1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-18 21:06:00 +00:00
mpv/video/out/vo.h

301 lines
9.7 KiB
C
Raw Normal View History

/*
* Copyright (C) Aaron Holtzman - Aug 1999
* Strongly modified, most parts rewritten: A'rpi/ESP-team - 2000-2001
* (C) MPlayer developers
*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef MPLAYER_VIDEO_OUT_H
#define MPLAYER_VIDEO_OUT_H
#include <inttypes.h>
#include <stdbool.h>
#include "video/img_format.h"
#include "common/common.h"
#include "options/options.h"
#define VO_EVENT_EXPOSE 1
#define VO_EVENT_RESIZE 2
#define VO_EVENT_ICC_PROFILE_PATH_CHANGED 4
enum mp_voctrl {
/* signal a device reset seek */
VOCTRL_RESET = 1,
/* Handle input and redraw events, called by vo_check_events() */
VOCTRL_CHECK_EVENTS,
/* used to switch to fullscreen */
VOCTRL_FULLSCREEN,
/* signal a device pause */
VOCTRL_PAUSE,
/* start/resume playback */
VOCTRL_RESUME,
VOCTRL_GET_PANSCAN,
VOCTRL_SET_PANSCAN,
VOCTRL_SET_EQUALIZER, // struct voctrl_set_equalizer_args*
VOCTRL_GET_EQUALIZER, // struct voctrl_get_equalizer_args*
video: add vaapi decode and output support This is based on the MPlayer VA API patches. To be exact it's based on a very stripped down version of commit f1ad459a263f8537f6c from git://gitorious.org/vaapi/mplayer.git. This doesn't contain useless things like benchmarking hacks and the demo code for GLX interop. Also, unlike in the original patch, decoding and video output are split into separate source files (the separation between decoding and display also makes pixel format hacks unnecessary). On the other hand, some features not present in the original patch were added, like screenshot support. VA API is rather bad for actual video output. Dealing with older libva versions or the completely broken vdpau backend doesn't help. OSD is low quality and should be rather slow. In some cases, only either OSD or subtitles can be shown at the same time (because OSD is drawn first, OSD is prefered). Also, libva can't decide whether it accepts straight or premultiplied alpha for OSD sub-pictures: the vdpau backend seems to assume premultiplied, while a native vaapi driver uses straight. So I picked straight alpha. It doesn't matter much, because the blending code for straight alpha I added to img_convert.c is probably buggy, and ASS subtitles might be blended incorrectly. Really good video output with VA API would probably use OpenGL and the GL interop features, but at this point you might just use vo_opengl. (Patches for making HW decoding with vo_opengl have a chance of being accepted.) Despite these issues, decoding seems to work ok. I still got tearing on the Intel system I tested (Intel(R) Core(TM) i3-2350M). It was also tested with the vdpau vaapi wrapper on a nvidia system; however this was rather broken. (Fortunately, there is no reason to use mpv's VAAPI support over native VDPAU.)
2013-08-09 12:01:30 +00:00
/* for hardware decoding */
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This file is named so because because it's written against the "old" libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau"). Add support for the "new" libavcodec vdpau support. This was recently added and replaces the "old" vdpau parts. (In fact, Libav is about to deprecate and remove the "old" API without deprecation grace period, so we have to support it now. Moreover, there will probably be no Libav release which supports both, so the transition is even less smooth than we could hope, and we have to support both the old and new API.) Whether the old or new API is used is checked by a configure test: if the new API is found, it is used, otherwise the old API is assumed. Some details might be handled differently. Especially display preemption is a bit problematic with the "new" libavcodec vdpau support: it wants to keep a pointer to a specific vdpau API function (which can be driver specific, because preemption might switch drivers). Also, surface IDs are now directly stored in AVFrames (and mp_images), so they can't be forced to VDP_INVALID_HANDLE on preemption. (This changes even with older libavcodec versions, because mp_image always uses the newer representation to make vo_vdpau.c simpler.) Decoder initialization in the new code tries to deal with codec profiles, while the old code always uses the highest profile per codec. Surface allocation changes. Since the decoder won't call config() in vo_vdpau.c on video size change anymore, we allow allocating surfaces of arbitrary size instead of locking it to what the VO was configured. The non-hwdec code also has slightly different allocation behavior now. Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau doesn't work anymore (a warning suggesting the --hwdec option is printed instead).
