|
|
cparams.texture_bits = 8;
|
|
|
|
}
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
loc = gl->GetUniformLocation(program, "transform");
|
|
|
|
if (loc >= 0) {
|
|
|
|
float matrix[3][3];
|
|
|
|
matrix_ortho2d(matrix, 0, p->vp_w, p->vp_h, 0);
|
|
|
|
gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
loc = gl->GetUniformLocation(program, "colormatrix");
|
|
|
|
if (loc >= 0) {
|
|
|
|
float yuv2rgb[3][4] = {{0}};
|
2013-05-01 21:59:00 +00:00
|
|
|
mp_get_yuv2rgb_coeffs(&cparams, yuv2rgb);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->UniformMatrix4x3fv(loc, 1, GL_TRUE, &yuv2rgb[0][0]);
|
|
|
|
}
|
|
|
|
|
2013-05-01 21:59:00 +00:00
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"),
|
|
|
|
p->input_gamma);
|
|
|
|
|
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"),
|
|
|
|
p->conv_gamma);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->Uniform3f(gl->GetUniformLocation(program, "inv_gamma"),
|
|
|
|
1.0 / cparams.rgamma,
|
|
|
|
1.0 / cparams.ggamma,
|
|
|
|
1.0 / cparams.bgamma);
|
|
|
|
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
|
|
|
char textures_n[32];
|
|
|
|
char textures_size_n[32];
|
2013-04-29 22:52:32 +00:00
|
|
|
snprintf(textures_n, sizeof(textures_n), "texture%d", n);
|
2013-03-01 20:19:20 +00:00
|
|
|
snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n);
|
|
|
|
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n);
|
|
|
|
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n),
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
p->image.planes[n].tex_w, p->image.planes[n].tex_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
vo_opengl: handle chroma location
Use the video decoder chroma location flags and render chroma locations
other than centered. Until now, we've always used the intuitive and
obvious centered chroma location, but H.264 uses something else.
FFmpeg provides a small overview in libavcodec/avcodec.h:
-----------
/**
* X X 3 4 X X are luma samples,
* 1 2 1-6 are possible chroma positions
* X X 5 6 X 0 is undefined/unknown position
*/
enum AVChromaLocation{
AVCHROMA_LOC_UNSPECIFIED = 0,
AVCHROMA_LOC_LEFT = 1, ///< mpeg2/4, h264 default
AVCHROMA_LOC_CENTER = 2, ///< mpeg1, jpeg, h263
AVCHROMA_LOC_TOPLEFT = 3, ///< DV
AVCHROMA_LOC_TOP = 4,
AVCHROMA_LOC_BOTTOMLEFT = 5,
AVCHROMA_LOC_BOTTOM = 6,
AVCHROMA_LOC_NB , ///< Not part of ABI
};
-----------
The visual difference is literally minimal, but since videophiles
apparently consider this detail as quality mark of a video renderer,
support it anyway. We don't bother with chroma locations other than
centered and left, though.
Not sure about correctness, but it's probably ok.
2013-06-08 00:15:24 +00:00
|
|
|
loc = gl->GetUniformLocation(program, "chroma_center_offset");
|
|
|
|
if (loc >= 0) {
|
|
|
|
int chr = p->opts.chroma_location;
|
|
|
|
if (!chr)
|
2013-07-25 22:26:04 +00:00
|
|
|
chr = p->image_params.chroma_location;
|
vo_opengl: handle chroma location
Use the video decoder chroma location flags and render chroma locations
other than centered. Until now, we've always used the intuitive and
obvious centered chroma location, but H.264 uses something else.
FFmpeg provides a small overview in libavcodec/avcodec.h:
-----------
/**
* X X 3 4 X X are luma samples,
* 1 2 1-6 are possible chroma positions
* X X 5 6 X 0 is undefined/unknown position
*/
enum AVChromaLocation{
AVCHROMA_LOC_UNSPECIFIED = 0,
AVCHROMA_LOC_LEFT = 1, ///< mpeg2/4, h264 default
AVCHROMA_LOC_CENTER = 2, ///< mpeg1, jpeg, h263
AVCHROMA_LOC_TOPLEFT = 3, ///< DV
AVCHROMA_LOC_TOP = 4,
AVCHROMA_LOC_BOTTOMLEFT = 5,
AVCHROMA_LOC_BOTTOM = 6,
AVCHROMA_LOC_NB , ///< Not part of ABI
};
-----------
The visual difference is literally minimal, but since videophiles
apparently consider this detail as quality mark of a video renderer,
support it anyway. We don't bother with chroma locations other than
centered and left, though.
Not sure about correctness, but it's probably ok.
2013-06-08 00:15:24 +00:00
|
|
|
int cx, cy;
|
|
|
|
mp_get_chroma_location(chr, &cx, &cy);
|
|
|
|
// By default texture coordinates are such that chroma is centered with
|
|
|
|
// any chroma subsampling. If a specific direction is given, make it
|
|
|
|
// so that the luma and chroma sample line up exactly.
|
|
|
|
// For 4:4:4, setting chroma location should have no effect at all.
|
|
|
|
// luma sample size (in chroma coord. space)
|
|
|
|
float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
|
|
|
|
float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
|
|
|
|
// move chroma center to luma center (in chroma coord. space)
|
|
|
|
float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0;
|
|
|
|
float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0;
|
|
|
|
gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w, 1),
|
|
|
|
o_y / FFMAX(p->image.planes[1].h, 1));
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"),
|
|
|
|
p->dither_size, p->dither_size);
|
|
|
|
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT);
|
|
|
|
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
const char *lut = p->scalers[n].lut_name;
|
|
|
|
if (lut)
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, lut),
|
|
|
|
TEXUNIT_SCALERS + n);
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER);
|
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"),
|
|
|
|
p->dither_quantization);
|
2013-05-30 11:36:11 +00:00
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"),
|
|
|
|
p->dither_center);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
float sparam1 = p->opts.scaler_params[0];
|
|
|
|
gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1"),
|
|
|
|
isnan(sparam1) ? 0.5f : sparam1);
|
|
|
|
|
|
|
|
gl->UseProgram(0);
|
|
|
|
|
|
|
|
debug_check_gl(p, "update_uniforms()");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_all_uniforms(struct gl_video *p)
|
|
|
|
{
|
|
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++)
|
|
|
|
update_uniforms(p, p->osd_programs[n]);
|
|
|
|
update_uniforms(p, p->indirect_program);
|
|
|
|
update_uniforms(p, p->scale_sep_program);
|
|
|
|
update_uniforms(p, p->final_program);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SECTION_HEADER "#!section "
|
|
|
|
|
|
|
|
static char *get_section(void *talloc_ctx, struct bstr source,
|
|
|
|
const char *section)
|
|
|
|
{
|
|
|
|
char *res = talloc_strdup(talloc_ctx, "");
|
|
|
|
bool copy = false;
|
|
|
|
while (source.len) {
|
|
|
|
struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source));
|
|
|
|
if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) {
|
|
|
|
copy = bstrcmp0(line, section) == 0;
|
|
|
|
} else if (copy) {
|
|
|
|
res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *t_concat(void *talloc_ctx, const char *s1, const char *s2)
|
|
|
|
{
|
|
|
|
return talloc_asprintf(talloc_ctx, "%s%s", s1, s2);
|
|
|
|
}
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
static GLuint create_shader(struct gl_video *p, GLenum type, const char *header,
|
2013-03-01 20:19:20 +00:00
|
|
|
const char *source)
|
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
GL *gl = p->gl;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
void *tmp = talloc_new(NULL);
|
|
|
|
const char *full_source = t_concat(tmp, header, source);
|
|
|
|
|
|
|
|
GLuint shader = gl->CreateShader(type);
|
|
|
|
gl->ShaderSource(shader, 1, &full_source, NULL);
|
|
|
|
gl->CompileShader(shader);
|
|
|
|
GLint status;
|
|
|
|
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
|
|
|
|
GLint log_length;
|
|
|
|
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DBG2) : MSGL_ERR;
|
|
|
|
const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
|
2013-07-31 19:44:21 +00:00
|
|
|
if (mp_msg_test_log(p->log, pri)) {
|
|
|
|
MP_MSG(p, pri, "%s shader source:\n", typestr);
|
|
|
|
mp_log_source(p->log, pri, full_source);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
if (log_length > 1) {
|
2013-07-31 19:44:21 +00:00
|
|
|
GLchar *logstr = talloc_zero_size(tmp, log_length + 1);
|
|
|
|
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
|
|
|
|
MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n",
|
|
|
|
typestr, status, logstr);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
talloc_free(tmp);
|
|
|
|
|
|
|
|
return shader;
|
|
|
|
}
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type,
|
|
|
|
const char *header, const char *source)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
GL *gl = p->gl;
|
|
|
|
GLuint shader = create_shader(p, type, header, source);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->AttachShader(program, shader);
|
|
|
|
gl->DeleteShader(shader);
|
|
|
|
}
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
static void link_shader(struct gl_video *p, GLuint program)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
GL *gl = p->gl;
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->LinkProgram(program);
|
|
|
|
GLint status;
|
|
|
|
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
|
|
|
|
GLint log_length;
|
|
|
|
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DBG2) : MSGL_ERR;
|
2013-07-31 19:44:21 +00:00
|
|
|
if (mp_msg_test_log(p->log, pri)) {
|
|
|
|
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
|
|
|
|
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
|
|
|
|
MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr);
|
|
|
|
talloc_free(logstr);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bind_attrib_locs(GL *gl, GLuint program)
|
|
|
|
{
|
|
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_POSITION, "vertex_position");
|
|
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_COLOR, "vertex_color");
|
|
|
|
gl->BindAttribLocation(program, VERTEX_ATTRIB_TEXCOORD, "vertex_texcoord");
|
|
|
|
}
|
|
|
|
|
2013-06-01 17:58:32 +00:00
|
|
|
#define PRELUDE_END "// -- prelude end\n"
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
static GLuint create_program(struct gl_video *p, const char *name,
|
|
|
|
const char *header, const char *vertex,
|
|
|
|
const char *frag)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
GL *gl = p->gl;
|
|
|
|
MP_VERBOSE(p, "compiling shader program '%s', header:\n", name);
|
2013-06-01 17:58:32 +00:00
|
|
|
const char *real_header = strstr(header, PRELUDE_END);
|
|
|
|
real_header = real_header ? real_header + strlen(PRELUDE_END) : header;
|
2013-07-31 19:44:21 +00:00
|
|
|
mp_log_source(p->log, MSGL_V, real_header);
|
2013-03-01 20:19:20 +00:00
|
|
|
GLuint prog = gl->CreateProgram();
|
2013-07-31 19:44:21 +00:00
|
|
|
prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex);
|
|
|
|
prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag);
|
2013-03-01 20:19:20 +00:00
|
|
|
bind_attrib_locs(gl, prog);
|
2013-07-31 19:44:21 +00:00
|
|
|
link_shader(p, prog);
|
2013-03-01 20:19:20 +00:00
|
|
|
return prog;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void shader_def(char **shader, const char *name,
|
|
|
|
const char *value)
|
|
|
|
{
|
|
|
|
*shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void shader_def_opt(char **shader, const char *name, bool b)
|
|
|
|
{
|
|
|
|
if (b)
|
|
|
|
shader_def(shader, name, "1");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass)
|
|
|
|
{
|
|
|
|
const char *target = scaler->index == 0 ? "SAMPLE_L" : "SAMPLE_C";
|
|
|
|
if (!scaler->kernel) {
|
|
|
|
*shader = talloc_asprintf_append(*shader, "#define %s sample_%s\n",
|
|
|
|
target, scaler->name);
|
|
|
|
} else {
|
|
|
|
int size = scaler->kernel->size;
|
|
|
|
if (pass != -1) {
|
|
|
|
// The direction/pass assignment is rather arbitrary, but fixed in
|
|
|
|
// other parts of the code (like FBO setup).
