The purpose of these two macros will be to pass via the session to
find the relevant stream interfaces so that we don't need to store
the ->cons nor ->prod pointers anymore. Currently they're only defined
so that all references could be removed.
Note that many places need a second pass of clean up so that we don't
have any chn_prod(&s->req) anymore and only &s->si[0] instead, and
conversely for the 3 other cases.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
In order to plan removal of si->ib / si->ob, we now check the side of the
stream interface and find the session, then the requested channel. In
practice it's just an offset applied to the pointer based on the flag.
This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
The channels were pointers to outside structs and this is not needed
anymore since the buffers have moved, but this complicates operations.
Move them back into the session so that both channels and stream interfaces
are always allocated for a session. Some places (some early sample fetch
functions) used to validate that a channel was NULL prior to dereferencing
it. Now instead we check if chn->buf is NULL and we force it to remain NULL
until the channel is initialized.
In some cases we don't want to known if a fetch or converter
fails. We just want a valid string. After this patch, we
have two sets of fetches and two sets of converters. There are:
txn.f, txn.sf, txn.c, txn.sc. The version prefixed by 's' always
returns strings for any type, and returns an empty string in the
error case or when the data are not available. This is particularly
useful when manipulating headers or cookies.
This patch implements a wrapper to give access to the converters
in the Lua code. The converters are used with the transaction.
The automatically created function are prefixed by "conv_".
HAProxy proposes many sample fetches. It is possible that the
automatic registration of the sample fetches causes a collision
with an existing Lua function. This patch sets a namespace for
the sample fetches.
The function buffer_contig_space() returns the contiguous space avalaible
to add data (at the end of the input side) while the function
hlua_channel_send_yield() needs to insert data starting at p. Here we
introduce a new function bi_space_for_replace() which returns the amount
of space that can be inserted at the head of the input side with one of
the buffer_replace* functions.
This patch proposes a function that returns the space avalaible after buf->p.
If we are writing in the request buffer, we are not waked up
when the data are forwarded because it is useles. The request
analyzers are waked up only when data is incoming. So, if the
request buffer is full, we set the WAKE_ON_WRITE flag.
Before this patch, each yield in a Lua action set a flags to be
waked up when some activity were detected on the response channel.
This behavior causes loop in the analyzer process.
This patch set the wake up on response buffer activity only if we
really want to be waked up on this activity.
This flag indicate that the current yield is returned by the Lua
execution task control. If this flag is set, the current task may
quit but will be set in the run queue to be re-executed immediatly.
This patch modify the "hlua_yieldk()" function, it adds an argument
that contain a field containing yield options.
This is used to ensure that the task doesn't become a zombie
when the Lua returns a yield. The yield wrapper ensure that an
timer used for waking up the task will be set.
The timer is reseted to TICK_ETERNITY if the Lua execution is
done.
This first patch permits to cofigure the Lua execution exipiration.
This expiration is configured but it is not yet avalaible, it will
be add in a future patch.
In the future, the lua execution must return scheduling informations.
We want more than one flag, so I convert an integer used with an
enum into an interer used as bitfield.
The channel class permits manipulation of channels. A channel is
an FIFO buffer between the client and the server. This class provides
function to read, write, forward, destroy and alter data between
the input and the ouput of the buffer.
This patch adds the TCP I/O functionnality. The class implemented
provides the same functions than the "lua socket" project. This
make network compatibility with another LUA project. The documentation
is located here:
http://w3.impa.br/~diego/software/luasocket/tcp.html
This version of sleep is based on a coroutine. A sleeping
task is started and a signal is registered. This sleep version
must disapear to be replaced by a version using the internal
timers.
This patch adds the browsing of all the HAProxy fetches and
create associated LUA functions. The HAProxy internal fetches
can be used in LUA trough the class "TXN".
Note that the symbols "-", "+" and "." in the name of current
sample fetch are rewrited as "_" in LUA because ".", "-" and "+"
are operators.
This class of functions permit to access to all the functions
associated with the transaction like http header, HAProxy internal
fetches, etc ...
This patch puts the skeleton of this class. The class will be
enhanced later.