2013-07-27 23:49:45 +00:00
VOCTRL_GET_HWDEC_INFO, // struct mp_hwdec_info*
VOCTRL_NEWFRAME,
VOCTRL_SKIPFRAME,
VOCTRL_REDRAW_FRAME,
VOCTRL_ONTOP,
VOCTRL_BORDER,
VOCTRL_UPDATE_WINDOW_TITLE, // char*
VOCTRL_SET_CURSOR_VISIBILITY, // bool*
VOCTRL_KILL_SCREENSAVER,
VOCTRL_RESTORE_SCREENSAVER,
VOCTRL_SET_DEINTERLACE,
VOCTRL_GET_DEINTERLACE,
VOCTRL_UPDATE_SCREENINFO,
input: handle mouse movement differently Before this commit, mouse movement events emitted a special command ("set_mouse_pos"), which was specially handled in command.c. This was once special-cased to the dvdnav and menu code, and did nothing after libmenu and dvdnav were removed. Change it so that mouse movement triggers a pseudo-key ("MOUSE_MOVE"), which then can be bound to an arbitrary command. The mouse position is now managed in input.c. A command which actually needs the mouse position can use either mp_input_get_mouse_pos() or mp_get_osd_mouse_pos() to query it. The former returns raw window-space coordinates, while the latter returns coordinates transformed to OSD- space. (Both are the same for most VOs, except vo_xv and vo_x11, which can't render OSD in window-space. These require extra code for mapping mouse position.) As of this commit, there is still nothing that uses mouse movement, so MOUSE_MOVE is mapped to "ignore" to silence warnings when moving the mouse (much like MOUSE_BTN0). Extend the concept of input sections. Allow multiple sections to be active at once, and organize them as stack. Bindings from the top of the stack are preferred to lower ones. Each section has a mouse input section associated, inside which mouse events are associated with the bindings. If the mouse pointer is outside of a section's mouse area, mouse events will be dispatched to an input section lower on the stack of active sections. This is intended for scripting, which is to be added later. Two scripts could occupy different areas of the screen without conflicting with each other. (If it turns out that this mechanism is useless, we'll just remove it again.)
2013-04-26 00:13:30 +00:00
VOCTRL_WINDOW_TO_OSD_COORDS, // float[2] (x/y)
VOCTRL_GET_WINDOW_SIZE, // int[2] (w/h)
VOCTRL_SET_WINDOW_SIZE, // int[2] (w/h)
// The VO is supposed to set "known" fields, and leave the others
// untouched or set to 0.
// imgfmt/w/h/d_w/d_h can be omitted for convenience.
VOCTRL_GET_COLORSPACE, // struct mp_image_params*
VOCTRL_SCREENSHOT, // struct voctrl_screenshot_args*
VOCTRL_SET_COMMAND_LINE, // char**
VOCTRL_GET_ICC_PROFILE_PATH, // char**
};
// VOCTRL_SET_EQUALIZER
struct voctrl_set_equalizer_args {
const char *name;
int value;
};
// VOCTRL_GET_EQUALIZER
struct voctrl_get_equalizer_args {
const char *name;
int *valueptr;
};
// VOCTRL_SCREENSHOT
struct voctrl_screenshot_args {
// 0: Save image of the currently displayed video frame, in original
// resolution.
// 1: Save full screenshot of the window. Should contain OSD, EOSD, and the
// scaled video.
// The value of this variable can be ignored if only a single method is
// implemented.
int full_window;
// Will be set to a newly allocated image, that contains the screenshot.