|
|
|
|
const char *direction = pass == 0 ? "0, 1" : "1, 0";
|
|
|
|
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
|
|
|
|
"sample_convolution_sep%d(vec2(%s), %s, p0, p1, p2)\n",
|
|
|
|
target, size, direction, scaler->lut_name);
|
|
|
|
} else {
|
|
|
|
*shader = talloc_asprintf_append(*shader, "#define %s(p0, p1, p2) "
|
|
|
|
"sample_convolution%d(%s, p0, p1, p2)\n",
|
|
|
|
target, size, scaler->lut_name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// return false if RGB or 4:4:4 YUV
|
|
|
|
static bool input_is_subsampled(struct gl_video *p)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < p->plane_count; i++)
|
2013-03-28 19:40:19 +00:00
|
|
|
if (p->image_desc.xs[i] || p->image_desc.ys[i])
|
2013-03-01 20:19:20 +00:00
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void compile_shaders(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
delete_shaders(p);
|
|
|
|
|
|
|
|
void *tmp = talloc_new(NULL);
|
|
|
|
|
|
|
|
struct bstr src = bstr0(vo_opengl_shaders);
|
|
|
|
char *vertex_shader = get_section(tmp, src, "vertex_all");
|
|
|
|
char *shader_prelude = get_section(tmp, src, "prelude");
|
|
|
|
char *s_video = get_section(tmp, src, "frag_video");
|
|
|
|
|
2013-06-01 17:58:32 +00:00
|
|
|
char *header = talloc_asprintf(tmp, "#version %d\n%s%s", gl->glsl_version,
|
|
|
|
shader_prelude, PRELUDE_END);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-03-28 20:44:27 +00:00
|
|
|
// Need to pass alpha through the whole chain. (Not needed for OSD shaders.)
|
2013-09-19 14:55:56 +00:00
|
|
|
if (p->opts.alpha_mode == 1)
|
|
|
|
shader_def_opt(&header, "USE_ALPHA", p->has_alpha);
|
2013-03-28 20:44:27 +00:00
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
char *header_osd = talloc_strdup(tmp, header);
|
|
|
|
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV", p->opts.srgb &&
|
|
|
|
!p->use_lut_3d);
|
|
|
|
shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d);
|
|
|
|
shader_def_opt(&header_osd, "USE_OSD_SRGB", p->opts.srgb);
|
|
|
|
|
|
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++) {
|
|
|
|
const char *name = osd_shaders[n];
|
|
|
|
if (name) {
|
|
|
|
char *s_osd = get_section(tmp, src, name);
|
|
|
|
p->osd_programs[n] =
|
2013-07-31 19:44:21 +00:00
|
|
|
create_program(p, name, header_osd, vertex_shader, s_osd);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
char *header_conv = talloc_strdup(tmp, "");
|
|
|
|
char *header_final = talloc_strdup(tmp, "");
|
|
|
|
char *header_sep = NULL;
|
|
|
|
|
2013-05-01 21:59:00 +00:00
|
|
|
float input_gamma = 1.0;
|
|
|
|
float conv_gamma = 1.0;
|
|
|
|
|
|
|
|
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
|
|
|
|
input_gamma *= 2.6;
|
|
|
|
conv_gamma *= 1.0 / 2.2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!p->is_linear_rgb && (p->opts.srgb || p->use_lut_3d))
|
|
|
|
conv_gamma *= 1.0 / 0.45;
|
|
|
|
|
|
|
|
p->input_gamma = input_gamma;
|
|
|
|
p->conv_gamma = conv_gamma;
|
|
|
|
|
|
|
|
bool convert_input_gamma = p->input_gamma != 1.0;
|
|
|
|
bool convert_input_to_linear = p->conv_gamma != 1.0;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-03-28 20:02:48 +00:00
|
|
|
if (p->image_format == IMGFMT_NV12 || p->image_format == IMGFMT_NV21) {
|
2013-03-28 20:02:41 +00:00
|
|
|
shader_def(&header_conv, "USE_CONV", "CONV_NV12");
|
|
|
|
} else if (p->plane_count > 1) {
|
|
|
|
shader_def(&header_conv, "USE_CONV", "CONV_PLANAR");
|
|
|
|
}
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
if (p->color_swizzle[0])
|
|
|
|
shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle);
|
2013-03-28 20:02:48 +00:00
|
|
|
shader_def_opt(&header_conv, "USE_SWAP_UV", p->image_format == IMGFMT_NV21);
|
2013-03-01 20:19:20 +00:00
|
|
|
shader_def_opt(&header_conv, "USE_YGRAY", p->is_yuv && p->plane_count == 1);
|
2013-05-01 21:59:00 +00:00
|
|
|
shader_def_opt(&header_conv, "USE_INPUT_GAMMA", convert_input_gamma);
|
|
|
|
shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb);
|
|
|
|
shader_def_opt(&header_conv, "USE_CONV_GAMMA", convert_input_to_linear);
|
2013-09-19 14:55:56 +00:00
|
|
|
if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3)
|
2013-03-28 20:44:27 +00:00
|
|
|
shader_def(&header_conv, "USE_ALPHA_PLANE", "3");
|
2013-09-19 14:55:56 +00:00
|
|
|
if (p->opts.alpha_mode == 2 && p->has_alpha)
|
|
|
|
shader_def(&header_conv, "USE_ALPHA_BLEND", "1");
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
shader_def_opt(&header_final, "USE_LINEAR_CONV_INV", p->use_lut_3d);
|
|
|
|
shader_def_opt(&header_final, "USE_GAMMA_POW", p->opts.gamma);
|
|
|
|
shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d);
|
|
|
|
shader_def_opt(&header_final, "USE_SRGB", p->opts.srgb);
|
|
|
|
shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0);
|
2013-05-25 23:48:39 +00:00
|
|
|
shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
if (p->opts.scale_sep && p->scalers[0].kernel) {
|
|
|
|
header_sep = talloc_strdup(tmp, "");
|
|
|
|
shader_def_opt(&header_sep, "FIXED_SCALE", true);
|
|
|
|
shader_setup_scaler(&header_sep, &p->scalers[0], 0);
|
|
|
|
shader_setup_scaler(&header_final, &p->scalers[0], 1);
|
|
|
|
} else {
|
|
|
|
shader_setup_scaler(&header_final, &p->scalers[0], -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We want to do scaling in linear light. Scaling is closely connected to
|
|
|
|
// texture sampling due to how the shader is structured (or if GL bilinear
|
|
|
|
// scaling is used). The purpose of the "indirect" pass is to convert the
|
|
|
|
// input video to linear RGB.
|
|
|
|
// Another purpose is reducing input to a single texture for scaling.
|
|
|
|
bool use_indirect = p->opts.indirect;
|
|
|
|
|
|
|
|
// Don't sample from input video textures before converting the input to
|
|
|
|
// linear light. (Unneeded when sRGB textures are used.)
|
2013-05-01 21:59:00 +00:00
|
|
|
if (convert_input_gamma || convert_input_to_linear)
|
2013-03-01 20:19:20 +00:00
|
|
|
use_indirect = true;
|
|
|
|
|
|
|
|
// It doesn't make sense to scale the chroma with cscale in the 1. scale
|
|
|
|
// step and with lscale in the 2. step. If the chroma is subsampled, a
|
|
|
|
// convolution filter wouldn't even work entirely correctly, because the
|
|
|
|
// luma scaler would sample two texels instead of one per tap for chroma.
|
|
|
|
// Also, even with 4:4:4 YUV or planar RGB, the indirection might be faster,
|
|
|
|
// because the shader can't use one scaler for sampling from 3 textures. It
|
|
|
|
// has to fetch the coefficients for each texture separately, even though
|
|
|
|
// they're the same (this is not an inherent restriction, but would require
|
|
|
|
// to restructure the shader).
|
|
|
|
if (header_sep && p->plane_count > 1)
|
|
|
|
use_indirect = true;
|
|
|
|
|
|
|
|
if (input_is_subsampled(p)) {
|
|
|
|
shader_setup_scaler(&header_conv, &p->scalers[1], -1);
|
|
|
|
} else {
|
|
|
|
// Force using the luma scaler on chroma. If the "indirect" stage is
|
|
|
|
// used, the actual scaling will happen in the next stage.
