2017-08-05 12:20:14 +00:00
|
|
|
#include <libavutil/intreadwrite.h>
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-05 12:20:14 +00:00
|
|
|
#include "formats.h"
|
2017-08-05 17:38:43 +00:00
|
|
|
#include "utils.h"
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
#include "ra_gl.h"
|
|
|
|
|
|
|
|
static struct ra_fns ra_fns_gl;
|
|
|
|
|
2017-08-11 08:29:56 +00:00
|
|
|
// For ra.priv
|
|
|
|
struct ra_gl {
|
|
|
|
GL *gl;
|
|
|
|
bool debug_enable;
|
|
|
|
bool timer_active; // hack for GL_TIME_ELAPSED limitations
|
|
|
|
};
|
|
|
|
|
|
|
|
// For ra_tex.priv
|
|
|
|
struct ra_tex_gl {
|
2017-08-19 02:33:40 +00:00
|
|
|
struct ra_buf_pool pbo; // for ra.use_pbo
|
2017-08-11 08:29:56 +00:00
|
|
|
bool own_objects;
|
|
|
|
GLenum target;
|
|
|
|
GLuint texture; // 0 if no texture data associated
|
|
|
|
GLuint fbo; // 0 if no rendering requested, or it default framebuffer
|
|
|
|
// These 3 fields can be 0 if unknown.
|
|
|
|
GLint internal_format;
|
|
|
|
GLenum format;
|
|
|
|
GLenum type;
|
|
|
|
};
|
|
|
|
|
|
|
|
// For ra_buf.priv
|
|
|
|
struct ra_buf_gl {
|
2017-08-16 20:13:51 +00:00
|
|
|
GLenum target;
|
2017-08-11 08:29:56 +00:00
|
|
|
GLuint buffer;
|
|
|
|
GLsync fence;
|
|
|
|
};
|
|
|
|
|
|
|
|
// For ra_renderpass.priv
|
|
|
|
struct ra_renderpass_gl {
|
|
|
|
GLuint program;
|
|
|
|
// 1 entry for each ra_renderpass_params.inputs[] entry
|
|
|
|
GLint *uniform_loc;
|
|
|
|
int num_uniform_loc; // == ra_renderpass_params.num_inputs
|
|
|
|
struct gl_vao vao;
|
|
|
|
};
|
|
|
|
|
2017-08-11 18:55:14 +00:00
|
|
|
// (Init time only.)
|
|
|
|
static void probe_real_size(GL *gl, struct ra_format *fmt)
|
|
|
|
{
|
|
|
|
const struct gl_format *gl_fmt = fmt->priv;
|
|
|
|
|
|
|
|
if (!gl->GetTexLevelParameteriv)
|
|
|
|
return; // GLES
|
|
|
|
|
|
|
|
bool is_la = gl_fmt->format == GL_LUMINANCE ||
|
|
|
|
gl_fmt->format == GL_LUMINANCE_ALPHA;
|
|
|
|
if (is_la && gl->es)
|
|
|
|
return; // GLES doesn't provide GL_TEXTURE_LUMINANCE_SIZE.
|
|
|
|
|
|
|
|
GLuint tex;
|
|
|
|
gl->GenTextures(1, &tex);
|
|
|
|
gl->BindTexture(GL_TEXTURE_2D, tex);
|
|
|
|
gl->TexImage2D(GL_TEXTURE_2D, 0, gl_fmt->internal_format, 64, 64, 0,
|
|
|
|
gl_fmt->format, gl_fmt->type, NULL);
|
|
|
|
for (int i = 0; i < fmt->num_components; i++) {
|
|
|
|
const GLenum pnames[] = {
|
|
|
|
GL_TEXTURE_RED_SIZE,
|
|
|
|
GL_TEXTURE_GREEN_SIZE,
|
|
|
|
GL_TEXTURE_BLUE_SIZE,
|
|
|
|
GL_TEXTURE_ALPHA_SIZE,
|
|
|
|
GL_TEXTURE_LUMINANCE_SIZE,
|
|
|
|
GL_TEXTURE_ALPHA_SIZE,
|
|
|
|
};
|
|
|
|
int comp = is_la ? i + 4 : i;
|
|
|
|
assert(comp < MP_ARRAY_SIZE(pnames));
|
|
|
|
GLint param = -1;
|
|
|
|
gl->GetTexLevelParameteriv(GL_TEXTURE_2D, 0, pnames[comp], ¶m);
|
|
|
|
fmt->component_depth[i] = param > 0 ? param : 0;
|
|
|
|
}
|
|
|
|
gl->DeleteTextures(1, &tex);
|
|
|
|
}
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
static int ra_init_gl(struct ra *ra, GL *gl)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
|
|
|
if (gl->version < 210 && gl->es < 200) {
|
|
|
|
MP_ERR(ra, "At least OpenGL 2.1 or OpenGL ES 2.0 required.\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ra_gl *p = ra->priv = talloc_zero(NULL, struct ra_gl);
|
|
|
|
p->gl = gl;
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
ra_gl_set_debug(ra, true);
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
ra->fns = &ra_fns_gl;
|
2017-08-05 12:20:14 +00:00
|
|
|
ra->glsl_version = gl->glsl_version;
|
|
|
|
ra->glsl_es = gl->es > 0;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-26 03:39:53 +00:00
|
|
|
static const int caps_map[][2] = {
|
|
|
|
{RA_CAP_DIRECT_UPLOAD, 0},
|
2017-08-26 03:58:50 +00:00
|
|
|
{RA_CAP_GLOBAL_UNIFORM, 0},
|
2017-10-02 12:10:52 +00:00
|
|
|
{RA_CAP_FRAGCOORD, 0},
|
2017-08-26 03:39:53 +00:00
|
|
|
{RA_CAP_TEX_1D, MPGL_CAP_1D_TEX},
|
|
|
|
{RA_CAP_TEX_3D, MPGL_CAP_3D_TEX},
|
|
|
|
{RA_CAP_COMPUTE, MPGL_CAP_COMPUTE_SHADER},
|
2018-02-03 16:07:55 +00:00
|
|
|
{RA_CAP_NUM_GROUPS, MPGL_CAP_COMPUTE_SHADER},
|
2017-08-26 03:39:53 +00:00
|
|
|
{RA_CAP_NESTED_ARRAY, MPGL_CAP_NESTED_ARRAY},
|
|
|
|
};
|
|
|
|
|
|
|
|
for (int i = 0; i < MP_ARRAY_SIZE(caps_map); i++) {
|
|
|
|
if ((gl->mpgl_caps & caps_map[i][1]) == caps_map[i][1])
|
|
|
|
ra->caps |= caps_map[i][0];
|
|
|
|
}
|
|
|
|
|
2017-11-03 10:39:15 +00:00
|
|
|
if (gl->BindBufferBase) {
|
|
|
|
if (gl->mpgl_caps & MPGL_CAP_UBO)
|
|
|
|
ra->caps |= RA_CAP_BUF_RO;
|
|
|
|
if (gl->mpgl_caps & MPGL_CAP_SSBO)
|
|
|
|
ra->caps |= RA_CAP_BUF_RW;
|
|
|
|
}
|
|
|
|
|
2017-10-02 12:10:52 +00:00
|
|
|
// textureGather is only supported in GLSL 400+
|
|
|
|
if (ra->glsl_version >= 400)
|
|
|
|
ra->caps |= RA_CAP_GATHER;
|
|
|
|
|
2017-08-26 03:39:53 +00:00
|
|
|
if (gl->BlitFramebuffer)
|
|
|
|
ra->caps |= RA_CAP_BLIT;
|
|
|
|
|
2018-11-13 19:28:03 +00:00
|
|
|
// Disable compute shaders for GLSL < 420. This work-around is needed since
|
|
|
|
// some buggy OpenGL drivers expose compute shaders for lower GLSL versions,
|
|
|
|
// despite the spec requiring 420+.