This system permits to execute some lua function after than HAProxy
complete his initialisation. These functions are executed between
the end of the configuration parsing and check and the begin of the
scheduler.
This system permits to send signals between lua tasks. A main lua stack can
register the signal in a coprocess. When the coprocess finish his job, it
send a signal, and the associated task is wakes. If the main lua execution
stack stop (with or without errors), the list or pending signals is purged.
This is the first step of the lua integration. We add the useful
files in the HAProxy project. These files contains the main
includes, the Makefile options and empty initialisation function.
Is is the LUA skeleton.
We now have functions to retrieve one block and one line from
either the input or the output part of a buffer. They return
up to two (pointer,length) values in case the buffer wraps.
Later, the processing of some actions needs to be interrupted and resumed
later. This patch permit to resume the actions. The actions that needs
to run with the resume mode are not yet avalaible. It will be soon with
Lua patches. So the code added by this patch is untestable for the moment.
The list of "tcp_exec_req_rules" cannot resme because is called by the
unresumable function "accept_session".
This patch introduces an action keyword registration system for TCP
rulesets similar to what is available for HTTP rulesets. This sytem
will be useful with lua.
These modifications are done for resolving cross-dependent
includes in the upcoming LUA code.
<proto/channel.h> misses <types/channel.h>.
<types/acl.h> doesn't use <types/session.h> because the session
is already declared in the file as undefined pointer.
appsession.c misses <unistd.h> to use "write()".
Declare undefined pointer "struct session" for <types/proxy.h>
and <types/queue.h>. These includes dont need the detail of this
struct.
The functions "val_payload_lv" and "val_hdr" are useful with
lua. The lua automatic binding for sample fetchs needs to
compare check functions.
The "arg_type_names" permit to display error messages.
Some usages of the converters need to know the attached session. The Lua
needs the session for retrieving his running context. This patch adds
the "session" as an argument of the converters prototype.
This behavior is already existing for the "WAIT_HTTP" analyzer,
this patch just extends the system to any analyzer that would
be waked up on response activity.
When the destination IP is dynamically set, we can't use the "target"
to define the proto. This patch ensures that we always use the protocol
associated with the address family. The proto field was removed from
the server and check structs.
Actually, HAProxy uses the function "process_runnable_tasks" and
"wake_expired_tasks" to get the next task which can expires.
If a task is added with "task_schedule" or other method during
the execution of an other task, the expiration of this new task
is not taken into account, and the execution of this task can be
too late.
Actualy, HAProxy seems to be no sensitive to this bug.
This fix moves the call to process_runnable_tasks() before the timeout
calculation and ensures that all wakeups are processed together. Only
wake_expired_tasks() needs to return a timeout now.
Until now, the TLS ticket keys couldn't have been configured and
shared between multiple instances or multiple servers running HAproxy.
The result was that if a request got a TLS ticket from one instance/server
and it hits another one afterwards, it will have to go through the full
SSL handshake and negotation.
This patch enables adding a ticket file to the bind line, which will be
used for all SSL contexts created from that bind line. We can use the
same file on all instances or servers to mitigate this issue and have
consistent TLS tickets assigned. Clients will no longer have to negotiate
every time they change the handling process.
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
As found by Thierry Fournier, if a task manages to kill another one and
if this other task is the next one in the run queue, we can do whatever
including crashing, because the scheduler restarts from the saved next
task. For now, there is no such concept of a task killing another one,
but with Lua it will come.
A solution consists in always performing the lookup of the first task in
the scheduler's loop, but it's expensive and costs around 2% of the
performance.
Another solution consists in keeping a global next run queue node and
ensuring that when this task gets removed, it updates this pointer to
the next one. This allows to simplify the code a bit and in the end to
slightly increase the performance (0.3-0.5%). The mechanism might still
be usable if we later migrate to a multi-threaded scheduler.
The patch "MEDIUM: args: increase arg type to 5 bits and limit arg count
to 5" (dbc79d0a) increased the number of types supported, but forgot to
remove the ARG6/ARG7 macros.
This option disables SSL session reuse when SSL is used to communicate with
the server. It will force the server to perform a full handshake for every
new connection. It's probably only useful for benchmarking, troubleshooting,
and for paranoid users.