// The caller has to free the image with talloc_free().
// It is not specified whether the image data is a copy or references the
// image data directly.
// Is never NULL. (Failure has to be indicated by returning VO_FALSE.)
struct mp_image *out_image;
// Whether the VO rendered OSD/subtitles into out_image
bool has_osd;
};
#define VO_TRUE true
#define VO_FALSE false
#define VO_ERROR -1
#define VO_NOTAVAIL -2
#define VO_NOTIMPL -3
#define VOFLAG_FLIPPING 0x08
#define VOFLAG_HIDDEN 0x10 //< Use to create a hidden window
#define VOFLAG_STEREO 0x20 //< Use to create a stereo-capable window
#define VOFLAG_GL_DEBUG 0x40 // Hint to request debug OpenGL context
#define VOFLAG_ALPHA 0x80 // Hint to request alpha framebuffer
struct vo;
struct osd_state;
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
struct mp_image;
struct mp_image_params;
struct vo_driver {
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
// Driver buffers or adds (deinterlace) frames and will keep track
// of pts values itself
bool buffer_frames;
// Encoding functionality, which can be invoked via --o only.
bool encode;
const char *name;
const char *description;
/*
* returns: zero on successful initialization, non-zero on error.
*/
int (*preinit)(struct vo *vo);
/*
* Whether the given image format is supported and config() will succeed.
video: decouple internal pixel formats from FourCCs mplayer's video chain traditionally used FourCCs for pixel formats. For example, it used IMGFMT_YV12 for 4:2:0 YUV, which was defined to the string 'YV12' interpreted as unsigned int. Additionally, it used to encode information into the numeric values of some formats. The RGB formats had their bit depth and endian encoded into the least significant byte. Extended planar formats (420P10 etc.) had chroma shift, endian, and component bit depth encoded. (This has been removed in recent commits.) Replace the FourCC mess with a simple enum. Remove all the redundant formats like YV12/I420/IYUV. Replace some image format names by something more intuitive, most importantly IMGFMT_YV12 -> IMGFMT_420P. Add img_fourcc.h, which contains the old IDs for code that actually uses FourCCs. Change the way demuxers, that output raw video, identify the video format: they set either MP_FOURCC_RAWVIDEO or MP_FOURCC_IMGFMT to request the rawvideo decoder, and sh_video->imgfmt specifies the pixel format. Like the previous hack, this is supposed to avoid the need for a complete codecs.cfg entry per format, or other lookup tables. (Note that the RGB raw video FourCCs mostly rely on ffmpeg's mappings for NUT raw video, but this is still considered better than adding a raw video decoder - even if trivial, it would be full of annoying lookup tables.) The TV code has not been tested. Some corrective changes regarding endian and other image format flags creep in.
2012-12-23 19:03:30 +00:00
* format: one of IMGFMT_*
* returns: 0 on not supported, otherwise a bitmask of VFCAP_* values
*/
int (*query_format)(struct vo *vo, uint32_t format);
/*
* Initialize or reconfigure the display driver.
* params: video parameters, like pixel format and frame size
* flags: combination of VOFLAG_ values
* returns: < 0 on error, >= 0 on success
*/
int (*reconfig)(struct vo *vo, struct mp_image_params *params, int flags);
/*
* Control interface
*/
int (*control)(struct vo *vo, uint32_t request, void *data);
void (*draw_image)(struct vo *vo, struct mp_image *mpi);
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
/*
* Get extra frames from the VO, such as those added by VDPAU
* deinterlace. Preparing the next such frame if any could be done
* automatically by the VO after a previous flip_page(), but having
* it as a separate step seems to allow making code more robust.
*/
void (*get_buffered_frame)(struct vo *vo, bool eof);
/*
* Draws OSD to the screen buffer
*/
void (*draw_osd)(struct vo *vo, struct osd_state *osd);
/*
* Blit/Flip buffer to the screen. Must be called after each frame!
* pts_us is the frame presentation time, linked to mp_time_us().
