mpv/video/csputils.c

542 lines
21 KiB
C
Raw Normal View History

/*
* Common code related to colorspaces and conversion
*
* Copyleft (C) 2009 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <math.h>
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
#include <assert.h>
#include <libavutil/common.h>
#include <libavcodec/avcodec.h>
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
#include "mp_image.h"
#include "csputils.h"
#include "options/m_config.h"
#include "options/m_option.h"
const struct m_opt_choice_alternatives pl_csp_names[] = {
{"auto", PL_COLOR_SYSTEM_UNKNOWN},
{"bt.601", PL_COLOR_SYSTEM_BT_601},
{"bt.709", PL_COLOR_SYSTEM_BT_709},
{"smpte-240m", PL_COLOR_SYSTEM_SMPTE_240M},
{"bt.2020-ncl", PL_COLOR_SYSTEM_BT_2020_NC},
{"bt.2020-cl", PL_COLOR_SYSTEM_BT_2020_C},
{"bt.2100-pq", PL_COLOR_SYSTEM_BT_2100_PQ},
{"bt.2100-hlg", PL_COLOR_SYSTEM_BT_2100_HLG},
{"dolbyvision", PL_COLOR_SYSTEM_DOLBYVISION},
{"rgb", PL_COLOR_SYSTEM_RGB},
{"xyz", PL_COLOR_SYSTEM_XYZ},
{"ycgco", PL_COLOR_SYSTEM_YCGCO},
{0}
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
};
const struct m_opt_choice_alternatives pl_csp_levels_names[] = {
{"auto", PL_COLOR_LEVELS_UNKNOWN},
{"limited", PL_COLOR_LEVELS_LIMITED},
{"full", PL_COLOR_LEVELS_FULL},
{0}
};
const struct m_opt_choice_alternatives pl_csp_prim_names[] = {
{"auto", PL_COLOR_PRIM_UNKNOWN},
{"bt.601-525", PL_COLOR_PRIM_BT_601_525},
{"bt.601-625", PL_COLOR_PRIM_BT_601_625},
{"bt.709", PL_COLOR_PRIM_BT_709},
{"bt.2020", PL_COLOR_PRIM_BT_2020},
{"bt.470m", PL_COLOR_PRIM_BT_470M},
{"apple", PL_COLOR_PRIM_APPLE},
{"adobe", PL_COLOR_PRIM_ADOBE},
{"prophoto", PL_COLOR_PRIM_PRO_PHOTO},
{"cie1931", PL_COLOR_PRIM_CIE_1931},
{"dci-p3", PL_COLOR_PRIM_DCI_P3},
{"display-p3", PL_COLOR_PRIM_DISPLAY_P3},
{"v-gamut", PL_COLOR_PRIM_V_GAMUT},
{"s-gamut", PL_COLOR_PRIM_S_GAMUT},
{"ebu3213", PL_COLOR_PRIM_EBU_3213},
{"film-c", PL_COLOR_PRIM_FILM_C},
{"aces-ap0", PL_COLOR_PRIM_ACES_AP0},
{"aces-ap1", PL_COLOR_PRIM_ACES_AP1},
{0}
};
const struct m_opt_choice_alternatives pl_csp_trc_names[] = {
{"auto", PL_COLOR_TRC_UNKNOWN},
{"bt.1886", PL_COLOR_TRC_BT_1886},
{"srgb", PL_COLOR_TRC_SRGB},
{"linear", PL_COLOR_TRC_LINEAR},
{"gamma1.8", PL_COLOR_TRC_GAMMA18},
{"gamma2.0", PL_COLOR_TRC_GAMMA20},
{"gamma2.2", PL_COLOR_TRC_GAMMA22},
{"gamma2.4", PL_COLOR_TRC_GAMMA24},
{"gamma2.6", PL_COLOR_TRC_GAMMA26},
{"gamma2.8", PL_COLOR_TRC_GAMMA28},
{"prophoto", PL_COLOR_TRC_PRO_PHOTO},
{"pq", PL_COLOR_TRC_PQ},
{"hlg", PL_COLOR_TRC_HLG},
{"v-log", PL_COLOR_TRC_V_LOG},
{"s-log1", PL_COLOR_TRC_S_LOG1},
{"s-log2", PL_COLOR_TRC_S_LOG2},
{"st428", PL_COLOR_TRC_ST428},
{0}
};
const struct m_opt_choice_alternatives mp_csp_light_names[] = {
{"auto", MP_CSP_LIGHT_AUTO},
{"display", MP_CSP_LIGHT_DISPLAY},
{"hlg", MP_CSP_LIGHT_SCENE_HLG},
{"709-1886", MP_CSP_LIGHT_SCENE_709_1886},
{"gamma1.2", MP_CSP_LIGHT_SCENE_1_2},