|
|
|
|
if (ra->glsl_version < 420)
|
|
|
|
ra->caps &= ~RA_CAP_COMPUTE;
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
int gl_fmt_features = gl_format_feature_flags(gl);
|
2017-07-29 18:11:51 +00:00
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
for (int n = 0; gl_formats[n].internal_format; n++) {
|
|
|
|
const struct gl_format *gl_fmt = &gl_formats[n];
|
|
|
|
|
|
|
|
if (!(gl_fmt->flags & gl_fmt_features))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
struct ra_format *fmt = talloc_zero(ra, struct ra_format);
|
|
|
|
*fmt = (struct ra_format){
|
|
|
|
.name = gl_fmt->name,
|
|
|
|
.priv = (void *)gl_fmt,
|
|
|
|
.ctype = gl_format_type(gl_fmt),
|
|
|
|
.num_components = gl_format_components(gl_fmt->format),
|
2017-08-07 17:18:58 +00:00
|
|
|
.ordered = gl_fmt->format != GL_RGB_422_APPLE,
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
.pixel_size = gl_bytes_per_pixel(gl_fmt->format, gl_fmt->type),
|
|
|
|
.luminance_alpha = gl_fmt->format == GL_LUMINANCE_ALPHA,
|
|
|
|
.linear_filter = gl_fmt->flags & F_TF,
|
2017-08-04 11:48:37 +00:00
|
|
|
.renderable = (gl_fmt->flags & F_CR) &&
|
|
|
|
(gl->mpgl_caps & MPGL_CAP_FB),
|
2019-06-13 19:30:18 +00:00
|
|
|
// TODO: Check whether it's a storable format
|
|
|
|
// https://www.khronos.org/opengl/wiki/Image_Load_Store
|
|
|
|
.storable = true,
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
int csize = gl_component_size(gl_fmt->type) * 8;
|
|
|
|
int depth = csize;
|
2017-08-11 18:55:14 +00:00
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
if (gl_fmt->flags & F_F16) {
|
|
|
|
depth = 16;
|
|
|
|
csize = 32; // always upload as GL_FLOAT (simpler for us)
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < fmt->num_components; i++) {
|
|
|
|
fmt->component_size[i] = csize;
|
|
|
|
fmt->component_depth[i] = depth;
|
|
|
|
}
|
|
|
|
|
2017-08-11 18:55:14 +00:00
|
|
|
if (fmt->ctype == RA_CTYPE_UNORM && depth != 8)
|
|
|
|
probe_real_size(gl, fmt);
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
// Special formats for which OpenGL happens to have direct support.
|
|
|
|
if (strcmp(fmt->name, "rgb565") == 0) {
|
|
|
|
fmt->special_imgfmt = IMGFMT_RGB565;
|
|
|
|
struct ra_imgfmt_desc *desc = talloc_zero(fmt, struct ra_imgfmt_desc);
|
|
|
|
fmt->special_imgfmt_desc = desc;
|
|
|
|
desc->num_planes = 1;
|
|
|
|
desc->planes[0] = fmt;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
|
desc->components[0][i] = i + 1;
|
|
|
|
desc->chroma_w = desc->chroma_h = 1;
|
|
|
|
}
|
2019-11-02 16:46:46 +00:00
|
|
|
if (strcmp(fmt->name, "rgb10_a2") == 0) {
|
|
|
|
fmt->special_imgfmt = IMGFMT_RGB30;
|
|
|
|
struct ra_imgfmt_desc *desc = talloc_zero(fmt, struct ra_imgfmt_desc);
|
|
|
|
fmt->special_imgfmt_desc = desc;
|
|
|
|
desc->component_bits = 10;
|
|
|
|
desc->num_planes = 1;
|
|
|
|
desc->planes[0] = fmt;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
|
desc->components[0][i] = i + 1;
|
|
|
|
desc->chroma_w = desc->chroma_h = 1;
|
|
|
|
}
|
2017-08-04 17:33:52 +00:00
|
|
|
if (strcmp(fmt->name, "appleyp") == 0) {
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
fmt->special_imgfmt = IMGFMT_UYVY;
|
|
|
|
struct ra_imgfmt_desc *desc = talloc_zero(fmt, struct ra_imgfmt_desc);
|
|
|
|
fmt->special_imgfmt_desc = desc;
|
|
|
|
desc->num_planes = 1;
|
|
|
|
desc->planes[0] = fmt;
|
|
|
|
desc->components[0][0] = 3;
|
|
|
|
desc->components[0][1] = 1;
|
|
|
|
desc->components[0][2] = 2;
|
|
|
|
desc->chroma_w = desc->chroma_h = 1;
|
|
|
|
}
|
|
|
|
|
vo_gpu: export the GLSL format qualifier for ra_format
Backported from @haasn's change to libplacebo, except in the current RA,
there's nothing to indicate an ra_format can be bound as a storage
image, so there's no way to force all of these formats to have a
glsl_format. Instead, the layout qualifier will be removed if
glsl_format is NULL.
This is needed for the upcoming ra_d3d11 backend. In Direct3D 11, while
loading float values from unorm images often works as expected, it's
technically undefined behaviour, and in Windows 10, it will cause the
debug layer to spam the log with error messages. Also, apparently in
GLSL, the format name must match the image's format exactly (but in
Direct3D, it just has to have the same component type.)
2017-10-21 14:18:31 +00:00
|
|
|
fmt->glsl_format = ra_fmt_glsl_format(fmt);
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
MP_TARRAY_APPEND(ra, ra->formats, ra->num_formats, fmt);
|
|
|
|
}
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
GLint ival;
|
|
|
|
gl->GetIntegerv(GL_MAX_TEXTURE_SIZE, &ival);
|
|
|
|
ra->max_texture_wh = ival;
|
|
|
|
|
|
|
|
if (ra->caps & RA_CAP_COMPUTE) {
|
|
|
|
gl->GetIntegerv(GL_MAX_COMPUTE_SHARED_MEMORY_SIZE, &ival);
|
|
|
|
ra->max_shmem = ival;
|
|
|
|
}
|
2017-08-05 11:39:20 +00:00
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
gl->Disable(GL_DITHER);
|
|
|
|
|
2017-08-11 18:55:14 +00:00
|
|
|
if (!ra_find_unorm_format(ra, 2, 1))
|
|
|
|
MP_VERBOSE(ra, "16 bit UNORM textures not available.\n");
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
struct ra *ra_create_gl(GL *gl, struct mp_log *log)
|
|
|
|
{
|
|
|
|
struct ra *ra = talloc_zero(NULL, struct ra);
|
|
|
|
ra->log = log;
|
|
|
|
if (ra_init_gl(ra, gl) < 0) {
|
|
|
|
talloc_free(ra);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return ra;
|
|
|
|
}
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
static void gl_destroy(struct ra *ra)
|
|
|
|
{
|
|
|
|
talloc_free(ra->priv);
|
|
|
|
}
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
void ra_gl_set_debug(struct ra *ra, bool enable)
|
|
|
|
{
|
|
|
|
struct ra_gl *p = ra->priv;
|
|
|
|
GL *gl = ra_gl_get(ra);
|
|
|
|
|
|
|
|
p->debug_enable = enable;
|
|
|
|
if (gl->debug_context)
|
|
|
|
gl_set_debug_logger(gl, enable ? ra->log : NULL);
|
|
|
|
}
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
static void gl_tex_destroy(struct ra *ra, struct ra_tex *tex)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
|
2017-08-19 02:33:40 +00:00
|
|
|
ra_buf_pool_uninit(ra, &tex_gl->pbo);
|
|
|
|
|
2017-08-04 13:47:50 +00:00
|
|
|
if (tex_gl->own_objects) {
|
|
|
|
if (tex_gl->fbo)
|
2017-08-05 15:09:25 +00:00
|
|
|
gl->DeleteFramebuffers(1, &tex_gl->fbo);
|
2017-08-04 11:48:37 +00:00
|
|
|
|
2017-08-05 15:09:25 +00:00
|
|
|
gl->DeleteTextures(1, &tex_gl->texture);
|
2017-08-04 13:47:50 +00:00
|
|
|
}
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
talloc_free(tex_gl);
|
|
|
|
talloc_free(tex);
|
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
static struct ra_tex *gl_tex_create_blank(struct ra *ra,
|
|
|
|
const struct ra_tex_params *params)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
|
|
|
struct ra_tex *tex = talloc_zero(NULL, struct ra_tex);
|
|
|
|
tex->params = *params;
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
tex->params.initial_data = NULL;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
struct ra_tex_gl *tex_gl = tex->priv = talloc_zero(NULL, struct ra_tex_gl);
|
|
|
|
|
|
|
|
const struct gl_format *fmt = params->format->priv;
|
|
|
|
tex_gl->internal_format = fmt->internal_format;
|
|
|
|
tex_gl->format = fmt->format;
|
|
|
|