This patch adds a new option which allows configuration of the maximum
log level of messages for which email alerts will be sent.
The default is alert which is more restrictive than
the current code which sends email alerts for all priorities.
That behaviour may be configured using the new configuration
option to set the maximum level to notice or greater.
email-alert level notice
Signed-off-by: Simon Horman <horms@verge.net.au>
On Linux since 2.6.37, it's possible to set the socket timeout for
pending outgoing data, with an accuracy of 1 millisecond. This is
pretty handy to deal with dead connections to clients and or servers.
For now we only implement it on the frontend side (bind line) so
that when a client disappears from the net, we're able to quickly
get rid of its connection and possibly release a server connection.
This can be useful with long-lived connections where an application
level timeout is not suited because long pauses are expected (remote
terminals, connection pools, etc).
Thanks to Thijs Houtenbos and John Eckersberg for the suggestion.
This currently does nothing beyond parsing the configuration
and storing in the proxy as there is no implementation of email alerts.
Signed-off-by: Simon Horman <horms@verge.net.au>
As mailer and mailers structures and allow parsing of
a mailers section into those structures.
These structures will subsequently be freed as it is
not yet possible to use reference them in the configuration.
Signed-off-by: Simon Horman <horms@verge.net.au>
The motivation for this is to make checks more independent of each
other to allow further reuse of their infrastructure.
For nowserver->check and server->agent still always use the same values
for the addr and proto fields so this patch should not introduce any
behavioural changes.
Signed-off-by: Simon Horman <horms@verge.net.au>
Refactor init_check so that an error string is returned
rather than alerts being printed by it. Also
init_check to checks.c and provide a prototype to allow
it to be used from multiple C files.
Signed-off-by: Simon Horman <horms@verge.net.au>
This commit implements the following new actions :
- "set-method" rewrites the request method with the result of the
evaluation of format string <fmt>. There should be very few valid reasons
for having to do so as this is more likely to break something than to fix
it.
- "set-path" rewrites the request path with the result of the evaluation of
format string <fmt>. The query string, if any, is left intact. If a
scheme and authority is found before the path, they are left intact as
well. If the request doesn't have a path ("*"), this one is replaced with
the format. This can be used to prepend a directory component in front of
a path for example. See also "set-query" and "set-uri".
Example :
# prepend the host name before the path
http-request set-path /%[hdr(host)]%[path]
- "set-query" rewrites the request's query string which appears after the
first question mark ("?") with the result of the evaluation of format
string <fmt>. The part prior to the question mark is left intact. If the
request doesn't contain a question mark and the new value is not empty,
then one is added at the end of the URI, followed by the new value. If
a question mark was present, it will never be removed even if the value
is empty. This can be used to add or remove parameters from the query
string. See also "set-query" and "set-uri".
Example :
# replace "%3D" with "=" in the query string
http-request set-query %[query,regsub(%3D,=,g)]
- "set-uri" rewrites the request URI with the result of the evaluation of
format string <fmt>. The scheme, authority, path and query string are all
replaced at once. This can be used to rewrite hosts in front of proxies,
or to perform complex modifications to the URI such as moving parts
between the path and the query string. See also "set-path" and
"set-query".
All of them are handled by the same parser and the same exec function,
which is why they're merged all together. For once, instead of adding
even more entries to the huge switch/case, we used the new facility to
register action keywords. A number of the existing ones should probably
move there as well.
This function (and its sister regex_exec_match2()) abstract the regex
execution but make it impossible to pass flags to the regex engine.
Currently we don't use them but we'll need to support REG_NOTBOL soon
(to indicate that we're not at the beginning of a line). So let's add
support for this flag and update the API accordingly.
This one will be used when a regex is expected. It is automatically
resolved after the parsing and compiled into a regex. Some optional
flags are supported in the type-specific flags that should be set by
the optional arg checker. One is used during the regex compilation :
ARGF_REG_ICASE to ignore case.
These flags are meant to be used by arg checkers to pass out-of-band
information related to some args. A typical use is to indicate how a
regex is expected to be compiled/matched based on other arguments.
These flags are initialized to zero by default and it is up to the args
checkers to set them if needed.