|
|
|
|
shader_def(&header_conv, "SAMPLE_C",
|
|
|
|
use_indirect ? "sample_bilinear" : "SAMPLE_L");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_indirect) {
|
|
|
|
// We don't use filtering for the Y-plane (luma), because it's never
|
|
|
|
// scaled in this scenario.
|
|
|
|
shader_def(&header_conv, "SAMPLE_L", "sample_bilinear");
|
|
|
|
shader_def_opt(&header_conv, "FIXED_SCALE", true);
|
|
|
|
header_conv = t_concat(tmp, header, header_conv);
|
|
|
|
p->indirect_program =
|
2013-07-31 19:44:21 +00:00
|
|
|
create_program(p, "indirect", header_conv, vertex_shader, s_video);
|
2013-03-01 20:19:20 +00:00
|
|
|
} else if (header_sep) {
|
|
|
|
header_sep = t_concat(tmp, header_sep, header_conv);
|
|
|
|
} else {
|
|
|
|
header_final = t_concat(tmp, header_final, header_conv);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (header_sep) {
|
|
|
|
header_sep = t_concat(tmp, header, header_sep);
|
|
|
|
p->scale_sep_program =
|
2013-07-31 19:44:21 +00:00
|
|
|
create_program(p, "scale_sep", header_sep, vertex_shader, s_video);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
header_final = t_concat(tmp, header, header_final);
|
|
|
|
p->final_program =
|
2013-07-31 19:44:21 +00:00
|
|
|
create_program(p, "final", header_final, vertex_shader, s_video);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
debug_check_gl(p, "shader compilation");
|
|
|
|
|
|
|
|
talloc_free(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void delete_program(GL *gl, GLuint *prog)
|
|
|
|
{
|
|
|
|
gl->DeleteProgram(*prog);
|
|
|
|
*prog = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void delete_shaders(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
for (int n = 0; n < SUBBITMAP_COUNT; n++)
|
|
|
|
delete_program(gl, &p->osd_programs[n]);
|
|
|
|
delete_program(gl, &p->indirect_program);
|
|
|
|
delete_program(gl, &p->scale_sep_program);
|
|
|
|
delete_program(gl, &p->final_program);
|
|
|
|
}
|
|
|
|
|
|
|
|
static double get_scale_factor(struct gl_video *p)
|
|
|
|
{
|
|
|
|
double sx = (p->dst_rect.x1 - p->dst_rect.x0) /
|
|
|
|
(double)(p->src_rect.x1 - p->src_rect.x0);
|
|
|
|
double sy = (p->dst_rect.y1 - p->dst_rect.y0) /
|
|
|
|
(double)(p->src_rect.y1 - p->src_rect.y0);
|
|
|
|
// xxx: actually we should use different scalers in X/Y directions if the
|
|
|
|
// scale factors are different due to anamorphic content
|
|
|
|
return FFMIN(sx, sy);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool update_scale_factor(struct gl_video *p, struct filter_kernel *kernel)
|
|
|
|
{
|
|
|
|
double scale = get_scale_factor(p);
|
|
|
|
if (!p->opts.fancy_downscaling && scale < 1.0)
|
|
|
|
scale = 1.0;
|
|
|
|
return mp_init_filter(kernel, filter_sizes, FFMAX(1.0, 1.0 / scale));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_scaler(struct gl_video *p, struct scaler *scaler)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
assert(scaler->name);
|
|
|
|
|
|
|
|
scaler->kernel = NULL;
|
|
|
|
|
|
|
|
const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
|
|
|
|
if (!t_kernel)
|
|
|
|
return;
|
|
|
|
|
|
|
|
scaler->kernel_storage = *t_kernel;
|
|
|
|
scaler->kernel = &scaler->kernel_storage;
|
|
|
|
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
if (!isnan(p->opts.scaler_params[n]))
|
|
|
|
scaler->kernel->params[n] = p->opts.scaler_params[n];
|
|
|
|
}
|
|
|
|
|
|
|
|
update_scale_factor(p, scaler->kernel);
|
|
|
|
|
|
|
|
int size = scaler->kernel->size;
|
|
|
|
assert(size < FF_ARRAY_ELEMS(lut_tex_formats));
|
|
|
|
struct lut_tex_format *fmt = &lut_tex_formats[size];
|
|
|
|
bool use_2d = fmt->pixels > 1;
|
|
|
|
bool is_luma = scaler->index == 0;
|
|
|
|
scaler->lut_name = use_2d
|
|
|
|
? (is_luma ? "lut_l_2d" : "lut_c_2d")
|
|
|
|
: (is_luma ? "lut_l_1d" : "lut_c_1d");
|
|
|
|
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
|
|
|
|
GLenum target = use_2d ? GL_TEXTURE_2D : GL_TEXTURE_1D;
|
|
|
|
|
|
|
|
if (!scaler->gl_lut)
|
|
|
|
gl->GenTextures(1, &scaler->gl_lut);
|
|
|
|
|
|
|
|
gl->BindTexture(target, scaler->gl_lut);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
|
|
|
|
|
|
float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
|
|
|
|
mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
|
|
|
|
if (use_2d) {
|
|
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, fmt->pixels,
|
|
|
|
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
|
|
|
|
weights);
|
|
|
|
} else {
|
|
|
|
gl->TexImage1D(GL_TEXTURE_1D, 0, fmt->internal_format,
|
|
|
|
LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT,
|
|
|
|
weights);
|
|
|
|
}
|
|
|
|
talloc_free(weights);
|
|
|
|
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
|
|
|
|
debug_check_gl(p, "after initializing scaler");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_dither(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
// Assume 8 bits per component if unknown.
|
|
|
|
int dst_depth = p->depth_g ? p->depth_g : 8;
|
|
|
|
if (p->opts.dither_depth > 0)
|
|
|
|
dst_depth = p->opts.dither_depth;
|
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
|
2013-03-01 20:19:20 +00:00
|
|
|
return;
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
int tex_size;
|
|
|
|
void *tex_data;
|
2013-05-30 11:36:11 +00:00
|
|
|
GLint tex_iformat;
|
2013-05-25 23:48:39 +00:00
|
|
|
GLenum tex_type;
|
|
|
|
unsigned char temp[256];
|
|
|
|
|
|
|
|
if (p->opts.dither_algo == 0) {
|
|
|
|
int sizeb = p->opts.dither_size;
|
|
|
|
int size = 1 << sizeb;
|
|
|
|
|
|
|
|
if (p->last_dither_matrix_size != size) {
|
|
|
|
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
|
|
|
|
float, size * size);
|
|
|
|
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
|
|
|
|
p->last_dither_matrix_size = size;
|
|
|
|
}
|
|
|
|
|
|
|
|
tex_size = size;
|
2013-05-30 11:36:11 +00:00
|
|
|
tex_iformat = GL_R16;
|
2013-05-25 23:48:39 +00:00
|
|
|
tex_type = GL_FLOAT;
|
|
|
|
tex_data = p->last_dither_matrix;
|
|
|
|
} else {
|
|
|
|
assert(sizeof(temp) >= 8 * 8);
|
|
|
|
mp_make_ordered_dither_matrix(temp, 8);
|
|
|
|
|
|
|
|
tex_size = 8;
|
2013-05-30 11:36:11 +00:00
|
|
|
tex_iformat = GL_RED;
|
2013-05-25 23:48:39 +00:00
|
|
|
tex_type = GL_UNSIGNED_BYTE;
|
|
|
|
tex_data = temp;
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
// This defines how many bits are considered significant for output on
|
2013-05-25 23:48:39 +00:00
|
|
|
// screen. The superfluous bits will be used for rounding according to the
|
2013-03-01 20:19:20 +00:00
|
|
|
// dither matrix. The precision of the source implicitly decides how many
|
|
|
|
// dither patterns can be visible.