* pts_us is 0 if the frame should be presented immediately.
* duration is estimated time in us until the next frame is shown.
* duration is -1 if it is unknown or unset.
*/
void (*flip_page)(struct vo *vo);
void (*flip_page_timed)(struct vo *vo, int64_t pts_us, int duration);
/*
* Closes driver. Should restore the original state of the system.
*/
void (*uninit)(struct vo *vo);
// Size of private struct for automatic allocation (0 doesn't allocate)
int priv_size;
// If not NULL, it's copied into the newly allocated private struct.
const void *priv_defaults;
// List of options to parse into priv struct (requires privsize to be set)
const struct m_option *options;
};
struct vo {
struct mp_log *log; // Using e.g. "[vo/vdpau]" as prefix
int config_ok; // Last config call was successful?
int config_count; // Total number of successful config calls
struct mp_image_params *params; // Configured parameters (as in vo_reconfig)
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
bool probing;
bool untimed; // non-interactive, don't do sleep calls in playloop
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
bool frame_loaded; // Is there a next frame the VO could flip to?
struct mp_image *waiting_mpi;
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
double next_pts; // pts value of the next frame if any
double next_pts2; // optional pts of frame after that
bool want_redraw; // visible frame wrong (window resize), needs refresh
bool redrawing; // between redrawing frame and flipping it
bool hasframe; // >= 1 frame has been drawn, so redraw is possible
double wakeup_period; // if > 0, this sets the maximum wakeup period for event polling
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
double flip_queue_offset; // queue flip events at most this much in advance
const struct vo_driver *driver;
void *priv;
struct mp_vo_opts *opts;
struct mpv_global *global;
struct vo_x11_state *x11;
struct vo_w32_state *w32;
struct vo_cocoa_state *cocoa;
struct vo_wayland_state *wayland;
struct encode_lavc_context *encode_lavc_ctx;
struct input_ctx *input_ctx;
int event_fd; // check_events() should be called when this has input
int registered_fd; // set to event_fd when registered in input system
2008-04-20 21:37:12 +00:00
// requested position/resolution (usually window position/window size)
int dx;
int dy;
int xinerama_x;
int xinerama_y;
// current window state
int dwidth;
int dheight;
float monitor_par;
char *window_title;
};
struct mpv_global;
struct vo *init_best_video_out(struct mpv_global *global,
struct input_ctx *input_ctx,
struct encode_lavc_context *encode_lavc_ctx);
int vo_reconfig(struct vo *vo, struct mp_image_params *p, int flags);
int vo_control(struct vo *vo, uint32_t request, void *data);
void vo_queue_image(struct vo *vo, struct mp_image *mpi);
int vo_redraw_frame(struct vo *vo);
bool vo_get_want_redraw(struct vo *vo);
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
int vo_get_buffered_frame(struct vo *vo, bool eof);
void vo_skip_frame(struct vo *vo);
void vo_new_frame_imminent(struct vo *vo);
void vo_draw_osd(struct vo *vo, struct osd_state *osd);
void vo_flip_page(struct vo *vo, int64_t pts_us, int duration);
void vo_check_events(struct vo *vo);
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
void vo_seek_reset(struct vo *vo);
void vo_destroy(struct vo *vo);
const char *vo_get_window_title(struct vo *vo);
// NULL terminated array of all drivers
extern const struct vo_driver *video_out_drivers[];
struct mp_keymap {
int from;
int to;
};
int lookup_keymap_table(const struct mp_keymap *map, int key);
2010-04-26 16:22:56 +00:00
void vo_mouse_movement(struct vo *vo, int posx, int posy);
void vo_drop_files(struct vo *vo, int num_files, char **files);
struct mp_osd_res;
void vo_get_src_dst_rects(struct vo *vo, struct mp_rect *out_src,
struct mp_rect *out_dst, struct mp_osd_res *out_osd);
#endif /* MPLAYER_VIDEO_OUT_H */