tex_gl->type = fmt->type;
|
|
|
|
switch (params->dimensions) {
|
|
|
|
case 1: tex_gl->target = GL_TEXTURE_1D; break;
|
|
|
|
case 2: tex_gl->target = GL_TEXTURE_2D; break;
|
|
|
|
case 3: tex_gl->target = GL_TEXTURE_3D; break;
|
|
|
|
default: abort();
|
|
|
|
}
|
|
|
|
if (params->non_normalized) {
|
|
|
|
assert(params->dimensions == 2);
|
|
|
|
tex_gl->target = GL_TEXTURE_RECTANGLE;
|
|
|
|
}
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
if (params->external_oes) {
|
|
|
|
assert(params->dimensions == 2 && !params->non_normalized);
|
|
|
|
tex_gl->target = GL_TEXTURE_EXTERNAL_OES;
|
|
|
|
}
|
|
|
|
|
2018-02-07 19:18:36 +00:00
|
|
|
if (params->downloadable && !(params->dimensions == 2 &&
|
|
|
|
params->format->renderable))
|
|
|
|
{
|
|
|
|
gl_tex_destroy(ra, tex);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
return tex;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ra_tex *gl_tex_create(struct ra *ra,
|
|
|
|
const struct ra_tex_params *params)
|
|
|
|
{
|
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-09-29 12:41:52 +00:00
|
|
|
assert(!params->format->dummy_format);
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
struct ra_tex *tex = gl_tex_create_blank(ra, params);
|
|
|
|
if (!tex)
|
|
|
|
return NULL;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
|
|
|
|
tex_gl->own_objects = true;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
|
|
|
gl->GenTextures(1, &tex_gl->texture);
|
|
|
|
gl->BindTexture(tex_gl->target, tex_gl->texture);
|
|
|
|
|
|
|
|
GLint filter = params->src_linear ? GL_LINEAR : GL_NEAREST;
|
|
|
|
GLint wrap = params->src_repeat ? GL_REPEAT : GL_CLAMP_TO_EDGE;
|
|
|
|
gl->TexParameteri(tex_gl->target, GL_TEXTURE_MIN_FILTER, filter);
|
|
|
|
gl->TexParameteri(tex_gl->target, GL_TEXTURE_MAG_FILTER, filter);
|
|
|
|
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_S, wrap);
|
|
|
|
if (params->dimensions > 1)
|
|
|
|
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_T, wrap);
|
|
|
|
if (params->dimensions > 2)
|
|
|
|
gl->TexParameteri(tex_gl->target, GL_TEXTURE_WRAP_R, wrap);
|
|
|
|
|
2017-07-29 18:14:48 +00:00
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
switch (params->dimensions) {
|
|
|
|
case 1:
|
|
|
|
gl->TexImage1D(tex_gl->target, 0, tex_gl->internal_format, params->w,
|
2017-07-29 18:14:48 +00:00
|
|
|
0, tex_gl->format, tex_gl->type, params->initial_data);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
gl->TexImage2D(tex_gl->target, 0, tex_gl->internal_format, params->w,
|
2017-07-29 18:14:48 +00:00
|
|
|
params->h, 0, tex_gl->format, tex_gl->type,
|
|
|
|
params->initial_data);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
gl->TexImage3D(tex_gl->target, 0, tex_gl->internal_format, params->w,
|
|
|
|
params->h, params->d, 0, tex_gl->format, tex_gl->type,
|
2017-07-29 18:14:48 +00:00
|
|
|
params->initial_data);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
break;
|
|
|
|
}
|
2017-07-29 18:14:48 +00:00
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
|
|
|
gl->BindTexture(tex_gl->target, 0);
|
|
|
|
|
2017-08-04 11:48:37 +00:00
|
|
|
gl_check_error(gl, ra->log, "after creating texture");
|
|
|
|
|
2018-02-07 19:18:36 +00:00
|
|
|
// Even blitting needs an FBO in OpenGL for strange reasons.
|
|
|
|
// Download is handled by reading from an FBO.
|
|
|
|
if (tex->params.render_dst || tex->params.blit_src ||
|
|
|
|
tex->params.blit_dst || tex->params.downloadable)
|
|
|
|
{
|
2017-08-04 11:48:37 +00:00
|
|
|
if (!tex->params.format->renderable) {
|
|
|
|
MP_ERR(ra, "Trying to create renderable texture with unsupported "
|
|
|
|
"format.\n");
|
|
|
|
ra_tex_free(ra, &tex);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(gl->mpgl_caps & MPGL_CAP_FB);
|
|
|
|
|
|
|
|
gl->GenFramebuffers(1, &tex_gl->fbo);
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, tex_gl->fbo);
|
|
|
|
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
2017-08-07 17:24:25 +00:00
|
|
|
GL_TEXTURE_2D, tex_gl->texture, 0);
|
2017-08-04 11:48:37 +00:00
|
|
|
GLenum err = gl->CheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
|
|
|
|
|
|
if (err != GL_FRAMEBUFFER_COMPLETE) {
|
|
|
|
MP_ERR(ra, "Error: framebuffer completeness check failed (error=%d).\n",
|
|
|
|
(int)err);
|
|
|
|
ra_tex_free(ra, &tex);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
gl_check_error(gl, ra->log, "after creating framebuffer");
|
|
|
|
}
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
return tex;
|
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
// Create a ra_tex that merely wraps an existing texture. The returned object
|
|
|
|
// is freed with ra_tex_free(), but this will not delete the texture passed to
|
|
|
|
// this function.
|
|
|
|
// Some features are unsupported, e.g. setting params->initial_data or render_dst.
|
|
|
|
struct ra_tex *ra_create_wrapped_tex(struct ra *ra,
|
|
|
|
const struct ra_tex_params *params,
|
|
|
|
GLuint gl_texture)
|
|
|
|
{
|
|
|
|
struct ra_tex *tex = gl_tex_create_blank(ra, params);
|
|
|
|
if (!tex)
|
|
|
|
return NULL;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
tex_gl->texture = gl_texture;
|
|
|
|
return tex;
|
|
|
|
}
|
|
|
|
|
2017-08-04 13:47:50 +00:00
|
|
|
static const struct ra_format fbo_dummy_format = {
|
|
|
|
.name = "unknown_fbo",
|
|
|
|
.priv = (void *)&(const struct gl_format){
|
|
|
|
.name = "unknown",
|
|
|
|
.format = GL_RGBA,
|
|
|
|
.flags = F_CR,
|
|
|
|
},
|
|
|
|
.renderable = true,
|
2017-09-29 12:41:52 +00:00
|
|
|
.dummy_format = true,
|
2017-08-04 13:47:50 +00:00
|
|
|
};
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
// Create a ra_tex that merely wraps an existing framebuffer. gl_fbo can be 0
|
|
|
|
// to wrap the default framebuffer.
|
|
|
|
// The returned object is freed with ra_tex_free(), but this will not delete
|
|
|
|
// the framebuffer object passed to this function.
|
|
|
|
struct ra_tex *ra_create_wrapped_fb(struct ra *ra, GLuint gl_fbo, int w, int h)
|
2017-08-04 13:47:50 +00:00
|
|
|
{
|
|
|
|
struct ra_tex *tex = talloc_zero(ra, struct ra_tex);
|
|
|
|
*tex = (struct ra_tex){
|
|
|
|
.params = {
|
|
|
|
.dimensions = 2,
|
|
|
|
.w = w, .h = h, .d = 1,
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
.format = &fbo_dummy_format,
|
|
|
|
.render_dst = true,
|
2017-08-12 18:07:03 +00:00
|
|
|
.blit_src = true,
|
|
|
|
.blit_dst = true,
|
2017-08-04 13:47:50 +00:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv = talloc_zero(NULL, struct ra_tex_gl);
|
|
|
|
*tex_gl = (struct ra_tex_gl){
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
.fbo = gl_fbo,
|
|
|
|
.internal_format = 0,
|
|
|
|
.format = GL_RGBA,
|
|
|
|
.type = 0,
|
2017-08-04 13:47:50 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
return tex;
|
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
GL *ra_gl_get(struct ra *ra)
|
2017-08-04 13:47:50 +00:00
|
|
|
{
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
struct ra_gl *p = ra->priv;
|
|
|
|
return p->gl;
|
2017-08-04 13:47:50 +00:00
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
// Return the associate glTexImage arguments for the given format. Sets all
|
|
|
|
// fields to 0 on failure.