|
|
|
|
p->dither_quantization = (1 << dst_depth) - 1;
|
2013-05-30 11:36:11 +00:00
|
|
|
p->dither_center = 0.5 / (tex_size * tex_size);
|
2013-05-25 23:48:39 +00:00
|
|
|
p->dither_size = tex_size;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
|
|
|
|
gl->GenTextures(1, &p->dither_texture);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
2013-05-30 11:36:11 +00:00
|
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, GL_RED,
|
2013-05-25 23:48:39 +00:00
|
|
|
tex_type, tex_data);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void recreate_osd(struct gl_video *p)
|
|
|
|
{
|
|
|
|
if (p->osd)
|
|
|
|
mpgl_osd_destroy(p->osd);
|
2013-09-11 23:33:33 +00:00
|
|
|
p->osd = mpgl_osd_init(p->gl, p->log, false);
|
2013-03-01 20:19:20 +00:00
|
|
|
p->osd->use_pbo = p->opts.pbo;
|
|
|
|
}
|
|
|
|
|
2013-05-25 21:47:55 +00:00
|
|
|
static bool does_resize(struct mp_rect src, struct mp_rect dst)
|
|
|
|
{
|
|
|
|
return src.x1 - src.x0 != dst.x1 - dst.x0 ||
|
|
|
|
src.y1 - src.y0 != dst.y1 - dst.y0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char *expected_scaler(struct gl_video *p, int unit)
|
|
|
|
{
|
|
|
|
if (p->opts.scaler_resizes_only && unit == 0 &&
|
|
|
|
!does_resize(p->src_rect, p->dst_rect))
|
|
|
|
{
|
|
|
|
return "bilinear";
|
|
|
|
}
|
|
|
|
return p->opts.scalers[unit];
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
static void reinit_rendering(struct gl_video *p)
|
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Reinit rendering.\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
debug_check_gl(p, "before scaler initialization");
|
|
|
|
|
|
|
|
uninit_rendering(p);
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (!p->image_format)
|
2013-03-01 20:19:20 +00:00
|
|
|
return;
|
|
|
|
|
2013-05-25 21:47:55 +00:00
|
|
|
for (int n = 0; n < 2; n++)
|
|
|
|
p->scalers[n].name = expected_scaler(p, n);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
init_dither(p);
|
|
|
|
|
|
|
|
init_scaler(p, &p->scalers[0]);
|
|
|
|
init_scaler(p, &p->scalers[1]);
|
|
|
|
|
|
|
|
compile_shaders(p);
|
|
|
|
update_all_uniforms(p);
|
|
|
|
|
|
|
|
if (p->indirect_program && !p->indirect_fbo.fbo)
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
fbotex_init(p, &p->indirect_fbo, p->image_w, p->image_h,
|
2013-05-30 13:37:13 +00:00
|
|
|
p->opts.fbo_format);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
recreate_osd(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void uninit_rendering(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
delete_shaders(p);
|
|
|
|
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
gl->DeleteTextures(1, &p->scalers[n].gl_lut);
|
|
|
|
p->scalers[n].gl_lut = 0;
|
|
|
|
p->scalers[n].lut_name = NULL;
|
|
|
|
p->scalers[n].kernel = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->DeleteTextures(1, &p->dither_texture);
|
|
|
|
p->dither_texture = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
assert(!p->lut_3d_texture);
|
|
|
|
|
|
|
|
if (!lut3d)
|
|
|
|
return;
|
|
|
|
|
|
|
|
gl->GenTextures(1, &p->lut_3d_texture);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT);
|
|
|
|
gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
|
|
gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1],
|
|
|
|
lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
|
|
|
|
p->use_lut_3d = true;
|
|
|
|
check_gl_features(p);
|
|
|
|
|
|
|
|
debug_check_gl(p, "after 3d lut creation");
|
|
|
|
}
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
static void set_image_textures(struct gl_video *p, struct video_image *vimg,
|
|
|
|
GLuint imgtex[4])
|
2013-03-28 19:40:19 +00:00
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
2013-11-04 00:20:11 +00:00
|
|
|
GLuint dummy[4] = {0};
|
2013-11-03 23:00:18 +00:00
|
|
|
if (!imgtex)
|
|
|
|
imgtex = dummy;
|
2013-03-28 19:40:19 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (p->hwdec_active) {
|
|
|
|
assert(vimg->hwimage);
|
2013-11-05 18:08:44 +00:00
|
|
|
p->hwdec->driver->map_image(p->hwdec, vimg->hwimage, imgtex);
|
2013-11-03 23:00:18 +00:00
|
|
|
} else {
|
|
|
|
for (int n = 0; n < p->plane_count; n++)
|
|
|
|
imgtex[n] = vimg->planes[n].gl_texture;
|
|
|
|
}
|
2013-03-28 19:40:19 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
for (int n = 0; n < 4; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
2013-11-03 23:00:18 +00:00
|
|
|
gl->BindTexture(GL_TEXTURE_2D, imgtex[n]);
|
|
|
|
}
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unset_image_textures(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
for (int n = 0; n < 4; n++) {
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, 0);
|
2013-03-28 19:40:19 +00:00
|
|
|
}
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
2013-11-03 23:00:18 +00:00
|
|
|
|
|
|
|
if (p->hwdec_active)
|
2013-11-05 18:08:44 +00:00
|
|
|
p->hwdec->driver->unmap_image(p->hwdec);
|
2013-03-28 19:40:19 +00:00
|
|
|
}
|
|
|
|
|
2013-11-05 18:08:44 +00:00
|
|
|
static void init_video(struct gl_video *p, const struct mp_image_params *params)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
check_gl_features(p);
|
|
|
|
|
2013-11-05 18:08:44 +00:00
|
|
|
init_format(params->imgfmt, p);
|
|
|
|
|
|
|
|
p->image_w = params->w;
|
|
|
|
p->image_h = params->h;
|
|
|
|
p->image_dw = params->d_w;
|
|
|
|
p->image_dh = params->d_h;
|
|
|
|
p->image_params = *params;
|
|
|
|
|
|
|
|
struct mp_csp_details csp = MP_CSP_DETAILS_DEFAULTS;
|
|
|
|
csp.levels_in = params->colorlevels;
|
|
|
|
csp.levels_out = params->outputlevels;
|
|
|
|
csp.format = params->colorspace;
|
|
|
|
p->colorspace = csp;
|
|
|
|
|
2013-05-01 21:13:39 +00:00
|
|
|
if (p->is_rgb && (p->opts.srgb || p->use_lut_3d)) {
|
2013-03-01 20:19:20 +00:00
|
|
|
p->is_linear_rgb = true;
|
2013-03-28 19:48:53 +00:00
|
|
|
p->image.planes[0].gl_internal_format = GL_SRGB;
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int eq_caps = MP_CSP_EQ_CAPS_GAMMA;
|
|
|
|
if (p->is_yuv)
|
|
|
|
eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX;
|
|
|
|
p->video_eq.capabilities = eq_caps;
|
|
|
|
|
|
|
|
debug_check_gl(p, "before video texture creation");
|
|
|
|
|
2013-08-06 18:09:31 +00:00
|
|
|
// For video with odd sizes: enlarge the luma texture so that it covers all
|
|
|
|
// chroma pixels - then we can render these correctly by cropping the final
|
|
|
|
// image (conceptually).
|
|
|
|
// Image allocations are always such that the "additional" luma border
|
|
|
|
// exists and can be accessed.
|
|
|
|
int full_w = MP_ALIGN_UP(p->image_w, 1 << p->image_desc.chroma_xs);
|
|
|
|
int full_h = MP_ALIGN_UP(p->image_h, 1 << p->image_desc.chroma_ys);
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
struct texplane *plane = &vimg->planes[n];
|
|
|
|
|
2013-08-06 18:09:31 +00:00
|
|
|
plane->w = full_w >> p->image_desc.xs[n];
|
|
|
|
plane->h = full_h >> p->image_desc.ys[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (p->hwdec_active) {
|
|
|
|
// We expect hwdec backends to allocate exact size
|
|
|
|
plane->tex_w = plane->w;
|
|
|
|
plane->tex_h = plane->h;
|
|
|
|
} else {
|
|
|
|
texture_size(p, plane->w, plane->h,
|
|
|
|
&plane->tex_w, &plane->tex_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
|
|
gl->GenTextures(1, &plane->gl_texture);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, plane->gl_texture);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, plane->gl_internal_format,
|
|
|
|
plane->tex_w, plane->tex_h, 0,
|
|
|
|
plane->gl_format, plane->gl_type, NULL);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
default_tex_params(gl, GL_TEXTURE_2D, GL_LINEAR);
|
|
|
|
}
|
2013-03-28 19:48:53 +00:00
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n",
|
|
|
|
n, plane->tex_w, plane->tex_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
p->texture_w = p->image.planes[0].tex_w;
|
|
|
|
p->texture_h = p->image.planes[0].tex_h;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
debug_check_gl(p, "after video texture creation");
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (p->hwdec_active) {
|
2013-11-05 18:08:44 +00:00
|
|
|
if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0)
|
|
|
|
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
|
2013-11-03 23:00:18 +00:00
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
reinit_rendering(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void uninit_video(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
uninit_rendering(p);
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
for (int n = 0; n < 3; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
struct texplane *plane = &vimg->planes[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
gl->DeleteTextures(1, &plane->gl_texture);
|
|
|
|
plane->gl_texture = 0;
|
|
|
|
gl->DeleteBuffers(1, &plane->gl_buffer);
|
|
|
|
plane->gl_buffer = 0;
|
|
|
|
plane->buffer_ptr = NULL;
|
|
|
|
plane->buffer_size = 0;
|
|
|
|
}
|
2013-11-03 23:00:18 +00:00
|
|
|
mp_image_unrefp(&vimg->hwimage);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
fbotex_uninit(p, &p->indirect_fbo);
|
|
|
|
fbotex_uninit(p, &p->scale_sep_fbo);
|
|
|
|
}
|
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
static void change_dither_trafo(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
int program = p->final_program;
|
|
|
|
|
|
|
|
int phase = p->frames_rendered % 8u;
|
|
|
|
float r = phase * (M_PI / 2); // rotate
|
|
|
|
float m = phase < 4 ? 1 : -1; // mirror
|
|
|
|
|
|
|
|
gl->UseProgram(program);
|
|
|
|
|
|
|
|
float matrix[2][2] = {{cos(r), -sin(r) },
|
|
|
|
{sin(r) * m, cos(r) * m}};
|
|
|
|
gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"),
|
|
|
|
1, GL_TRUE, &matrix[0][0]);
|
|
|
|
|
|
|
|
gl->UseProgram(0);
|
|
|
|
}
|
|
|
|
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
static void render_to_fbo(struct gl_video *p, struct fbotex *fbo,
|
|
|
|
int x, int y, int w, int h, int tex_w, int tex_h)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
|
|
|
|
|
|
|
|
struct vertex vb[VERTICES_PER_QUAD];
|
|
|
|
write_quad(vb, -1, -1, 1, 1,
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
x, y, x + w, y + h,
|
2013-03-01 20:19:20 +00:00
|
|
|
tex_w, tex_h,
|
|
|
|
NULL, false);
|
|
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
|
|
gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
// *chain contains the source, and is overwritten with a copy of the result
|
|
|
|
static void handle_pass(struct gl_video *p, struct fbotex *chain,
|
2013-03-01 20:19:20 +00:00
|
|
|
struct fbotex *fbo, GLuint program)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
if (!program)
|
|
|
|
return;
|
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
gl->BindTexture(GL_TEXTURE_2D, chain->texture);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->UseProgram(program);
|
2013-06-14 21:48:35 +00:00
|
|
|
render_to_fbo(p, fbo, chain->vp_x, chain->vp_y,
|
|
|
|
chain->vp_w, chain->vp_h,
|
|
|
|
chain->tex_w, chain->tex_h);
|
|
|
|
*chain = *fbo;
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_render_frame(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
struct vertex vb[VERTICES_PER_QUAD];
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
bool is_flipped = vimg->image_flipped;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
if (p->opts.temporal_dither)
|
|
|
|
change_dither_trafo(p);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y
|
|
|
|
|| p->dst_rect.x1 < p->vp_x + p->vp_w
|
|
|
|
|| p->dst_rect.y1 < p->vp_y + p->vp_h)
|
|
|
|
{
|
|
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
|
|
}
|
|
|
|
|
video/out: always support redrawing VO window at any point
Before, a VO could easily refuse to respond to VOCTRL_REDRAW_FRAME,
which means the VO wouldn't redraw OSD and window contents, and the
player would appear frozen to the user. This was a bit stupid, and makes
dealing with some corner cases much harder (think of --keep-open, which
was hard to implement, because the VO gets into this state if there are
no new video frames after a seek reset).