{0}
};
const struct m_opt_choice_alternatives pl_chroma_names[] = {
{"unknown", PL_CHROMA_UNKNOWN},
{"uhd", PL_CHROMA_TOP_LEFT},
{"mpeg2/4/h264",PL_CHROMA_LEFT},
{"mpeg1/jpeg", PL_CHROMA_CENTER},
{"top", PL_CHROMA_TOP_CENTER},
{"bottom-left", PL_CHROMA_BOTTOM_LEFT},
{"bottom", PL_CHROMA_BOTTOM_CENTER},
{0}
};
const struct m_opt_choice_alternatives pl_alpha_names[] = {
{"auto", PL_ALPHA_UNKNOWN},
{"straight", PL_ALPHA_INDEPENDENT},
{"premul", PL_ALPHA_PREMULTIPLIED},
{0}
};
// The short name _must_ match with what vf_stereo3d accepts (if supported).
// The long name in comments is closer to the Matroska spec (StereoMode element).
// The numeric index matches the Matroska StereoMode value. If you add entries
// that don't match Matroska, make sure demux_mkv.c rejects them properly.
const struct m_opt_choice_alternatives mp_stereo3d_names[] = {
{"no", -1}, // disable/invalid
{"mono", 0},
{"sbs2l", 1}, // "side_by_side_left"
{"ab2r", 2}, // "top_bottom_right"
{"ab2l", 3}, // "top_bottom_left"
{"checkr", 4}, // "checkboard_right" (unsupported by vf_stereo3d)
{"checkl", 5}, // "checkboard_left" (unsupported by vf_stereo3d)
{"irr", 6}, // "row_interleaved_right"
{"irl", 7}, // "row_interleaved_left"
{"icr", 8}, // "column_interleaved_right" (unsupported by vf_stereo3d)
{"icl", 9}, // "column_interleaved_left" (unsupported by vf_stereo3d)
{"arcc", 10}, // "anaglyph_cyan_red" (Matroska: unclear which mode)
{"sbs2r", 11}, // "side_by_side_right"
{"agmc", 12}, // "anaglyph_green_magenta" (Matroska: unclear which mode)
{"al", 13}, // "alternating frames left first"
{"ar", 14}, // "alternating frames right first"
{0}
};
enum pl_color_system mp_csp_guess_colorspace(int width, int height)
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
{
return width >= 1280 || height > 576 ? PL_COLOR_SYSTEM_BT_709 : PL_COLOR_SYSTEM_BT_601;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
enum pl_color_primaries mp_csp_guess_primaries(int width, int height)
{
// HD content
if (width >= 1280 || height > 576)
return PL_COLOR_PRIM_BT_709;
switch (height) {
case 576: // Typical PAL content, including anamorphic/squared
return PL_COLOR_PRIM_BT_601_625;
case 480: // Typical NTSC content, including squared
case 486: // NTSC Pro or anamorphic NTSC
return PL_COLOR_PRIM_BT_601_525;
default: // No good metric, just pick BT.709 to minimize damage
return PL_COLOR_PRIM_BT_709;
}
}
// LMS<-XYZ revised matrix from CIECAM97, based on a linear transform and
// normalized for equal energy on monochrome inputs
static const pl_matrix3x3 m_cat97 = {{
{ 0.8562, 0.3372, -0.1934 },
{ -0.8360, 1.8327, 0.0033 },
{ 0.0357, -0.0469, 1.0112 },
}};
// M := M * XYZd<-XYZs
static void apply_chromatic_adaptation(struct pl_cie_xy src,
struct pl_cie_xy dest, pl_matrix3x3 *mat)
{
// If the white points are nearly identical, this is a wasteful identity
// operation.