|
|
|
|
void ra_gl_get_format(const struct ra_format *fmt, GLint *out_internal_format,
|
|
|
|
GLenum *out_format, GLenum *out_type)
|
2017-08-04 13:47:50 +00:00
|
|
|
{
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
const struct gl_format *gl_format = fmt->priv;
|
|
|
|
*out_internal_format = gl_format->internal_format;
|
|
|
|
*out_format = gl_format->format;
|
|
|
|
*out_type = gl_format->type;
|
2017-08-04 13:47:50 +00:00
|
|
|
}
|
|
|
|
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
void ra_gl_get_raw_tex(struct ra *ra, struct ra_tex *tex,
|
|
|
|
GLuint *out_texture, GLenum *out_target)
|
2017-08-05 12:20:14 +00:00
|
|
|
{
|
vo_opengl: separate hwdec context and mapping, port it to use ra
This does two separate rather intrusive things:
1. Make the hwdec context (which does initialization, provides the
device to the decoder, and other basic state) and frame mapping
(getting textures from a mp_image) separate. This is more
flexible, and you could map multiple images at once. It will
help removing some hwdec special-casing from video.c.
2. Switch all hwdec API use to ra. Of course all code is still
GL specific, but in theory it would be possible to support other
backends. The most important change is that the hwdec interop
returns ra objects, instead of anything GL specific. This removes
the last dependency on GL-specific header files from video.c.
I'm mixing these separate changes because both requires essentially
rewriting all the glue code, so better do them at once. For the same
reason, this change isn't done incrementally.
hwdec_ios.m is untested, since I can't test it. Apart from superficial
mistakes, this also requires dealing with Apple's texture format
fuckups: they force you to use GL_LUMINANCE[_ALPHA] instead of GL_RED
and GL_RG. We also need to report the correct format via ra_tex to
the renderer, which is done by find_la_variant(). It's unknown whether
this works correctly.
hwdec_rpi.c as well as vo_rpi.c are still broken. (I need to pull my
RPI out of a dusty pile of devices and cables, so, later.)
2017-08-10 15:48:33 +00:00
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
*out_texture = tex_gl->texture;
|
|
|
|
*out_target = tex_gl->target;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return whether the ra instance was created with ra_create_gl(). This is the
|
|
|
|
// _only_ function that can be called on a ra instance of any type.
|
|
|
|
bool ra_is_gl(struct ra *ra)
|
|
|
|
{
|
|
|
|
return ra->fns == &ra_fns_gl;
|
2017-08-05 12:20:14 +00:00
|
|
|
}
|
|
|
|
|
2017-08-18 00:04:29 +00:00
|
|
|
static bool gl_tex_upload(struct ra *ra,
|
2017-08-16 20:13:51 +00:00
|
|
|
const struct ra_tex_upload_params *params)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-16 20:13:51 +00:00
|
|
|
struct ra_tex *tex = params->tex;
|
|
|
|
struct ra_buf *buf = params->buf;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
2017-08-16 20:13:51 +00:00
|
|
|
struct ra_buf_gl *buf_gl = buf ? buf->priv : NULL;
|
|
|
|
assert(tex->params.host_mutable);
|
|
|
|
assert(!params->buf || !params->src);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-19 02:33:40 +00:00
|
|
|
if (ra->use_pbo && !params->buf)
|
|
|
|
return ra_tex_upload_pbo(ra, &tex_gl->pbo, params);
|
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
const void *src = params->src;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
if (buf) {
|
2017-08-05 20:29:48 +00:00
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, buf_gl->buffer);
|
2017-08-16 20:13:51 +00:00
|
|
|
src = (void *)params->buf_offset;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
gl->BindTexture(tex_gl->target, tex_gl->texture);
|
2017-08-16 20:13:51 +00:00
|
|
|
if (params->invalidate && gl->InvalidateTexImage)
|
|
|
|
gl->InvalidateTexImage(tex_gl->texture, 0);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
|
|
|
switch (tex->params.dimensions) {
|
|
|
|
case 1:
|
|
|
|
gl->TexImage1D(tex_gl->target, 0, tex_gl->internal_format,
|
|
|
|
tex->params.w, 0, tex_gl->format, tex_gl->type, src);
|
|
|
|
break;
|
2017-08-16 20:13:51 +00:00
|
|
|
case 2: {
|
|
|
|
struct mp_rect rc = {0, 0, tex->params.w, tex->params.h};
|
|
|
|
if (params->rc)
|
|
|
|
rc = *params->rc;
|
|
|
|
gl_upload_tex(gl, tex_gl->target, tex_gl->format, tex_gl->type,
|
|
|
|
src, params->stride, rc.x0, rc.y0, rc.x1 - rc.x0,
|
|
|
|
rc.y1 - rc.y0);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
break;
|
2017-08-16 20:13:51 +00:00
|
|
|
}
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
case 3:
|
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
|
|
|
gl->TexImage3D(GL_TEXTURE_3D, 0, tex_gl->internal_format, tex->params.w,
|
|
|
|
tex->params.h, tex->params.d, 0, tex_gl->format,
|
|
|
|
tex_gl->type, src);
|
|
|
|
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->BindTexture(tex_gl->target, 0);
|
|
|
|
|
|
|
|
if (buf) {
|
|
|
|
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
|
2017-08-16 20:13:51 +00:00
|
|
|
if (buf->params.host_mapped) {
|
|
|
|
// Make sure the PBO is not reused until GL is done with it. If a
|
|
|
|
// previous operation is pending, "update" it by creating a new
|
|
|
|
// fence that will cover the previous operation as well.
|
|
|
|
gl->DeleteSync(buf_gl->fence);
|
|
|
|
buf_gl->fence = gl->FenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
|
|
|
|
}
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
}
|
2017-08-18 00:04:29 +00:00
|
|
|
|
|
|
|
return true;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
}
|
|
|
|
|
2018-02-07 19:18:36 +00:00
|
|
|
static bool gl_tex_download(struct ra *ra, struct ra_tex_download_params *params)
|
|
|
|
{
|
|
|
|
GL *gl = ra_gl_get(ra);
|
|
|
|
struct ra_tex *tex = params->tex;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
if (!tex_gl->fbo)
|
|
|
|
return false;
|
|
|
|
return gl_read_fbo_contents(gl, tex_gl->fbo, 1, tex_gl->format, tex_gl->type,
|
|
|
|
tex->params.w, tex->params.h, params->dst,
|
|
|
|
params->stride);
|
|
|
|
}
|
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
static void gl_buf_destroy(struct ra *ra, struct ra_buf *buf)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
2017-08-05 20:29:48 +00:00
|
|
|
if (!buf)
|
|
|
|
return;
|
|
|
|
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 20:29:48 +00:00
|
|
|
struct ra_buf_gl *buf_gl = buf->priv;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2018-10-12 06:29:07 +00:00
|
|
|
if (buf_gl->fence)
|
|
|
|
gl->DeleteSync(buf_gl->fence);
|
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
if (buf->data) {
|
2017-08-16 20:13:51 +00:00
|
|
|
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
|
|
|
|
gl->UnmapBuffer(buf_gl->target);
|
|
|
|
gl->BindBuffer(buf_gl->target, 0);
|
2017-08-05 20:29:48 +00:00
|
|
|
}
|
|
|
|
gl->DeleteBuffers(1, &buf_gl->buffer);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
|
|
|
talloc_free(buf_gl);
|
|
|
|
talloc_free(buf);
|
|
|
|
}
|
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
static struct ra_buf *gl_buf_create(struct ra *ra,
|
|
|
|