Change this, and require VOs to always react to VOCTRL_REDRAW_FRAME.
There are two aspects of this: First, behavior after a (successful)
vo_reconfig() call, but before any video frame has been displayed.
Second, behavior after a vo_seek_reset().
For the first issue, we define that sending VOCTRL_REDRAW_FRAME after
vo_reconfig() should clear the window with black. This requires minor
changes to some VOs. In particular vaapi makes this horribly
complicated, because OSD rendering is bound to a video surface. We
create a black dummy surface for this purpose.
The second issue is much simpler and works already with most VOs: they
simply redraw whatever has been uploaded previously. The exception is
vdpau, which has a complicated mechanism to track and filter video
frames. The state associated with this mechanism is completely cleared
with vo_seek_reset(), so implementing this to work as expected is not
trivial. For now, we just clear the window with black.
2013-10-01 21:35:51 +00:00
|
|
|
if (!p->have_image) {
|
|
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
// Order of processing:
|
|
|
|
// [indirect -> [scale_sep ->]] final
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
GLuint imgtex[4] = {0};
|
|
|
|
set_image_textures(p, vimg, imgtex);
|
2013-03-28 19:40:19 +00:00
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
struct fbotex chain = {
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
.vp_w = p->image_w,
|
|
|
|
.vp_h = p->image_h,
|
|
|
|
.tex_w = p->texture_w,
|
|
|
|
.tex_h = p->texture_h,
|
2013-11-03 23:00:18 +00:00
|
|
|
.texture = imgtex[0],
|
2013-03-01 20:19:20 +00:00
|
|
|
};
|
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
handle_pass(p, &chain, &p->indirect_fbo, p->indirect_program);
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
|
|
|
|
// Clip to visible height so that separate scaling scales the visible part
|
|
|
|
// only (and the target FBO texture can have a bounded size).
|
|
|
|
// Don't clamp width; too hard to get correct final scaling on l/r borders.
|
2013-06-14 21:48:35 +00:00
|
|
|
chain.vp_y = p->src_rect.y0,
|
|
|
|
chain.vp_h = p->src_rect.y1 - p->src_rect.y0,
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
handle_pass(p, &chain, &p->scale_sep_fbo, p->scale_sep_program);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
gl->BindTexture(GL_TEXTURE_2D, chain.texture);
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->UseProgram(p->final_program);
|
|
|
|
|
2013-06-14 21:48:35 +00:00
|
|
|
struct mp_rect src = {p->src_rect.x0, chain.vp_y,
|
|
|
|
p->src_rect.x1, chain.vp_y + chain.vp_h};
|
|
|
|
int src_texw = chain.tex_w;
|
|
|
|
int src_texh = chain.tex_h;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
if (p->opts.stereo_mode) {
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
int w = src.x1 - src.x0;
|
2013-03-01 20:19:20 +00:00
|
|
|
int imgw = p->image_w;
|
|
|
|
|
|
|
|
glEnable3DLeft(gl, p->opts.stereo_mode);
|
|
|
|
|
|
|
|
write_quad(vb,
|
|
|
|
p->dst_rect.x0, p->dst_rect.y0,
|
|
|
|
p->dst_rect.x1, p->dst_rect.y1,
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
src.x0 / 2, src.y0,
|
|
|
|
src.x0 / 2 + w / 2, src.y1,
|
2013-06-14 21:48:35 +00:00
|
|
|
src_texw, src_texh,
|
2013-03-01 20:19:20 +00:00
|
|
|
NULL, is_flipped);
|
|
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
|
|
|
|
glEnable3DRight(gl, p->opts.stereo_mode);
|
|
|
|
|
|
|
|
write_quad(vb,
|
|
|
|
p->dst_rect.x0, p->dst_rect.y0,
|
|
|
|
p->dst_rect.x1, p->dst_rect.y1,
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
src.x0 / 2 + imgw / 2, src.y0,
|
|
|
|
src.x0 / 2 + imgw / 2 + w / 2, src.y1,
|
2013-06-14 21:48:35 +00:00
|
|
|
src_texw, src_texh,
|
2013-03-01 20:19:20 +00:00
|
|
|
NULL, is_flipped);
|
|
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
|
|
|
|
glDisable3D(gl, p->opts.stereo_mode);
|
|
|
|
} else {
|
|
|
|
write_quad(vb,
|
|
|
|
p->dst_rect.x0, p->dst_rect.y0,
|
|
|
|
p->dst_rect.x1, p->dst_rect.y1,
|
gl_video: fix scaling when image is cropped, or with no-npot
When the displayed image is cropped in Y direction (like using panscan
controls when playing 4:3 video on a 16:9 monitor), and separated
scaling is used, the texture size for the FBO holding the intermediate
result was calculated incorrectly. This could lead to artifacts, which
were quite apparent with extreme scale factors.
Actually, the size of that texture is OK, but the texture shouldn't be
used to hold the complete scaled image. Instead, it should be used for
the visible part of the image only. Because separate scaling works by
scaling in Y direction first, it's still fine to scale the image on the
full image width on the first pass. This helps avoiding artifacts on
the left/right border of the image when scaling in X direction, as the
scaler will try to fetch pixels from beyond the border. (The left border
is still kind of fine, but the right border will fetch garbage, unless
the texture is strictly sized, or explicit clamping is added to the
shader. Too much trouble, so using the full image width is simpler.)
Also fix some issues with no-npot mode, which enables use of power-of-2
textures. Maybe this mode isn't really useful anymore (modern hardware
is faster with smaller non-power-of-2 textures), but keep it for now.
2013-06-14 21:16:58 +00:00
|
|
|
src.x0, src.y0,
|
|
|
|
src.x1, src.y1,
|
2013-06-14 21:48:35 +00:00
|
|
|
src_texw, src_texh,
|
2013-03-01 20:19:20 +00:00
|
|
|
NULL, is_flipped);
|
|
|
|
draw_triangles(p, vb, VERTICES_PER_QUAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->UseProgram(0);
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
unset_image_textures(p);
|
|
|
|
|
2013-05-25 23:48:39 +00:00
|
|
|
p->frames_rendered++;
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
debug_check_gl(p, "after video rendering");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_window_sized_objects(struct gl_video *p)
|
|
|
|
{
|
|
|
|
if (p->scale_sep_program) {
|
|
|
|
int h = p->dst_rect.y1 - p->dst_rect.y0;
|
|
|
|
if (h > p->scale_sep_fbo.tex_h) {
|
|
|
|
fbotex_uninit(p, &p->scale_sep_fbo);
|
|
|
|
// Round up to an arbitrary alignment to make window resizing or
|
|
|
|
// panscan controls smoother (less texture reallocations).
|
|
|
|
int height = FFALIGN(h, 256);
|
2013-05-30 13:37:13 +00:00
|
|
|
fbotex_init(p, &p->scale_sep_fbo, p->image_w, height,
|
|
|
|
p->opts.fbo_format);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
p->scale_sep_fbo.vp_w = p->image_w;
|
|
|
|
p->scale_sep_fbo.vp_h = h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_resize(struct gl_video *p)
|
|
|
|
{
|
|
|
|
bool need_scaler_reinit = false; // filter size change needed
|
|
|
|
bool need_scaler_update = false; // filter LUT change needed
|
|
|
|
bool too_small = false;
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
if (p->scalers[n].kernel) {
|
|
|
|
struct filter_kernel tkernel = *p->scalers[n].kernel;
|
|
|
|
struct filter_kernel old = tkernel;
|
|
|
|
bool ok = update_scale_factor(p, &tkernel);
|
|
|
|
too_small |= !ok;
|
|
|
|
need_scaler_reinit |= (tkernel.size != old.size);
|
|
|
|
need_scaler_update |= (tkernel.inv_scale != old.inv_scale);
|
|
|
|
}
|
|
|
|
}
|
2013-05-25 21:47:55 +00:00
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0)
|
|
|
|
need_scaler_reinit = true;
|
|
|
|
}
|
2013-03-01 20:19:20 +00:00
|
|
|
if (need_scaler_reinit) {
|
|
|
|
reinit_rendering(p);
|
|
|
|
} else if (need_scaler_update) {
|
|
|
|
init_scaler(p, &p->scalers[0]);
|
|
|
|
init_scaler(p, &p->scalers[1]);
|
|
|
|
}
|
|
|
|
if (too_small) {
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_WARN(p, "Can't downscale that much, window "
|
|
|
|
"output may look suboptimal.\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
update_window_sized_objects(p);
|
|
|
|
update_all_uniforms(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_resize(struct gl_video *p, struct mp_rect *window,
|
|
|
|
struct mp_rect *src, struct mp_rect *dst,
|
|
|
|
struct mp_osd_res *osd)
|
|
|
|
{
|
|
|
|
p->src_rect = *src;
|
|
|
|
p->dst_rect = *dst;
|
|
|
|
p->osd_rect = *osd;
|
|
|
|
|
|
|
|
p->vp_x = window->x0;
|
|
|
|
p->vp_y = window->y0;
|
|
|
|
p->vp_w = window->x1 - window->x0;
|
|
|
|
p->vp_h = window->y1 - window->y0;
|
|
|
|
|
|
|
|
p->gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
|
|
|
|
|
|
|
|
check_resize(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool get_image(struct gl_video *p, struct mp_image *mpi)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
if (!p->opts.pbo)
|
|
|
|
return false;
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
|
2013-08-26 08:09:27 +00:00
|
|
|
// See comments in init_video() about odd video sizes.
|
|
|
|
// The normal upload path does this too, but less explicit.