if (fabs(src.x - dest.x) < 1e-6 && fabs(src.y - dest.y) < 1e-6)
return;
// XYZd<-XYZs = Ma^-1 * (I*[Cd/Cs]) * Ma
// http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
// For Ma, we use the CIECAM97 revised (linear) matrix
float C[3][2];
for (int i = 0; i < 3; i++) {
// source cone
C[i][0] = m_cat97.m[i][0] * pl_cie_X(src)
+ m_cat97.m[i][1] * 1
+ m_cat97.m[i][2] * pl_cie_Z(src);
// dest cone
C[i][1] = m_cat97.m[i][0] * pl_cie_X(dest)
+ m_cat97.m[i][1] * 1
+ m_cat97.m[i][2] * pl_cie_Z(dest);
}
// tmp := I * [Cd/Cs] * Ma
pl_matrix3x3 tmp = {0};
for (int i = 0; i < 3; i++)
tmp.m[i][i] = C[i][1] / C[i][0];
pl_matrix3x3_mul(&tmp, &m_cat97);
// M := M * Ma^-1 * tmp
pl_matrix3x3 ma_inv = m_cat97;
pl_matrix3x3_invert(&ma_inv);
pl_matrix3x3_mul(mat, &ma_inv);
pl_matrix3x3_mul(mat, &tmp);
}
// Get multiplication factor required if image data is fit within the LSBs of a
// higher smaller bit depth fixed-point texture data.
// This is broken. Use mp_get_csp_uint_mul().
double mp_get_csp_mul(enum pl_color_system csp, int input_bits, int texture_bits)
{
assert(texture_bits >= input_bits);
// Convenience for some irrelevant cases, e.g. rgb565 or disabling expansion.
if (!input_bits)
return 1;
// RGB always uses the full range available.
if (csp == PL_COLOR_SYSTEM_RGB)
return ((1LL << input_bits) - 1.) / ((1LL << texture_bits) - 1.);
if (csp == PL_COLOR_SYSTEM_XYZ)
return 1;
// High bit depth YUV uses a range shifted from 8 bit.
return (1LL << input_bits) / ((1LL << texture_bits) - 1.) * 255 / 256;
}
// Return information about color fixed point representation.his is needed for
// converting color from integer formats to or from float. Use as follows:
// float_val = uint_val * m + o
// uint_val = clamp(round((float_val - o) / m))
// See H.264/5 Annex E.
// csp: colorspace
// levels: full range flag
// component: ID of the channel, as in mp_regular_imgfmt:
// 1 is red/luminance/gray, 2 is green/Cb, 3 is blue/Cr, 4 is alpha.
// bits: number of significant bits, e.g. 10 for yuv420p10, 16 for p010
// out_m: returns factor to multiply the uint number with
// out_o: returns offset to add after multiplication
void mp_get_csp_uint_mul(enum pl_color_system csp, enum pl_color_levels levels,
int bits, int component, double *out_m, double *out_o)
{
uint16_t i_min = 0;
uint16_t i_max = (1u << bits) - 1;
double f_min = 0; // min. float value
if (csp != PL_COLOR_SYSTEM_RGB && component != 4) {
if (component == 2 || component == 3) {
f_min = (1u << (bits - 1)) / -(double)i_max; // force center => 0
if (levels != PL_COLOR_LEVELS_FULL && bits >= 8) {
i_min = 16 << (bits - 8); // => -0.5
i_max = 240 << (bits - 8); // => 0.5
f_min = -0.5;
}
} else {
if (levels != PL_COLOR_LEVELS_FULL && bits >= 8) {
i_min = 16 << (bits - 8); // => 0
i_max = 235 << (bits - 8); // => 1
}
}
}
*out_m = 1.0 / (i_max - i_min);
*out_o = (1 + f_min) - i_max * *out_m;
}
/* Fill in the Y, U, V vectors of a yuv-to-rgb conversion matrix
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
* based on the given luma weights of the R, G and B components (lr, lg, lb).