const struct ra_buf_params *params)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
if (params->host_mapped && gl->version < 440)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
return NULL;
|
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
struct ra_buf *buf = talloc_zero(NULL, struct ra_buf);
|
|
|
|
buf->params = *params;
|
|
|
|
buf->params.initial_data = NULL;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
struct ra_buf_gl *buf_gl = buf->priv = talloc_zero(NULL, struct ra_buf_gl);
|
|
|
|
gl->GenBuffers(1, &buf_gl->buffer);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-05 20:29:48 +00:00
|
|
|
switch (params->type) {
|
2017-08-16 20:13:51 +00:00
|
|
|
case RA_BUF_TYPE_TEX_UPLOAD: buf_gl->target = GL_PIXEL_UNPACK_BUFFER; break;
|
|
|
|
case RA_BUF_TYPE_SHADER_STORAGE: buf_gl->target = GL_SHADER_STORAGE_BUFFER; break;
|
2017-08-26 03:48:12 +00:00
|
|
|
case RA_BUF_TYPE_UNIFORM: buf_gl->target = GL_UNIFORM_BUFFER; break;
|
2017-08-05 20:29:48 +00:00
|
|
|
default: abort();
|
|
|
|
};
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
|
2017-08-05 20:29:48 +00:00
|
|
|
|
|
|
|
if (params->host_mapped) {
|
|
|
|
unsigned flags = GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT |
|
|
|
|
GL_MAP_READ_BIT | GL_MAP_WRITE_BIT;
|
|
|
|
|
|
|
|
unsigned storflags = flags;
|
|
|
|
if (params->type == RA_BUF_TYPE_TEX_UPLOAD)
|
|
|
|
storflags |= GL_CLIENT_STORAGE_BIT;
|
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
gl->BufferStorage(buf_gl->target, params->size, params->initial_data,
|
|
|
|
storflags);
|
|
|
|
buf->data = gl->MapBufferRange(buf_gl->target, 0, params->size, flags);
|
2017-08-05 20:29:48 +00:00
|
|
|
if (!buf->data) {
|
|
|
|
gl_check_error(gl, ra->log, "mapping buffer");
|
|
|
|
gl_buf_destroy(ra, buf);
|
|
|
|
buf = NULL;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GLenum hint;
|
|
|
|
switch (params->type) {
|
|
|
|
case RA_BUF_TYPE_TEX_UPLOAD: hint = GL_STREAM_DRAW; break;
|
|
|
|
case RA_BUF_TYPE_SHADER_STORAGE: hint = GL_STREAM_COPY; break;
|
2017-08-26 03:48:12 +00:00
|
|
|
case RA_BUF_TYPE_UNIFORM: hint = GL_STATIC_DRAW; break;
|
2017-08-05 20:29:48 +00:00
|
|
|
default: abort();
|
|
|
|
}
|
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
gl->BufferData(buf_gl->target, params->size, params->initial_data, hint);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
}
|
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
gl->BindBuffer(buf_gl->target, 0);
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
2017-08-16 20:13:51 +00:00
|
|
|
static void gl_buf_update(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset,
|
|
|
|
const void *data, size_t size)
|
|
|
|
{
|
|
|
|
GL *gl = ra_gl_get(ra);
|
|
|
|
struct ra_buf_gl *buf_gl = buf->priv;
|
|
|
|
assert(buf->params.host_mutable);
|
|
|
|
|
|
|
|
gl->BindBuffer(buf_gl->target, buf_gl->buffer);
|
|
|
|
gl->BufferSubData(buf_gl->target, offset, size, data);
|
|
|
|
gl->BindBuffer(buf_gl->target, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool gl_buf_poll(struct ra *ra, struct ra_buf *buf)
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
{
|
2017-08-16 20:13:51 +00:00
|
|
|
// Non-persistently mapped buffers are always implicitly reusable in OpenGL,
|
|
|
|
// the implementation will create more buffers under the hood if needed.
|
|
|
|
if (!buf->data)
|
|
|
|
return true;
|
2017-08-05 20:29:48 +00:00
|
|
|
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 20:29:48 +00:00
|
|
|
struct ra_buf_gl *buf_gl = buf->priv;
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
|
|
|
|
if (buf_gl->fence) {
|
|
|
|
GLenum res = gl->ClientWaitSync(buf_gl->fence, 0, 0); // non-blocking
|
|
|
|
if (res == GL_ALREADY_SIGNALED) {
|
|
|
|
gl->DeleteSync(buf_gl->fence);
|
|
|
|
buf_gl->fence = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return !buf_gl->fence;
|
|
|
|
}
|
|
|
|
|
2017-08-04 13:47:50 +00:00
|
|
|
static void gl_clear(struct ra *ra, struct ra_tex *dst, float color[4],
|
|
|
|
struct mp_rect *scissor)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-04 13:47:50 +00:00
|
|
|
|
|
|
|
assert(dst->params.render_dst);
|
|
|
|
struct ra_tex_gl *dst_gl = dst->priv;
|
|
|
|
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, dst_gl->fbo);
|
|
|
|
|
|
|
|
gl->Scissor(scissor->x0, scissor->y0,
|
|
|
|
scissor->x1 - scissor->x0,
|
|
|
|
scissor->y1 - scissor->y0);
|
|
|
|
|
|
|
|
gl->Enable(GL_SCISSOR_TEST);
|
|
|
|
gl->ClearColor(color[0], color[1], color[2], color[3]);
|
|
|
|
gl->Clear(GL_COLOR_BUFFER_BIT);
|
|
|
|
gl->Disable(GL_SCISSOR_TEST);
|
|
|
|
|
2017-08-15 17:08:54 +00:00
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
2017-08-04 13:47:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void gl_blit(struct ra *ra, struct ra_tex *dst, struct ra_tex *src,
|
2017-08-07 14:44:15 +00:00
|
|
|
struct mp_rect *dst_rc, struct mp_rect *src_rc)
|
2017-08-04 13:47:50 +00:00
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-04 13:47:50 +00:00
|
|
|
|
2017-08-12 18:07:03 +00:00
|
|
|
assert(src->params.blit_src);
|
|
|
|
assert(dst->params.blit_dst);
|
2017-08-04 13:47:50 +00:00
|
|
|
|
|
|
|
struct ra_tex_gl *src_gl = src->priv;
|
|
|
|
struct ra_tex_gl *dst_gl = dst->priv;
|
|
|
|
|
|
|
|
gl->BindFramebuffer(GL_READ_FRAMEBUFFER, src_gl->fbo);
|
|
|
|
gl->BindFramebuffer(GL_DRAW_FRAMEBUFFER, dst_gl->fbo);
|
|
|
|
gl->BlitFramebuffer(src_rc->x0, src_rc->y0, src_rc->x1, src_rc->y1,
|
2017-08-07 14:44:15 +00:00
|
|
|
dst_rc->x0, dst_rc->y0, dst_rc->x1, dst_rc->y1,
|
2017-08-04 13:47:50 +00:00
|
|
|
GL_COLOR_BUFFER_BIT, GL_NEAREST);
|
|
|
|
gl->BindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
|
|
gl->BindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
|
|
}
|
|
|
|
|
2018-11-10 10:27:03 +00:00
|
|
|
static int gl_desc_namespace(struct ra *ra, enum ra_vartype type)
|
2017-10-21 13:10:09 +00:00
|
|
|
{
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
2017-08-05 12:20:14 +00:00
|
|
|
static void gl_renderpass_destroy(struct ra *ra, struct ra_renderpass *pass)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
struct ra_renderpass_gl *pass_gl = pass->priv;
|
2017-08-05 15:09:25 +00:00
|
|
|
gl->DeleteProgram(pass_gl->program);
|
2017-08-05 12:20:14 +00:00
|
|
|
gl_vao_uninit(&pass_gl->vao);
|
|
|
|
|
|
|
|
talloc_free(pass_gl);
|
|
|
|
talloc_free(pass);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char *shader_typestr(GLenum type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case GL_VERTEX_SHADER: return "vertex";
|
|
|
|
case GL_FRAGMENT_SHADER: return "fragment";
|
|
|
|
case GL_COMPUTE_SHADER: return "compute";
|
|
|
|
default: abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void compile_attach_shader(struct ra *ra, GLuint program,
|
|
|
|
GLenum type, const char *source, bool *ok)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
GLuint shader = gl->CreateShader(type);
|
|
|
|
gl->ShaderSource(shader, 1, &source, NULL);
|
|
|
|
gl->CompileShader(shader);
|
|
|
|
GLint status = 0;
|
|
|
|
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
|