|
|
|
|
mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
struct texplane *plane = &vimg->planes[n];
|
|
|
|
mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n];
|
|
|
|
int needed_size = mpi->plane_h[n] * mpi->stride[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
if (!plane->gl_buffer)
|
|
|
|
gl->GenBuffers(1, &plane->gl_buffer);
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
|
|
|
|
if (needed_size > plane->buffer_size) {
|
|
|
|
plane->buffer_size = needed_size;
|
|
|
|
gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size,
|
|
|
|
NULL, GL_DYNAMIC_DRAW);
|
|
|
|
}
|
|
|
|
if (!plane->buffer_ptr)
|
|
|
|
plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER,
|
|
|
|
GL_WRITE_ONLY);
|
|
|
|
mpi->planes[n] = plane->buffer_ptr;
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (p->hwdec_active) {
|
|
|
|
mp_image_setrefp(&vimg->hwimage, mpi);
|
|
|
|
p->have_image = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(mpi->num_planes == p->plane_count);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
mp_image_t mpi2 = *mpi;
|
|
|
|
bool pbo = false;
|
2013-03-28 19:40:19 +00:00
|
|
|
if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) {
|
2013-11-03 23:00:18 +00:00
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n];
|
|
|
|
memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n],
|
2013-03-01 20:19:20 +00:00
|
|
|
mpi2.stride[n], mpi->stride[n]);
|
|
|
|
}
|
|
|
|
mpi = &mpi2;
|
|
|
|
pbo = true;
|
|
|
|
}
|
2013-03-28 19:40:19 +00:00
|
|
|
vimg->image_flipped = mpi->stride[0] < 0;
|
2013-11-03 23:00:18 +00:00
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
2013-03-28 19:40:19 +00:00
|
|
|
struct texplane *plane = &vimg->planes[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
void *plane_ptr = mpi->planes[n];
|
|
|
|
if (pbo) {
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
|
|
|
|
if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER))
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_FATAL(p, "Video PBO upload failed. "
|
|
|
|
"Remove the 'pbo' suboption.\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
plane->buffer_ptr = NULL;
|
|
|
|
plane_ptr = NULL; // PBO offset 0
|
|
|
|
}
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, plane->gl_texture);
|
2013-03-28 19:48:53 +00:00
|
|
|
glUploadTex(gl, GL_TEXTURE_2D, plane->gl_format, plane->gl_type,
|
|
|
|
plane_ptr, mpi->stride[n], 0, 0, plane->w, plane->h, 0);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
video/out: always support redrawing VO window at any point
Before, a VO could easily refuse to respond to VOCTRL_REDRAW_FRAME,
which means the VO wouldn't redraw OSD and window contents, and the
player would appear frozen to the user. This was a bit stupid, and makes
dealing with some corner cases much harder (think of --keep-open, which
was hard to implement, because the VO gets into this state if there are
no new video frames after a seek reset).
Change this, and require VOs to always react to VOCTRL_REDRAW_FRAME.
There are two aspects of this: First, behavior after a (successful)
vo_reconfig() call, but before any video frame has been displayed.
Second, behavior after a vo_seek_reset().
For the first issue, we define that sending VOCTRL_REDRAW_FRAME after
vo_reconfig() should clear the window with black. This requires minor
changes to some VOs. In particular vaapi makes this horribly
complicated, because OSD rendering is bound to a video surface. We
create a black dummy surface for this purpose.
The second issue is much simpler and works already with most VOs: they
simply redraw whatever has been uploaded previously. The exception is
vdpau, which has a complicated mechanism to track and filter video
frames. The state associated with this mechanism is completely cleared
with vo_seek_reset(), so implementing this to work as expected is not
trivial. For now, we just clear the window with black.
2013-10-01 21:35:51 +00:00
|
|
|
|
|
|
|
p->have_image = true;
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
struct mp_image *gl_video_download_image(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
2013-03-28 19:40:19 +00:00
|
|
|
struct video_image *vimg = &p->image;
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
if (!p->have_image)
|
2013-03-01 20:19:20 +00:00
|
|
|
return NULL;
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
set_image_textures(p, vimg, NULL);
|
|
|
|
|
2013-07-25 22:26:04 +00:00
|
|
|
assert(p->texture_w >= p->image_params.w);
|
|
|
|
assert(p->texture_h >= p->image_params.h);
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
mp_image_t *image = mp_image_alloc(p->image_format, p->texture_w,
|
|
|
|
p->texture_h);
|
|
|
|
|
|
|
|
for (int n = 0; n < p->plane_count; n++) {
|
2013-03-28 19:48:53 +00:00
|
|
|
struct texplane *plane = &vimg->planes[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + n);
|
2013-03-28 19:48:53 +00:00
|
|
|
glDownloadTex(gl, GL_TEXTURE_2D, plane->gl_format, plane->gl_type,
|
2013-03-01 20:19:20 +00:00
|
|
|
image->planes[n], image->stride[n]);
|
|
|
|
}
|
2013-11-03 23:00:18 +00:00
|
|
|
mp_image_set_attributes(image, &p->image_params);
|
|
|
|
|
|
|
|
unset_image_textures(p);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
|
2013-03-15 19:17:33 +00:00
|
|
|
static void draw_osd_cb(void *ctx, struct mpgl_osd_part *osd,
|
|
|
|
struct sub_bitmaps *imgs)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
struct gl_video *p = ctx;
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
assert(osd->format != SUBBITMAP_EMPTY);
|
|
|
|
|
2013-03-15 19:17:33 +00:00
|
|
|
if (!osd->num_vertices && imgs) {
|
2013-03-01 20:19:20 +00:00
|
|
|
osd->vertices = talloc_realloc(osd, osd->vertices, struct vertex,
|
|
|
|
osd->packer->count * VERTICES_PER_QUAD);
|
|
|
|
|
|
|
|
struct vertex *va = osd->vertices;
|
|
|
|
|
|
|
|
for (int n = 0; n < osd->packer->count; n++) {
|
|
|
|
struct sub_bitmap *b = &imgs->parts[n];
|
2013-07-22 22:45:23 +00:00
|
|
|
struct pos pos = osd->packer->result[n];
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
// NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it
|
|
|
|
// doesn't matter that we upload garbage for the other formats
|
|
|
|
uint32_t c = b->libass.color;
|
|
|
|
uint8_t color[4] = { c >> 24, (c >> 16) & 0xff,
|
|
|
|
(c >> 8) & 0xff, 255 - (c & 0xff) };
|
|
|
|
|
|
|
|
write_quad(&va[osd->num_vertices],
|
|
|
|
b->x, b->y, b->x + b->dw, b->y + b->dh,
|
2013-07-22 22:45:23 +00:00
|
|
|
pos.x, pos.y, pos.x + b->w, pos.y + b->h,
|
2013-03-01 20:19:20 +00:00
|
|
|
osd->w, osd->h, color, false);
|
|
|
|
osd->num_vertices += VERTICES_PER_QUAD;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
debug_check_gl(p, "before drawing osd");
|
|
|
|
|
|
|
|
gl->UseProgram(p->osd_programs[osd->format]);
|
|
|
|
mpgl_osd_set_gl_state(p->osd, osd);
|
|
|
|
draw_triangles(p, osd->vertices, osd->num_vertices);
|
|
|
|
mpgl_osd_unset_gl_state(p->osd, osd);
|
|
|
|
gl->UseProgram(0);
|
|
|
|
|
|
|
|
debug_check_gl(p, "after drawing osd");
|
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_draw_osd(struct gl_video *p, struct osd_state *osd)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
assert(p->osd);
|
|
|
|
|
2013-03-15 19:17:33 +00:00
|
|
|
mpgl_osd_draw_cb(p->osd, osd, p->osd_rect, draw_osd_cb, p);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
// The playloop calls this last before waiting some time until it decides
|
|
|
|
// to call flip_page(). Tell OpenGL to start execution of the GPU commands
|
|
|
|
// while we sleep (this happens asynchronously).
|
|
|
|
gl->Flush();
|
|
|
|
}
|
|
|
|
|
2013-05-30 13:37:13 +00:00
|
|
|
static bool test_fbo(struct gl_video *p, GLenum format)
|
|
|
|
{
|
|
|
|
static const float vals[] = {
|
|
|
|
127 / 255.0f, // full 8 bit integer
|
|
|
|
32767 / 65535.0f, // full 16 bit integer
|
|
|
|
0xFFFFFF / (float)(1 << 25), // float mantissa
|
|
|
|
2, // out of range value
|
|
|
|
};
|
|
|
|
static const char *val_names[] = {
|
|
|
|
"8-bit precision",
|
|
|
|
"16-bit precision",
|
|
|
|
"full float",
|
|
|
|
"out of range value (2)",
|
|
|
|
};
|
|
|
|
|
|
|
|
GL *gl = p->gl;
|
|
|
|
bool success = false;
|
|
|
|
struct fbotex fbo = {0};
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
|
|
|
gl->PixelStorei(GL_PACK_ALIGNMENT, 1);
|
|
|
|
gl->PixelStorei(GL_PACK_ROW_LENGTH, 0);
|
|
|
|
if (fbotex_init(p, &fbo, 16, 16, format)) {
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo);
|
|
|
|
gl->ReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
2013-07-22 22:45:23 +00:00
|
|
|
float pixel = -1;
|
2013-05-30 13:37:13 +00:00
|
|
|
float val = vals[i];
|
|
|
|
gl->ClearColor(val, 0.0f, 0.0f, 1.0f);
|
|
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
2013-07-22 22:45:23 +00:00
|
|
|
gl->ReadPixels(0, 0, 1, 1, GL_RED, GL_FLOAT, &pixel);
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, " %s: %a\n", val_names[i], val - pixel);
|
2013-05-30 13:37:13 +00:00
|
|
|
}
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
2013-09-11 22:57:32 +00:00
|
|
|
glCheckError(gl, p->log, "after FBO read");
|
2013-05-30 13:37:13 +00:00
|
|
|
success = true;
|
|
|
|
}
|
|
|
|
fbotex_uninit(p, &fbo);
|
2013-09-11 22:57:32 +00:00
|
|
|
glCheckError(gl, p->log, "FBO test");
|
2013-05-30 13:37:13 +00:00
|
|
|
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
// Disable features that are not supported with the current OpenGL version.