* lr+lg+lb is assumed to equal 1.
* This function is meant for colorspaces satisfying the following
* conditions (which are true for common YUV colorspaces):
* - The mapping from input [Y, U, V] to output [R, G, B] is linear.
* - Y is the vector [1, 1, 1]. (meaning input Y component maps to 1R+1G+1B)
* - U maps to a value with zero R and positive B ([0, x, y], y > 0;
* i.e. blue and green only).
* - V maps to a value with zero B and positive R ([x, y, 0], x > 0;
* i.e. red and green only).
* - U and V are orthogonal to the luma vector [lr, lg, lb].
* - The magnitudes of the vectors U and V are the minimal ones for which
* the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the
* conversion function will cover the set R=[0...1],G=[0...1],B=[0...1]
* (the resulting matrix can be converted for other input/output ranges
* outside this function).
* Under these conditions the given parameters lr, lg, lb uniquely
* determine the mapping of Y, U, V to R, G, B.
*/
static void luma_coeffs(struct pl_transform3x3 *mat, float lr, float lg, float lb)
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
{
assert(fabs(lr+lg+lb - 1) < 1e-6);
*mat = (struct pl_transform3x3) {
{ {{1, 0, 2 * (1-lr) },
{1, -2 * (1-lb) * lb/lg, -2 * (1-lr) * lr/lg },
{1, 2 * (1-lb), 0 }} },
// Constant coefficients (mat->c) not set here
};
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
}
// get the coefficients of the yuv -> rgb conversion matrix
void mp_get_csp_matrix(struct mp_csp_params *params, struct pl_transform3x3 *m)
2011-08-28 02:52:46 +00:00
{
enum pl_color_system colorspace = params->repr.sys;
if (colorspace <= PL_COLOR_SYSTEM_UNKNOWN || colorspace >= PL_COLOR_SYSTEM_COUNT)
colorspace = PL_COLOR_SYSTEM_BT_601;
// Not supported. TODO: replace with pl_color_repr_decode
if (colorspace == PL_COLOR_SYSTEM_BT_2100_PQ ||
colorspace == PL_COLOR_SYSTEM_BT_2100_HLG ||
colorspace == PL_COLOR_SYSTEM_DOLBYVISION) {
colorspace = PL_COLOR_SYSTEM_BT_2020_NC;
}
enum pl_color_levels levels_in = params->repr.levels;
if (levels_in <= PL_COLOR_LEVELS_UNKNOWN || levels_in >= PL_COLOR_LEVELS_COUNT)
levels_in = PL_COLOR_LEVELS_LIMITED;
switch (colorspace) {
case PL_COLOR_SYSTEM_BT_601: luma_coeffs(m, 0.299, 0.587, 0.114 ); break;
case PL_COLOR_SYSTEM_BT_709: luma_coeffs(m, 0.2126, 0.7152, 0.0722); break;
case PL_COLOR_SYSTEM_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break;
case PL_COLOR_SYSTEM_BT_2020_NC: luma_coeffs(m, 0.2627, 0.6780, 0.0593); break;
case PL_COLOR_SYSTEM_BT_2020_C: {
// Note: This outputs into the [-0.5,0.5] range for chroma information.
// If this clips on any VO, a constant 0.5 coefficient can be added
// to the chroma channels to normalize them into [0,1]. This is not
// currently needed by anything, though.