|
|
|
GLint log_length = 0;
|
|
|
|
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
|
|
|
|
const char *typestr = shader_typestr(type);
|
|
|
|
if (mp_msg_test(ra->log, pri)) {
|
|
|
|
MP_MSG(ra, pri, "%s shader source:\n", typestr);
|
|
|
|
mp_log_source(ra->log, pri, source);
|
|
|
|
}
|
|
|
|
if (log_length > 1) {
|
|
|
|
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
|
|
|
|
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
|
|
|
|
MP_MSG(ra, pri, "%s shader compile log (status=%d):\n%s\n",
|
|
|
|
typestr, status, logstr);
|
|
|
|
talloc_free(logstr);
|
|
|
|
}
|
|
|
|
if (gl->GetTranslatedShaderSourceANGLE && mp_msg_test(ra->log, MSGL_DEBUG)) {
|
|
|
|
GLint len = 0;
|
|
|
|
gl->GetShaderiv(shader, GL_TRANSLATED_SHADER_SOURCE_LENGTH_ANGLE, &len);
|
|
|
|
if (len > 0) {
|
|
|
|
GLchar *sstr = talloc_zero_size(NULL, len + 1);
|
|
|
|
gl->GetTranslatedShaderSourceANGLE(shader, len, NULL, sstr);
|
|
|
|
MP_DBG(ra, "Translated shader:\n");
|
|
|
|
mp_log_source(ra->log, MSGL_DEBUG, sstr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
gl->AttachShader(program, shader);
|
|
|
|
gl->DeleteShader(shader);
|
|
|
|
|
|
|
|
*ok &= status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void link_shader(struct ra *ra, GLuint program, bool *ok)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
gl->LinkProgram(program);
|
|
|
|
GLint status = 0;
|
|
|
|
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
|
|
|
|
GLint log_length = 0;
|
|
|
|
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
|
|
|
|
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
|
|
|
|
if (mp_msg_test(ra->log, pri)) {
|
|
|
|
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
|
|
|
|
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
|
|
|
|
MP_MSG(ra, pri, "shader link log (status=%d): %s\n", status, logstr);
|
|
|
|
talloc_free(logstr);
|
|
|
|
}
|
|
|
|
|
|
|
|
*ok &= status;
|
|
|
|
}
|
|
|
|
|
|
|
|
// either 'compute' or both 'vertex' and 'frag' are needed
|
|
|
|
static GLuint compile_program(struct ra *ra, const struct ra_renderpass_params *p)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
GLuint prog = gl->CreateProgram();
|
|
|
|
bool ok = true;
|
|
|
|
if (p->type == RA_RENDERPASS_TYPE_COMPUTE)
|
|
|
|
compile_attach_shader(ra, prog, GL_COMPUTE_SHADER, p->compute_shader, &ok);
|
|
|
|
if (p->type == RA_RENDERPASS_TYPE_RASTER) {
|
|
|
|
compile_attach_shader(ra, prog, GL_VERTEX_SHADER, p->vertex_shader, &ok);
|
|
|
|
compile_attach_shader(ra, prog, GL_FRAGMENT_SHADER, p->frag_shader, &ok);
|
|
|
|
for (int n = 0; n < p->num_vertex_attribs; n++)
|
|
|
|
gl->BindAttribLocation(prog, n, p->vertex_attribs[n].name);
|
|
|
|
}
|
|
|
|
link_shader(ra, prog, &ok);
|
|
|
|
if (!ok) {
|
|
|
|
gl->DeleteProgram(prog);
|
|
|
|
prog = 0;
|
|
|
|
}
|
|
|
|
return prog;
|
|
|
|
}
|
|
|
|
|
|
|
|
static GLuint load_program(struct ra *ra, const struct ra_renderpass_params *p,
|
|
|
|
bstr *out_cached_data)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
GLuint prog = 0;
|
|
|
|
|
|
|
|
if (gl->ProgramBinary && p->cached_program.len > 4) {
|
|
|
|
GLenum format = AV_RL32(p->cached_program.start);
|
|
|
|
prog = gl->CreateProgram();
|
|
|
|
gl_check_error(gl, ra->log, "before loading program");
|
|
|
|
gl->ProgramBinary(prog, format, p->cached_program.start + 4,
|
|
|
|
p->cached_program.len - 4);
|
|
|
|
gl->GetError(); // discard potential useless error
|
|
|
|
GLint status = 0;
|
|
|
|
gl->GetProgramiv(prog, GL_LINK_STATUS, &status);
|
|
|
|
if (status) {
|
2017-09-28 09:53:57 +00:00
|
|
|
MP_DBG(ra, "Loading binary program succeeded.\n");
|
2017-08-05 12:20:14 +00:00
|
|
|
} else {
|
|
|
|
gl->DeleteProgram(prog);
|
|
|
|
prog = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!prog) {
|
|
|
|
prog = compile_program(ra, p);
|
|
|
|
|
|
|
|
if (gl->GetProgramBinary && prog) {
|
|
|
|
GLint size = 0;
|
|
|
|
gl->GetProgramiv(prog, GL_PROGRAM_BINARY_LENGTH, &size);
|
|
|
|
uint8_t *buffer = talloc_size(NULL, size + 4);
|
|
|
|
GLsizei actual_size = 0;
|
|
|
|
GLenum binary_format = 0;
|
2017-08-08 11:16:16 +00:00
|
|
|
if (size > 0) {
|
|
|
|
gl->GetProgramBinary(prog, size, &actual_size, &binary_format,
|
|
|
|
buffer + 4);
|
|
|
|
}
|
2017-08-05 12:20:14 +00:00
|
|
|
AV_WL32(buffer, binary_format);
|
2017-08-07 16:46:40 +00:00
|
|
|
if (actual_size) {
|
2017-08-05 12:20:14 +00:00
|
|
|
*out_cached_data = (bstr){buffer, actual_size + 4};
|
2017-08-07 16:46:40 +00:00
|
|
|
} else {
|
|
|
|
talloc_free(buffer);
|
|
|
|
}
|
2017-08-05 12:20:14 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return prog;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ra_renderpass *gl_renderpass_create(struct ra *ra,
|
|
|
|
const struct ra_renderpass_params *params)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
struct ra_renderpass *pass = talloc_zero(NULL, struct ra_renderpass);
|
2017-09-08 02:33:01 +00:00
|
|
|
pass->params = *ra_renderpass_params_copy(pass, params);
|
2017-08-05 12:20:14 +00:00
|
|
|
pass->params.cached_program = (bstr){0};
|
|
|
|
struct ra_renderpass_gl *pass_gl = pass->priv =
|
|
|
|
talloc_zero(NULL, struct ra_renderpass_gl);
|
|
|
|
|
|
|
|
bstr cached = {0};
|
|
|
|
pass_gl->program = load_program(ra, params, &cached);
|
|
|
|
if (!pass_gl->program) {
|
|
|
|
gl_renderpass_destroy(ra, pass);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
talloc_steal(pass, cached.start);
|
|
|
|
pass->params.cached_program = cached;
|
|
|
|
|
2017-08-07 15:42:50 +00:00
|
|
|
gl->UseProgram(pass_gl->program);
|
2017-08-05 12:20:14 +00:00
|
|
|
for (int n = 0; n < params->num_inputs; n++) {
|
|
|
|
GLint loc =
|
|
|
|
gl->GetUniformLocation(pass_gl->program, params->inputs[n].name);
|
|
|
|
MP_TARRAY_APPEND(pass_gl, pass_gl->uniform_loc, pass_gl->num_uniform_loc,
|
|
|
|
loc);
|
2017-08-07 15:42:50 +00:00
|
|
|
|
|
|
|
// For compatibility with older OpenGL, we need to explicitly update
|
|
|
|
// the texture/image unit bindings after creating the shader program,
|
|
|
|
// since specifying it directly requires GLSL 4.20+
|
|
|
|
switch (params->inputs[n].type) {
|
|
|
|
case RA_VARTYPE_TEX:
|
|
|
|
case RA_VARTYPE_IMG_W:
|
|
|
|
gl->Uniform1i(loc, params->inputs[n].binding);
|
|
|
|
break;
|
|
|
|
}
|
2017-08-05 12:20:14 +00:00
|
|
|
}
|
2017-08-07 15:42:50 +00:00
|
|
|
gl->UseProgram(0);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
2017-08-15 16:45:22 +00:00
|
|
|
gl_vao_init(&pass_gl->vao, gl, pass->params.vertex_stride,
|
|
|
|
pass->params.vertex_attribs, pass->params.num_vertex_attribs);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
return pass;
|
|
|
|
}
|
|
|
|
|
|
|
|
static GLenum map_blend(enum ra_blend blend)
|
|
|
|
{
|
|
|
|
switch (blend) {
|
|
|
|
case RA_BLEND_ZERO: return GL_ZERO;
|
|
|
|
case RA_BLEND_ONE: return GL_ONE;
|
|
|
|
case RA_BLEND_SRC_ALPHA: return GL_SRC_ALPHA;
|
|
|
|
case RA_BLEND_ONE_MINUS_SRC_ALPHA: return GL_ONE_MINUS_SRC_ALPHA;
|
|
|
|
default: return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assumes program is current (gl->UseProgram(program)).