We'll soon need to add new argument types, and we don't use the current
limit of 7 arguments, so let's increase the arg type size to 5 bits and
reduce the arg count to 5 (3 max are used today).
This is in order to add new types. This patch does not change anything
else. Two remaining (harmless) occurrences of a count of 8 instead of 7
were fixed by this patch : empty_arg_list[] and the for() loop counting
args.
This function will be used to perform CRC32 computations. This one wa
loosely inspired from crc32b found here, and focuses on size and speed
at the same time :
http://www.hackersdelight.org/hdcodetxt/crc.c.txt
Much faster table-based versions exist but are pointless for our usage
here, this hash already sustains gigabit speed which is far faster than
what we'd ever need. Better preserve the CPU's cache instead.
If a memory size limit is enforced using "-n" on the command line and
one or both of maxconn / maxsslconn are not set, instead of using the
build-time values, haproxy now computes the number of sessions that can
be allocated depending on a number of parameters among which :
- global.maxconn (if set)
- global.maxsslconn (if set)
- maxzlibmem
- tune.ssl.cachesize
- presence of SSL in at least one frontend (bind lines)
- presence of SSL in at least one backend (server lines)
- tune.bufsize
- tune.cookie_len
The purpose is to ensure that not haproxy will not run out of memory
when maxing out all parameters. If neither maxconn nor maxsslconn are
used, it will consider that 100% of the sessions involve SSL on sides
where it's supported. That means that it will typically optimize maxconn
for SSL offloading or SSL bridging on all connections. This generally
means that the simple act of enabling SSL in a frontend or in a backend
will significantly reduce the global maxconn but in exchange of that, it
will guarantee that it will not fail.
All metrics may be enforced using #defines to accomodate variations in
SSL libraries or various allocation sizes.
An SSL connection takes some memory when it exists and during handshakes.
We measured up to 16kB for an established endpoint, and up to 76 extra kB
during a handshake. The SSL layer stores these values into the global
struct during initialization. If other SSL libs are used, it's easy to
change these values. Anyway they'll only be used as gross estimates in
order to guess the max number of SSL conns that can be established when
memory is constrained and the limit is not set.
We'll need to know the number of SSL connections, their use and their
cost soon. In order to avoid getting tons of ifdefs everywhere, always
export SSL information in the global section. We add two flags to know
whether or not SSL is used in a frontend and in a backend.
It applies to the channel and it doesn't erase outgoing data, only
pending unread data, which is strictly equivalent to what recv()
does with MSG_TRUNC, so that new name is more accurate and intuitive.
This name more accurately reminds that it applies to a channel and not
to a buffer, and that what is returned may be used as a max number of
bytes to pass to recv().
This applies to the channel, not the buffer, so let's fix this name.
Warning, the function's name happens to be the same as the old one
which was mistakenly used during 1.5.
This function's name was poorly chosen and is confusing to the point of
being suspiciously used at some places. The operations it does always
consider the ability to forward pending input data before receiving new
data. This is not obvious at all, especially at some places where it was
used when consuming outgoing data to know if the buffer has any chance
to ever get the missing data. The code needs to be re-audited with that
in mind. Care must be taken with existing code since the polarity of the
function was switched with the renaming.
channel_reserved is confusingly named. It is used to know whether or
not the rewrite area is left intact for situations where we want to
ensure we can use it before proceeding. Let's rename it to fix this
confusion.
Option http-send-name-header is still hurting. If a POST request has to be
redispatched when this option is used, and the next server's name is larger
than the initial one, and the POST body fills the buffer, it becomes
impossible to rewrite the server's name in the buffer when redispatching.
In 1.4, this is worse, the process may crash because of a negative size
computation for the memmove().
The only solution to fix this is to refrain from eating the reserve before
we're certain that we won't modify the buffer anymore. And the condition for
that is that the connection is established.
This patch introduces "channel_may_send()" which helps to detect whether it's
safe to eat the reserve or not. This condition is used by channel_in_transit()
introduced by recent patches.
This patch series must be backported into 1.5, and a simpler version must be
backported into 1.4 where fixing the bug is much easier since there were no
channels by then. Note that in 1.4 the severity is major.