*m = (struct pl_transform3x3){{{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}}};
break;
}
case PL_COLOR_SYSTEM_RGB: {
*m = (struct pl_transform3x3){{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}};
levels_in = -1;
break;
}
case PL_COLOR_SYSTEM_XYZ: {
// For lack of anything saner to do, just assume the caller wants
// DCI-P3 primaries, which is a reasonable assumption.
const struct pl_raw_primaries *dst = pl_raw_primaries_get(PL_COLOR_PRIM_DCI_P3);
pl_matrix3x3 mat = pl_get_xyz2rgb_matrix(dst);
// DCDM X'Y'Z' is expected to have equal energy white point (EG 432-1 Annex H)
apply_chromatic_adaptation((struct pl_cie_xy){1.0/3.0, 1.0/3.0}, dst->white, &mat);
*m = (struct pl_transform3x3) { .mat = mat };
levels_in = -1;
break;
}
case PL_COLOR_SYSTEM_YCGCO: {
*m = (struct pl_transform3x3) {
{{{1, -1, 1},
{1, 1, 0},
{1, -1, -1}}},
};
break;
}
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
default:
MP_ASSERT_UNREACHABLE();
2011-08-28 02:52:46 +00:00
};
if (params->is_float)
levels_in = -1;
if ((colorspace == PL_COLOR_SYSTEM_BT_601 || colorspace == PL_COLOR_SYSTEM_BT_709 ||
colorspace == PL_COLOR_SYSTEM_SMPTE_240M || colorspace == PL_COLOR_SYSTEM_BT_2020_NC))
{
// Hue is equivalent to rotating input [U, V] subvector around the origin.
// Saturation scales [U, V].
float huecos = params->gray ? 0 : params->saturation * cos(params->hue);
float huesin = params->gray ? 0 : params->saturation * sin(params->hue);
for (int i = 0; i < 3; i++) {
float u = m->mat.m[i][1], v = m->mat.m[i][2];
m->mat.m[i][1] = huecos * u - huesin * v;
m->mat.m[i][2] = huesin * u + huecos * v;
}
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
}
// The values below are written in 0-255 scale - thus bring s into range.
double s =
mp_get_csp_mul(colorspace, params->input_bits, params->texture_bits) / 255;
// NOTE: The yuvfull ranges as presented here are arguably ambiguous,
// and conflict with at least the full-range YCbCr/ICtCp values as defined
// by ITU-R BT.2100. If somebody ever complains about full-range YUV looking
// different from their reference display, this comment is probably why.
struct yuvlevels { double ymin, ymax, cmax, cmid; }
yuvlim = { 16*s, 235*s, 240*s, 128*s },
yuvfull = { 0*s, 255*s, 255*s, 128*s },
anyfull = { 0*s, 255*s, 255*s/2, 0 }, // cmax picked to make cmul=ymul
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
yuvlev;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
switch (levels_in) {
case PL_COLOR_LEVELS_LIMITED: yuvlev = yuvlim; break;
case PL_COLOR_LEVELS_FULL: yuvlev = yuvfull; break;
case -1: yuvlev = anyfull; break;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
default:
MP_ASSERT_UNREACHABLE();
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
int levels_out = params->levels_out;
if (levels_out <= PL_COLOR_LEVELS_UNKNOWN || levels_out >= PL_COLOR_LEVELS_COUNT)
levels_out = PL_COLOR_LEVELS_FULL;
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
struct rgblevels { double min, max; }
rgblim = { 16/255., 235/255. },
rgbfull = { 0, 1 },
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
rgblev;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
switch (levels_out) {
case PL_COLOR_LEVELS_LIMITED: rgblev = rgblim; break;
case PL_COLOR_LEVELS_FULL: rgblev = rgbfull; break;
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
default:
MP_ASSERT_UNREACHABLE();
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
}
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin);
double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmax - yuvlev.cmid) / 2;