|
|
|
|
static void update_uniform(struct ra *ra, struct ra_renderpass *pass,
|
|
|
|
struct ra_renderpass_input_val *val)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
struct ra_renderpass_gl *pass_gl = pass->priv;
|
|
|
|
|
|
|
|
struct ra_renderpass_input *input = &pass->params.inputs[val->index];
|
|
|
|
assert(val->index >= 0 && val->index < pass_gl->num_uniform_loc);
|
|
|
|
GLint loc = pass_gl->uniform_loc[val->index];
|
|
|
|
|
|
|
|
switch (input->type) {
|
|
|
|
case RA_VARTYPE_INT: {
|
|
|
|
assert(input->dim_v * input->dim_m == 1);
|
|
|
|
if (loc < 0)
|
|
|
|
break;
|
|
|
|
gl->Uniform1i(loc, *(int *)val->data);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RA_VARTYPE_FLOAT: {
|
|
|
|
float *f = val->data;
|
|
|
|
if (loc < 0)
|
|
|
|
break;
|
|
|
|
if (input->dim_m == 1) {
|
|
|
|
switch (input->dim_v) {
|
|
|
|
case 1: gl->Uniform1f(loc, f[0]); break;
|
|
|
|
case 2: gl->Uniform2f(loc, f[0], f[1]); break;
|
|
|
|
case 3: gl->Uniform3f(loc, f[0], f[1], f[2]); break;
|
|
|
|
case 4: gl->Uniform4f(loc, f[0], f[1], f[2], f[3]); break;
|
|
|
|
default: abort();
|
|
|
|
}
|
|
|
|
} else if (input->dim_v == 2 && input->dim_m == 2) {
|
|
|
|
gl->UniformMatrix2fv(loc, 1, GL_FALSE, f);
|
|
|
|
} else if (input->dim_v == 3 && input->dim_m == 3) {
|
|
|
|
gl->UniformMatrix3fv(loc, 1, GL_FALSE, f);
|
|
|
|
} else {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2017-08-26 03:33:00 +00:00
|
|
|
case RA_VARTYPE_IMG_W: {
|
|
|
|
struct ra_tex *tex = *(struct ra_tex **)val->data;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
assert(tex->params.storage_dst);
|
|
|
|
gl->BindImageTexture(input->binding, tex_gl->texture, 0, GL_FALSE, 0,
|
|
|
|
GL_WRITE_ONLY, tex_gl->internal_format);
|
|
|
|
break;
|
|
|
|
}
|
2017-08-05 12:20:14 +00:00
|
|
|
case RA_VARTYPE_TEX: {
|
|
|
|
struct ra_tex *tex = *(struct ra_tex **)val->data;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
assert(tex->params.render_src);
|
2017-08-26 03:33:00 +00:00
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + input->binding);
|
|
|
|
gl->BindTexture(tex_gl->target, tex_gl->texture);
|
2017-08-05 12:20:14 +00:00
|
|
|
break;
|
|
|
|
}
|
2017-08-26 03:48:12 +00:00
|
|
|
case RA_VARTYPE_BUF_RO: // fall through
|
2017-08-05 20:29:48 +00:00
|
|
|
case RA_VARTYPE_BUF_RW: {
|
|
|
|
struct ra_buf *buf = *(struct ra_buf **)val->data;
|
|
|
|
struct ra_buf_gl *buf_gl = buf->priv;
|
2017-08-26 03:48:12 +00:00
|
|
|
gl->BindBufferBase(buf_gl->target, input->binding, buf_gl->buffer);
|
|
|
|
// SSBOs are not implicitly coherent in OpengL
|
|
|
|
if (input->type == RA_VARTYPE_BUF_RW)
|
|
|
|
gl->MemoryBarrier(buf_gl->target);
|
2017-08-05 12:20:14 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void disable_binding(struct ra *ra, struct ra_renderpass *pass,
|
|
|
|
struct ra_renderpass_input_val *val)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
|
|
|
|
struct ra_renderpass_input *input = &pass->params.inputs[val->index];
|
|
|
|
|
|
|
|
switch (input->type) {
|
|
|
|
case RA_VARTYPE_IMG_W: /* fall through */
|
|
|
|
case RA_VARTYPE_TEX: {
|
|
|
|
struct ra_tex *tex = *(struct ra_tex **)val->data;
|
|
|
|
struct ra_tex_gl *tex_gl = tex->priv;
|
|
|
|
assert(tex->params.render_src);
|
|
|
|
if (input->type == RA_VARTYPE_TEX) {
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0 + input->binding);
|
|
|
|
gl->BindTexture(tex_gl->target, 0);
|
|
|
|
} else {
|
|
|
|
gl->BindImageTexture(input->binding, 0, 0, GL_FALSE, 0,
|
|
|
|
GL_WRITE_ONLY, tex_gl->internal_format);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2017-08-05 20:29:48 +00:00
|
|
|
case RA_VARTYPE_BUF_RW:
|
2017-08-05 12:20:14 +00:00
|
|
|
gl->BindBufferBase(GL_SHADER_STORAGE_BUFFER, input->binding, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void gl_renderpass_run(struct ra *ra,
|
|
|
|
const struct ra_renderpass_run_params *params)
|
|
|
|
{
|
2017-08-05 15:09:25 +00:00
|
|
|
GL *gl = ra_gl_get(ra);
|
2017-08-05 12:20:14 +00:00
|
|
|
struct ra_renderpass *pass = params->pass;
|
|
|
|
struct ra_renderpass_gl *pass_gl = pass->priv;
|
|
|
|
|
|
|
|
gl->UseProgram(pass_gl->program);
|
|
|
|
|
|
|
|
for (int n = 0; n < params->num_values; n++)
|
|
|
|
update_uniform(ra, pass, ¶ms->values[n]);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
|
|
|
|
switch (pass->params.type) {
|
|
|
|
case RA_RENDERPASS_TYPE_RASTER: {
|
|
|
|
struct ra_tex_gl *target_gl = params->target->priv;
|
|
|
|
assert(params->target->params.render_dst);
|
2017-08-21 05:00:25 +00:00
|
|
|
assert(params->target->params.format == pass->params.target_format);
|
2017-08-05 12:20:14 +00:00
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, target_gl->fbo);
|
2017-08-18 00:03:50 +00:00
|
|
|
if (pass->params.invalidate_target && gl->InvalidateFramebuffer) {
|
|
|
|
GLenum fb = target_gl->fbo ? GL_COLOR_ATTACHMENT0 : GL_COLOR;
|
|
|
|
gl->InvalidateFramebuffer(GL_FRAMEBUFFER, 1, &fb);
|
|
|
|
}
|
2017-08-05 12:20:14 +00:00
|
|
|
gl->Viewport(params->viewport.x0, params->viewport.y0,
|
|
|
|
mp_rect_w(params->viewport),
|
|
|
|
mp_rect_h(params->viewport));
|
|
|
|
gl->Scissor(params->scissors.x0, params->scissors.y0,
|
|
|
|
mp_rect_w(params->scissors),
|
|
|
|
mp_rect_h(params->scissors));
|
|
|
|
gl->Enable(GL_SCISSOR_TEST);
|
|
|
|
if (pass->params.enable_blend) {
|
|
|
|
gl->BlendFuncSeparate(map_blend(pass->params.blend_src_rgb),
|
|
|
|
map_blend(pass->params.blend_dst_rgb),
|
|
|
|
map_blend(pass->params.blend_src_alpha),
|
|
|
|
map_blend(pass->params.blend_dst_alpha));
|
|
|
|
gl->Enable(GL_BLEND);
|
|
|
|
}
|
|
|
|
gl_vao_draw_data(&pass_gl->vao, GL_TRIANGLES, params->vertex_data,
|
|
|
|
params->vertex_count);
|
|
|
|
gl->Disable(GL_SCISSOR_TEST);
|
|
|
|
gl->Disable(GL_BLEND);
|
|
|
|
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RA_RENDERPASS_TYPE_COMPUTE: {
|
|
|
|
gl->DispatchCompute(params->compute_groups[0],
|
|
|
|
params->compute_groups[1],
|
|
|
|
params->compute_groups[2]);
|
|
|
|
|
|
|
|
gl->MemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int n = 0; n < params->num_values; n++)
|
|
|
|
disable_binding(ra, pass, ¶ms->values[n]);
|
|
|
|
gl->ActiveTexture(GL_TEXTURE0);
|
|
|
|
|
|
|
|
gl->UseProgram(0);
|
|
|
|
}
|
|
|
|
|
2017-08-05 16:20:45 +00:00
|
|
|
// Timers in GL use query objects, and are asynchronous. So pool a few of
|
|
|
|
// these together. GL_QUERY_OBJECT_NUM should be large enough to avoid this
|
|
|
|
// ever blocking. We can afford to throw query objects around, there's no
|
|
|
|
// practical limit on them and their overhead is small.