|
|
|
|
static void check_gl_features(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX;
|
|
|
|
bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB;
|
|
|
|
bool have_srgb = gl->mpgl_caps & MPGL_CAP_SRGB_TEX;
|
|
|
|
|
|
|
|
// srgb_compand() not available
|
|
|
|
if (gl->glsl_version < 130)
|
|
|
|
have_srgb = false;
|
|
|
|
|
|
|
|
char *disabled[10];
|
|
|
|
int n_disabled = 0;
|
|
|
|
|
|
|
|
if (have_fbo) {
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Testing user-set FBO format\n");
|
2013-05-30 13:37:13 +00:00
|
|
|
have_fbo = test_fbo(p, p->opts.fbo_format);
|
|
|
|
}
|
|
|
|
|
|
|
|
// fruit dithering mode and the 3D lut use this texture format
|
2013-08-28 10:32:29 +00:00
|
|
|
if (have_fbo && ((p->opts.dither_depth >= 0 && p->opts.dither_algo == 0) ||
|
|
|
|
p->use_lut_3d))
|
2013-05-30 13:37:13 +00:00
|
|
|
{
|
2013-08-28 10:32:29 +00:00
|
|
|
// doesn't disable anything; it's just for the log
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Testing GL_R16 FBO (dithering/LUT)\n");
|
2013-05-30 13:37:13 +00:00
|
|
|
test_fbo(p, GL_R16);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Disable these only if the user didn't disable scale-sep on the command
|
|
|
|
// line, so convolution filter can still be forced to be run.
|
|
|
|
// Normally, we want to disable them by default if FBOs are unavailable,
|
|
|
|
// because they will be slow (not critically slow, but still slower).
|
|
|
|
// Without FP textures, we must always disable them.
|
|
|
|
if (!have_float_tex || (!have_fbo && p->opts.scale_sep)) {
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
struct scaler *scaler = &p->scalers[n];
|
|
|
|
if (mp_find_filter_kernel(scaler->name)) {
|
|
|
|
scaler->name = "bilinear";
|
|
|
|
disabled[n_disabled++]
|
|
|
|
= have_float_tex ? "scaler (FBO)" : "scaler (float tex.)";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!have_srgb && p->opts.srgb) {
|
|
|
|
p->opts.srgb = false;
|
|
|
|
disabled[n_disabled++] = "sRGB";
|
|
|
|
}
|
|
|
|
if (!have_fbo && p->use_lut_3d) {
|
|
|
|
p->use_lut_3d = false;
|
|
|
|
disabled[n_disabled++] = "color management (FBO)";
|
|
|
|
}
|
|
|
|
if (!have_srgb && p->use_lut_3d) {
|
|
|
|
p->use_lut_3d = false;
|
|
|
|
disabled[n_disabled++] = "color management (sRGB)";
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!have_fbo) {
|
|
|
|
p->opts.scale_sep = false;
|
|
|
|
p->opts.indirect = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n_disabled) {
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_ERR(p, "Some OpenGL extensions not detected, "
|
2013-03-01 20:19:20 +00:00
|
|
|
"disabling: ");
|
|
|
|
for (int n = 0; n < n_disabled; n++) {
|
|
|
|
if (n)
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_ERR(p, ", ");
|
|
|
|
MP_ERR(p, "%s", disabled[n]);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_ERR(p, ".\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void setup_vertex_array(GL *gl)
|
|
|
|
{
|
|
|
|
size_t stride = sizeof(struct vertex);
|
|
|
|
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_POSITION);
|
|
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_POSITION, 2, GL_FLOAT, GL_FALSE,
|
|
|
|
stride, (void*)offsetof(struct vertex, position));
|
|
|
|
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_COLOR);
|
|
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE,
|
|
|
|
stride, (void*)offsetof(struct vertex, color));
|
|
|
|
|
|
|
|
gl->EnableVertexAttribArray(VERTEX_ATTRIB_TEXCOORD);
|
|
|
|
gl->VertexAttribPointer(VERTEX_ATTRIB_TEXCOORD, 2, GL_FLOAT, GL_FALSE,
|
|
|
|
stride, (void*)offsetof(struct vertex, texcoord));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int init_gl(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
debug_check_gl(p, "before init_gl");
|
|
|
|
|
|
|
|
check_gl_features(p);
|
|
|
|
|
|
|
|
gl->Disable(GL_DITHER);
|
|
|
|
gl->Disable(GL_BLEND);
|
|
|
|
gl->Disable(GL_DEPTH_TEST);
|
|
|
|
gl->DepthMask(GL_FALSE);
|
|
|
|
gl->Disable(GL_CULL_FACE);
|
|
|
|
|
|
|
|
gl->GenBuffers(1, &p->vertex_buffer);
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, p->vertex_buffer);
|
|
|
|
|
|
|
|
if (gl->BindVertexArray) {
|
|
|
|
gl->GenVertexArrays(1, &p->vao);
|
|
|
|
gl->BindVertexArray(p->vao);
|
|
|
|
setup_vertex_array(gl);
|
|
|
|
gl->BindVertexArray(0);
|
|
|
|
} else {
|
|
|
|
setup_vertex_array(gl);
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
|
2013-03-28 20:44:27 +00:00
|
|
|
gl->ClearColor(0.0f, 0.0f, 0.0f, 1.0f);
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
debug_check_gl(p, "after init_gl");
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_uninit(struct gl_video *p)
|
|
|
|
{
|
|
|
|
GL *gl = p->gl;
|
|
|
|
|
|
|
|
uninit_video(p);
|
|
|
|
|
|
|
|
if (gl->DeleteVertexArrays)
|
|
|
|
gl->DeleteVertexArrays(1, &p->vao);
|
|
|
|
gl->DeleteBuffers(1, &p->vertex_buffer);
|
|
|
|
gl->DeleteTextures(1, &p->lut_3d_texture);
|
|
|
|
|
|
|
|
mpgl_osd_destroy(p->osd);
|
|
|
|
|
|
|
|
talloc_free(p);
|
|
|
|
}
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
// dest = src.<w> (always using 4 components)
|
|
|
|
static void packed_fmt_swizzle(char w[5], const struct packed_fmt_entry *fmt)
|
|
|
|
{
|
|
|
|
for (int c = 0; c < 4; c++)
|
|
|
|
w[c] = "rgba"[MPMAX(fmt->components[c] - 1, 0)];
|
|
|
|
w[4] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct fmt_entry *find_tex_format(int bytes_per_comp, int n_channels)
|
|
|
|
{
|
|
|
|
assert(bytes_per_comp == 1 || bytes_per_comp == 2);
|
|
|
|
assert(n_channels >= 1 && n_channels <= 4);
|
|
|
|
return &gl_byte_formats[n_channels - 1 + (bytes_per_comp - 1) * 4];
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
static bool init_format(int fmt, struct gl_video *init)
|
|
|
|
{
|
|
|
|
bool supported = false;
|
|
|
|
struct gl_video dummy;
|
|
|
|
if (!init)
|
|
|
|
init = &dummy;
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
init->hwdec_active = false;
|
|
|
|
if (init->hwdec && init->hwdec->driver->query_format(fmt)) {
|
|
|
|
fmt = init->hwdec->converted_imgfmt;
|
|
|
|
init->hwdec_active = true;
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt);
|
|
|
|
if (!desc.id)
|
|
|
|
return false;
|
|
|
|
|
2013-03-28 19:48:53 +00:00
|
|
|
if (desc.num_planes > 4)
|
|
|
|
return false;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
const struct fmt_entry *plane_format[4] = {0};
|
2013-03-28 19:48:53 +00:00
|
|
|
|
|
|
|
init->image_format = fmt;
|
|
|
|
init->plane_bits = desc.bpp[0];
|
2013-07-18 11:52:38 +00:00
|
|
|
init->color_swizzle[0] = '\0';
|
|
|
|
init->has_alpha = false;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
// YUV/planar formats
|
|
|
|
if (!supported && (desc.flags & MP_IMGFLAG_YUV_P)) {
|
2013-03-28 19:48:53 +00:00
|
|
|
int bits = desc.plane_bits;
|
|
|
|
if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) {
|
2013-03-01 20:19:20 +00:00
|
|
|
supported = true;
|
2013-03-28 19:48:53 +00:00
|
|
|
init->plane_bits = bits;
|
2013-07-18 11:52:38 +00:00
|
|
|
init->has_alpha = desc.num_planes > 3;
|
|
|
|
plane_format[0] = find_tex_format((bits + 7) / 8, 1);
|
|
|
|
for (int p = 1; p < desc.num_planes; p++)
|
|
|
|
plane_format[p] = plane_format[0];
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-28 20:02:41 +00:00
|
|
|
// YUV/half-packed
|
2013-03-28 20:02:48 +00:00
|
|
|
if (!supported && (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21)) {
|
2013-03-28 20:02:41 +00:00
|
|
|
supported = true;
|
2013-07-18 11:52:38 +00:00
|
|
|
plane_format[0] = find_tex_format(1, 1);
|
|
|
|
plane_format[1] = find_tex_format(1, 2);
|
|
|
|
if (fmt == IMGFMT_NV21)
|
|
|
|
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga");
|
2013-03-28 20:02:41 +00:00
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
// RGB/planar
|
|
|
|
if (!supported && fmt == IMGFMT_GBRP) {
|
|
|
|
supported = true;
|
2013-07-18 11:52:38 +00:00
|
|
|
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga");
|
|
|
|
plane_format[0] = find_tex_format(1, 1);
|
|
|
|
for (int p = 1; p < desc.num_planes; p++)
|
|
|
|
plane_format[p] = plane_format[0];
|
2013-03-28 19:48:53 +00:00
|
|
|
}
|
|
|
|
|
2013-06-14 20:58:21 +00:00
|
|
|
// XYZ (same organization as RGB packed, but requires conversion matrix)
|
2013-05-01 21:59:00 +00:00
|
|
|
if (!supported && fmt == IMGFMT_XYZ12) {
|
|
|
|
supported = true;
|
2013-07-18 11:52:38 +00:00
|
|
|
plane_format[0] = find_tex_format(2, 3);
|
2013-05-01 21:59:00 +00:00
|
|
|
}
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
// Packed RGB special formats
|
|
|
|
if (!supported) {
|
|
|
|
for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) {
|
|
|
|
if (e->mp_format == fmt) {
|
|
|
|
supported = true;
|
|
|
|
plane_format[0] = e;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
// Packed RGB(A) formats
|
|
|
|
if (!supported) {
|
|
|
|
for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) {
|
|
|
|
if (e->fmt == fmt) {
|
|
|
|
supported = true;
|
|
|
|
int n_comp = desc.bytes[0] / e->component_size;
|
|
|
|
plane_format[0] = find_tex_format(e->component_size, n_comp);
|
|
|
|
packed_fmt_swizzle(init->color_swizzle, e);
|
|
|
|
init->has_alpha = e->components[3] != 0;
|
|
|
|
break;
|
2013-03-28 19:48:53 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
if (!supported)
|
|
|
|
return false;
|
|
|
|
|
2013-03-28 20:44:27 +00:00
|
|
|
// Stuff like IMGFMT_420AP10. Untested, most likely insane.