// Contrast scales the output value range (gain)
ymul *= params->contrast;
cmul *= params->contrast;
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
for (int i = 0; i < 3; i++) {
m->mat.m[i][0] *= ymul;
m->mat.m[i][1] *= cmul;
m->mat.m[i][2] *= cmul;
// Set c so that Y=umin,UV=cmid maps to RGB=min (black to black),
// also add brightness offset (black lift)
m->c[i] = rgblev.min - m->mat.m[i][0] * yuvlev.ymin
- (m->mat.m[i][1] + m->mat.m[i][2]) * yuvlev.cmid
+ params->brightness;
csputils/vo_gl: rewrite YUV->RGB matrix generation Rewrite the csputils.c code generating a conversion matrix for YUV->RGB conversions (currently used by vo_gl only). Functional differences: - The separate "mplayer default" colorspace is removed, and BT.601 is used instead (the default colorspace was in fact BT.601; see below). - The old code was missing chroma scaling. As a result the "mplayer default" colorspace actually mapped to BT.601, and everything else was buggy (I guess the other colorspaces were added with particular coefficient semantics, without understanding that the original "default colorspace" was actually BT.601 and why its coefficients differed from the added version). - The old code had a bug in the equalizer hue equations. - The old code assumed that for specifying whether input and output were limited-range or full-range YUV or RGB it would make sense to specify "no conversion" meaning full-range YUV to full-range RGB or limited-range YUV to limited-range RGB. This isn't true; limited- range YUV has different ranges for luma and chroma (16-235 vs 16-240) which means you have to scale chroma for limited->limited conversions. The new code assumes limited->limited conversions for the levelconv parameter 2. It'd probably make sense to change the API later to specify the ranges of input and output separately. - The undocumented EBU and XYZ colorspaces are removed. I doubt any videos use these. Also the EBU colorspace looks like it'd expect a different input range - at least no input would map to full RGB red as it was.
2011-08-29 02:38:44 +00:00
}
}
// Set colorspace related fields in p from f. Don't touch other fields.
void mp_csp_set_image_params(struct mp_csp_params *params,
const struct mp_image_params *imgparams)
{
struct mp_image_params p = *imgparams;
mp_image_params_guess_csp(&p); // ensure consistency
params->repr = p.repr;
params->color = p.color;
}
enum mp_csp_equalizer_param {
MP_CSP_EQ_BRIGHTNESS,
MP_CSP_EQ_CONTRAST,
MP_CSP_EQ_HUE,
MP_CSP_EQ_SATURATION,
MP_CSP_EQ_GAMMA,
MP_CSP_EQ_COUNT,
};
// Default initialization with 0 is enough, except for the capabilities field
struct mp_csp_equalizer_opts {
// Value for each property is in the range [-100.0, 100.0].
// 0.0 is default, meaning neutral or no change.
float values[MP_CSP_EQ_COUNT];
int output_levels;
};
#define OPT_BASE_STRUCT struct mp_csp_equalizer_opts
const struct m_sub_options mp_csp_equalizer_conf = {
.opts = (const m_option_t[]) {
{"brightness", OPT_FLOAT(values[MP_CSP_EQ_BRIGHTNESS]),
M_RANGE(-100, 100)},
{"saturation", OPT_FLOAT(values[MP_CSP_EQ_SATURATION]),
M_RANGE(-100, 100)},
{"contrast", OPT_FLOAT(values[MP_CSP_EQ_CONTRAST]),
M_RANGE(-100, 100)},
{"hue", OPT_FLOAT(values[MP_CSP_EQ_HUE]),
M_RANGE(-100, 100)},
{"gamma", OPT_FLOAT(values[MP_CSP_EQ_GAMMA]),
M_RANGE(-100, 100)},
{"video-output-levels",
OPT_CHOICE_C(output_levels, pl_csp_levels_names)},
{0}
},
.size = sizeof(struct mp_csp_equalizer_opts),
.change_flags = UPDATE_VIDEO,
};
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
// Copy settings from eq into params.