|
|
|
|
|
|
|
|
#define GL_QUERY_OBJECT_NUM 8
|
|
|
|
|
|
|
|
struct gl_timer {
|
2017-08-08 15:06:45 +00:00
|
|
|
GLuint query[GL_QUERY_OBJECT_NUM];
|
2017-08-05 16:20:45 +00:00
|
|
|
int idx;
|
|
|
|
uint64_t result;
|
2017-08-08 15:06:45 +00:00
|
|
|
bool active;
|
2017-08-05 16:20:45 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static ra_timer *gl_timer_create(struct ra *ra)
|
|
|
|
{
|
|
|
|
GL *gl = ra_gl_get(ra);
|
|
|
|
|
|
|
|
if (!gl->GenQueries)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
struct gl_timer *timer = talloc_zero(NULL, struct gl_timer);
|
2017-08-08 15:06:45 +00:00
|
|
|
gl->GenQueries(GL_QUERY_OBJECT_NUM, timer->query);
|
2017-08-05 16:20:45 +00:00
|
|
|
|
|
|
|
return (ra_timer *)timer;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void gl_timer_destroy(struct ra *ra, ra_timer *ratimer)
|
|
|
|
{
|
|
|
|
if (!ratimer)
|
|
|
|
return;
|
|
|
|
|
|
|
|
GL *gl = ra_gl_get(ra);
|
|
|
|
struct gl_timer *timer = ratimer;
|
|
|
|
|
2017-08-08 15:06:45 +00:00
|
|
|
gl->DeleteQueries(GL_QUERY_OBJECT_NUM, timer->query);
|
2017-08-05 16:20:45 +00:00
|
|
|
talloc_free(timer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void gl_timer_start(struct ra *ra, ra_timer *ratimer)
|
|
|
|
{
|
2017-08-08 15:06:45 +00:00
|
|
|
struct ra_gl *p = ra->priv;
|
|
|
|
GL *gl = p->gl;
|
2017-08-05 16:20:45 +00:00
|
|
|
struct gl_timer *timer = ratimer;
|
|
|
|
|
2017-08-08 15:06:45 +00:00
|
|
|
// GL_TIME_ELAPSED queries are not re-entrant, so just do nothing instead
|
|
|
|
// of crashing. Work-around for shitty GL limitations
|
|
|
|
if (p->timer_active)
|
|
|
|
return;
|
|
|
|
|
2017-08-05 16:20:45 +00:00
|
|
|
// If this query object already contains a result, we need to retrieve it
|
|
|
|
timer->result = 0;
|
2017-08-08 15:06:45 +00:00
|
|
|
if (gl->IsQuery(timer->query[timer->idx])) {
|
|
|
|
gl->GetQueryObjectui64v(timer->query[timer->idx], GL_QUERY_RESULT,
|
|
|
|
&timer->result);
|
2017-08-05 16:20:45 +00:00
|
|
|
}
|
|
|
|
|
2017-08-08 15:06:45 +00:00
|
|
|
gl->BeginQuery(GL_TIME_ELAPSED, timer->query[timer->idx++]);
|
|
|
|
timer->idx %= GL_QUERY_OBJECT_NUM;
|
|
|
|
|
|
|
|
p->timer_active = timer->active = true;
|
2017-08-05 16:20:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t gl_timer_stop(struct ra *ra, ra_timer *ratimer)
|
|
|
|
{
|
2017-08-08 15:06:45 +00:00
|
|
|
struct ra_gl *p = ra->priv;
|
|
|
|
GL *gl = p->gl;
|
2017-08-05 16:20:45 +00:00
|
|
|
struct gl_timer *timer = ratimer;
|
|
|
|
|
2017-08-08 15:06:45 +00:00
|
|
|
if (!timer->active)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
gl->EndQuery(GL_TIME_ELAPSED);
|
|
|
|
p->timer_active = timer->active = false;
|
2017-08-05 16:20:45 +00:00
|
|
|
|
|
|
|
return timer->result;
|
|
|
|
}
|
|
|
|
|
2017-08-07 17:14:18 +00:00
|
|
|
static void gl_debug_marker(struct ra *ra, const char *msg)
|
|
|
|
{
|
|
|
|
struct ra_gl *p = ra->priv;
|
|
|
|
|
|
|
|
if (p->debug_enable)
|
|
|
|
gl_check_error(p->gl, ra->log, msg);
|
|
|
|
}
|
|
|
|
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
static struct ra_fns ra_fns_gl = {
|
|
|
|
.destroy = gl_destroy,
|
|
|
|
.tex_create = gl_tex_create,
|
|
|
|
.tex_destroy = gl_tex_destroy,
|
|
|
|
.tex_upload = gl_tex_upload,
|
2018-02-07 19:18:36 +00:00
|
|
|
.tex_download = gl_tex_download,
|
2017-08-05 20:29:48 +00:00
|
|
|
.buf_create = gl_buf_create,
|
|
|
|
.buf_destroy = gl_buf_destroy,
|
2017-08-16 20:13:51 +00:00
|
|
|
.buf_update = gl_buf_update,
|
|
|
|
.buf_poll = gl_buf_poll,
|
2017-08-04 13:47:50 +00:00
|
|
|
.clear = gl_clear,
|
|
|
|
.blit = gl_blit,
|
2017-09-08 02:27:53 +00:00
|
|
|
.uniform_layout = std140_layout,
|
2017-10-21 13:10:09 +00:00
|
|
|
.desc_namespace = gl_desc_namespace,
|
2017-08-05 12:20:14 +00:00
|
|
|
.renderpass_create = gl_renderpass_create,
|
|
|
|
.renderpass_destroy = gl_renderpass_destroy,
|
|
|
|
.renderpass_run = gl_renderpass_run,
|
2017-08-05 16:20:45 +00:00
|
|
|
.timer_create = gl_timer_create,
|
|
|
|
.timer_destroy = gl_timer_destroy,
|
|
|
|
.timer_start = gl_timer_start,
|
|
|
|
.timer_stop = gl_timer_stop,
|
2017-08-07 17:14:18 +00:00
|
|
|
.debug_marker = gl_debug_marker,
|
vo_opengl: start work on rendering API abstraction
This starts work on moving OpenGL-specific code out of the general
renderer code, so that we can support other other GPU APIs. This is in
a very early stage and it's only a proof of concept. It's unknown
whether this will succeed or result in other backends.
For now, the GL rendering API ("ra") and its only provider (ra_gl) does
texture creation/upload/destruction only. And it's used for the main
video texture only. All other code is still hardcoded to GL.
There is some duplication with ra_format and gl_format handling. In the
end, only the ra variants will be needed (plus the gl_format table of
course). For now, this is simpler, because for some reason lots of hwdec
code still requires the GL variants, and would have to be updated to
use the ra ones.
Currently, the video.c code accesses private ra_gl fields. In the end,
it should not do that of course, and it would not include ra_gl.h.
Probably adds bugs, but you can keep them.
2017-07-26 09:19:51 +00:00
|
|
|
};
|