|
|
|
|
if (desc.num_planes == 4 && (init->plane_bits % 8) != 0)
|
|
|
|
return false;
|
|
|
|
|
2013-07-18 11:52:38 +00:00
|
|
|
for (int p = 0; p < desc.num_planes; p++) {
|
|
|
|
struct texplane *plane = &init->image.planes[p];
|
|
|
|
const struct fmt_entry *format = plane_format[p];
|
|
|
|
assert(format);
|
|
|
|
plane->gl_format = format->format;
|
|
|
|
plane->gl_internal_format = format->internal_format;
|
|
|
|
plane->gl_type = format->type;
|
|
|
|
}
|
|
|
|
|
2013-03-01 20:19:20 +00:00
|
|
|
init->is_yuv = desc.flags & MP_IMGFLAG_YUV;
|
2013-05-01 21:13:39 +00:00
|
|
|
init->is_rgb = desc.flags & MP_IMGFLAG_RGB;
|
2013-03-01 20:19:20 +00:00
|
|
|
init->is_linear_rgb = false;
|
2013-03-28 20:02:53 +00:00
|
|
|
init->plane_count = desc.num_planes;
|
2013-03-28 19:40:19 +00:00
|
|
|
init->image_desc = desc;
|
2013-03-01 20:19:20 +00:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2013-11-03 23:00:18 +00:00
|
|
|
bool gl_video_check_format(struct gl_video *p, int mp_format)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
2013-11-03 23:00:18 +00:00
|
|
|
struct gl_video tmp = *p;
|
|
|
|
return init_format(mp_format, &tmp);
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
2013-06-07 23:35:44 +00:00
|
|
|
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
video/out: always support redrawing VO window at any point
Before, a VO could easily refuse to respond to VOCTRL_REDRAW_FRAME,
which means the VO wouldn't redraw OSD and window contents, and the
player would appear frozen to the user. This was a bit stupid, and makes
dealing with some corner cases much harder (think of --keep-open, which
was hard to implement, because the VO gets into this state if there are
no new video frames after a seek reset).
Change this, and require VOs to always react to VOCTRL_REDRAW_FRAME.
There are two aspects of this: First, behavior after a (successful)
vo_reconfig() call, but before any video frame has been displayed.
Second, behavior after a vo_seek_reset().
For the first issue, we define that sending VOCTRL_REDRAW_FRAME after
vo_reconfig() should clear the window with black. This requires minor
changes to some VOs. In particular vaapi makes this horribly
complicated, because OSD rendering is bound to a video surface. We
create a black dummy surface for this purpose.
The second issue is much simpler and works already with most VOs: they
simply redraw whatever has been uploaded previously. The exception is
vdpau, which has a complicated mechanism to track and filter video
frames. The state associated with this mechanism is completely cleared
with vo_seek_reset(), so implementing this to work as expected is not
trivial. For now, we just clear the window with black.
2013-10-01 21:35:51 +00:00
|
|
|
p->have_image = false;
|
2013-11-03 23:00:18 +00:00
|
|
|
mp_image_unrefp(&p->image.hwimage);
|
2013-11-05 18:08:44 +00:00
|
|
|
|
|
|
|
if (!mp_image_params_equals(&p->image_params, params)) {
|
|
|
|
uninit_video(p);
|
|
|
|
init_video(p, params);
|
|
|
|
}
|
2013-03-01 20:19:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b)
|
|
|
|
{
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b);
|
2013-03-01 20:19:20 +00:00
|
|
|
p->depth_g = g;
|
|
|
|
}
|
|
|
|
|
2013-07-31 19:44:21 +00:00
|
|
|
struct gl_video *gl_video_init(GL *gl, struct mp_log *log)
|
2013-03-01 20:19:20 +00:00
|
|
|
{
|
|
|
|
struct gl_video *p = talloc_ptrtype(NULL, p);
|
|
|
|
*p = (struct gl_video) {
|
|
|
|
.gl = gl,
|
2013-07-31 19:44:21 +00:00
|
|
|
.log = log,
|
2013-03-01 20:19:20 +00:00
|
|
|
.opts = gl_video_opts_def,
|
|
|
|
.gl_debug = true,
|
|
|
|
.colorspace = MP_CSP_DETAILS_DEFAULTS,
|
|
|
|
.scalers = {
|
|
|
|
{ .index = 0, .name = "bilinear" },
|
|
|
|
{ .index = 1, .name = "bilinear" },
|
|
|
|
},
|
|
|
|
.scratch = talloc_zero_array(p, char *, 1),
|
|
|
|
};
|
|
|
|
init_gl(p);
|
|
|
|
recreate_osd(p);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool can_use_filter_kernel(const struct filter_kernel *kernel)
|
|
|
|
{
|
|
|
|
if (!kernel)
|
|
|
|
return false;
|
|
|
|
struct filter_kernel k = *kernel;
|
|
|
|
return mp_init_filter(&k, filter_sizes, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get static string for scaler shader.
|
|
|
|
static const char* handle_scaler_opt(const char *name)
|
|
|
|
{
|
|
|
|
if (name) {
|
|
|
|
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
|
|
|
|
if (can_use_filter_kernel(kernel))
|
|
|
|
return kernel->name;
|
|
|
|
|
|
|
|
for (const char **filter = fixed_scale_filters; *filter; filter++) {
|
|
|
|
if (strcmp(*filter, name) == 0)
|
|
|
|
return *filter;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the options, and possibly update the filter chain too.
|
|
|
|
// Note: assumes all options are valid and verified by the option parser.
|
|
|
|
void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts)
|
|
|
|
{
|
|
|
|
p->opts = *opts;
|
|
|
|
for (int n = 0; n < 2; n++) {
|
|
|
|
p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]);
|
|
|
|
assert(p->opts.scalers[n]);
|
|
|
|
p->scalers[n].name = p->opts.scalers[n];
|
|
|
|
}
|
|
|
|
|
|
|
|
check_gl_features(p);
|
|
|
|
reinit_rendering(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool gl_video_get_csp_override(struct gl_video *p, struct mp_csp_details *csp)
|
|
|
|
{
|
|
|
|
*csp = p->colorspace;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool gl_video_set_equalizer(struct gl_video *p, const char *name, int val)
|
|
|
|
{
|
|
|
|
if (mp_csp_equalizer_set(&p->video_eq, name, val) >= 0) {
|
|
|
|
if (!p->opts.gamma && p->video_eq.values[MP_CSP_EQ_GAMMA] != 0) {
|
2013-07-31 19:44:21 +00:00
|
|
|
MP_VERBOSE(p, "Auto-enabling gamma.\n");
|
2013-03-01 20:19:20 +00:00
|
|
|
p->opts.gamma = true;
|
|
|
|
compile_shaders(p);
|
|
|
|
}
|
|
|
|
update_all_uniforms(p);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool gl_video_get_equalizer(struct gl_video *p, const char *name, int *val)
|
|
|
|
{
|
|
|
|
return mp_csp_equalizer_get(&p->video_eq, name, val) >= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int validate_scaler_opt(const m_option_t *opt, struct bstr name,
|
|
|
|
struct bstr param)
|
|
|
|
{
|
2013-07-22 00:14:15 +00:00
|
|
|
if (bstr_equals0(param, "help")) {
|
|
|
|
mp_msg(MSGT_VO, MSGL_INFO, "Available scalers:\n");
|
|
|
|
for (const char **filter = fixed_scale_filters; *filter; filter++)
|
|
|
|
mp_msg(MSGT_VO, MSGL_INFO, " %s\n", *filter);
|
|
|
|
for (int n = 0; mp_filter_kernels[n].name; n++)
|
|
|
|
mp_msg(MSGT_VO, MSGL_INFO, " %s\n", mp_filter_kernels[n].name);
|
|
|
|
return M_OPT_EXIT - 1;
|
|
|
|
}
|
2013-03-01 20:19:20 +00:00
|
|
|
char s[20];
|
|
|
|
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
|
|
|
|
return handle_scaler_opt(s) ? 1 : M_OPT_INVALID;
|
|
|
|
}
|
2013-03-15 19:17:33 +00:00
|
|
|
|
|
|
|
// Resize and redraw the contents of the window without further configuration.
|
|
|
|
// Intended to be used in situations where the frontend can't really be
|
|
|
|
// involved with reconfiguring the VO properly.
|
|
|
|
// gl_video_resize() should be called when user interaction is done.
|
|
|
|
void gl_video_resize_redraw(struct gl_video *p, int w, int h)
|
|
|
|
{
|
|
|
|
p->gl->Viewport(p->vp_x, p->vp_y, w, h);
|
|
|
|
p->vp_w = w;
|
|
|
|
p->vp_h = h;
|
|
|
|
gl_video_render_frame(p);
|
|
|
|
mpgl_osd_redraw_cb(p->osd, draw_osd_cb, p);
|
|
|
|
}
|
2013-11-03 23:00:18 +00:00
|
|
|
|
|
|
|
void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec)
|
|
|
|
{
|
|
|
|
p->hwdec = hwdec;
|
|
|
|
mp_image_unrefp(&p->image.hwimage);
|
|
|
|
}
|