static void mp_csp_copy_equalizer_values(struct mp_csp_params *params,
const struct mp_csp_equalizer_opts *eq)
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
{
params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0;
params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0;
2015-01-06 15:50:33 +00:00
params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * M_PI;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0;
params->gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0);
params->levels_out = eq->output_levels;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
struct mp_csp_equalizer_state *mp_csp_equalizer_create(void *ta_parent,
struct mpv_global *global)
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
{
struct m_config_cache *c = m_config_cache_alloc(ta_parent, global,
&mp_csp_equalizer_conf);
// The terrible, terrible truth.
return (struct mp_csp_equalizer_state *)c;
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
bool mp_csp_equalizer_state_changed(struct mp_csp_equalizer_state *state)
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
{
struct m_config_cache *c = (struct m_config_cache *)state;
return m_config_cache_update(c);
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
void mp_csp_equalizer_state_get(struct mp_csp_equalizer_state *state,
struct mp_csp_params *params)
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
{
struct m_config_cache *c = (struct m_config_cache *)state;
m_config_cache_update(c);
struct mp_csp_equalizer_opts *opts = c->opts;
mp_csp_copy_equalizer_values(params, opts);
video, options: implement better YUV->RGB conversion control Rewrite control of the colorspace and input/output level parameters used in YUV-RGB conversions, replacing VO-specific suboptions with new common options and adding configuration support to more cases. Add new option --colormatrix which selects the colorspace the original video is assumed to have in YUV->RGB conversions. The default behavior changes from assuming BT.601 to colorspace autoselection between BT.601 and BT.709 using a simple heuristic based on video size. Add new options --colormatrix-input-range and --colormatrix-output-range which select input YUV and output RGB range. Disable the previously existing VO-specific colorspace and level conversion suboptions in vo_gl and vo_vdpau. Remove the "yuv_colorspace" property and replace it with one named "colormatrix" and semantics matching the new option. Add new properties matching the options for level conversion. Colorspace selection is currently supported by vo_gl, vo_vdpau, vo_xv and vf_scale, and all can change it at runtime (previously only vo_vdpau and vo_xv could). vo_vdpau now uses the same conversion matrix generation as vo_gl instead of libvdpau functionality; the main functional difference is that the "contrast" equalizer control behaves somewhat differently (it scales the Y component around 1/2 instead of around 0, so that contrast 0 makes the image gray rather than black). vo_xv does not support level conversion. vf_scale supports range setting for input, but always outputs full-range RGB. The value of the slave properties is the policy setting used for conversions. This means they can be set to any value regardless of whether the current VO supports that value or whether there currently even is any video. Possibly separate properties could be added to query the conversion actually used at the moment, if any. Because the colorspace and level settings are now set with a single VF/VO control call, the return value of that is no longer used to signal whether all the settings are actually supported. Instead code should set all the details it can support, and ignore the rest. The core will use GET_YUV_COLORSPACE to check which colorspace details have been set and which not. In other words, the return value for SET_YUV_COLORSPACE only signals whether any kind of YUV colorspace conversion handling exists at all, and VOs have to take care to return the actual state with GET_YUV_COLORSPACE instead. To be changed in later commits: add missing option documentation.
2011-10-15 21:50:21 +00:00
}
// Multiply the color in c with the given matrix.
// i/o is {R, G, B} or {Y, U, V} (depending on input/output and matrix), using
// a fixed point representation with the given number of bits (so for bits==8,
// [0,255] maps to [0,1]). The output is clipped to the range as needed.
void mp_map_fixp_color(struct pl_transform3x3 *matrix, int ibits, int in[3],
int obits, int out[3])
{
for (int i = 0; i < 3; i++) {
double val = matrix->c[i];
for (int x = 0; x < 3; x++)
val += matrix->mat.m[i][x] * in[x] / ((1 << ibits) - 1);
int ival = lrint(val * ((1 << obits) - 1));
out[i] = av_clip(ival, 0, (1 << obits) - 1);
}
}