This function returns the amount of bytes in transit in a channel's buffer,
which is the amount of outgoing data plus the amount of incoming data bound
to the forward limit.
We know that all incoming data are going to be purged if to_forward
is greater than them, not only if greater than the buffer size. This
buf has no direct impact on this version, but it participates to some
bugs affecting http-send-name-header since 1.4. This fix will have to
be backported down to 1.4 albeit in a different form.
The buffer_max_len() function is subject to an integer overflow in this
calculus :
int ret = global.tune.maxrewrite - chn->to_forward - chn->buf->o;
- chn->to_forward may be up to 2^31 - 1
- chn->buf->o may be up to chn->buf->size
- global.tune.maxrewrite is by definition smaller than chn->buf->size
Thus here we can subtract (2^31 + buf->o) (highly negative) from something
slightly positive, and result in ret being larger than expected.
Fortunately in 1.5 and 1.6, this is only used by bi_avail() which itself
is used by applets which do not set high values for to_forward so this
problem does not happen there. However in 1.4 the equivalent computation
was used to limit the size of a read and can result in a read overflow
when combined with the nasty http-send-name-header feature.
This fix must be backported to 1.5 and 1.4.
Some users reported that the default max hostname length of 32 is too
short in some environments. This patch does two things :
- it relies on the system's max hostname length as found in MAXHOSTNAMELEN
if it is set. This is the most logical thing to do as the system libs
generally present the appropriate value supported by the system. This
value is 64 on Linux and 256 on Solaris, to give a few examples.
- otherwise it defaults to 64
It is still possible to override this value by defining MAX_HOSTNAME_LEN at
build time. After some observation time, this patch may be backported to
1.5 if it does not cause any build issue, as it is harmless and may help
some users.
This is equivalent to what was done in commit 48936af ("[MINOR] log:
ability to override the syslog tag") but this time instead of doing
this globally, it does it per proxy. The purpose is to be able to use
a separate log tag for various proxies (eg: make it easier to route
log messages depending on the customer).
Since commit 3dd6a25 ("MINOR: stream-int: retrieve session pointer from
stream-int"), we can get the session from the task, so let's get rid of
this less obvious function.
commit 9ede66b0 introduced an environment variable (HAPROXY_SERVER_CURCONN) that
was supposed to be dynamically updated, but it was set only once, during its
initialization.
Most of the code provided in this previous patch has been rewritten in order to
easily update the environment variables without reallocating memory during each
check.
Now, HAPROXY_SERVER_CURCONN will contain the current number of connections on
the server at the time of the check.
bi_swpbuf() swaps the buffer passed in argument with the one attached to
the channel, but only if this last one is empty. The idea is to avoid a
copy when buffers can simply be swapped.
This setting is used to limit memory usage without causing the alloc
failures caused by "-m". Unexpectedly, tests have shown a performance
boost of up to about 18% on HTTP traffic when limiting the number of
buffers to about 10% of the amount of concurrent connections.
tune.buffers.limit <number>
Sets a hard limit on the number of buffers which may be allocated per process.
The default value is zero which means unlimited. The minimum non-zero value
will always be greater than "tune.buffers.reserve" and should ideally always
be about twice as large. Forcing this value can be particularly useful to
limit the amount of memory a process may take, while retaining a sane
behaviour. When this limit is reached, sessions which need a buffer wait for
another one to be released by another session. Since buffers are dynamically
allocated and released, the waiting time is very short and not perceptible
provided that limits remain reasonable. In fact sometimes reducing the limit
may even increase performance by increasing the CPU cache's efficiency. Tests
have shown good results on average HTTP traffic with a limit to 1/10 of the
expected global maxconn setting, which also significantly reduces memory
usage. The memory savings come from the fact that a number of connections
will not allocate 2*tune.bufsize. It is best not to touch this value unless
advised to do so by an haproxy core developer.
We've already experimented with three wake up algorithms when releasing
buffers : the first naive one used to wake up far too many sessions,
causing many of them not to get any buffer. The second approach which
was still in use prior to this patch consisted in waking up either 1
or 2 sessions depending on the number of FDs we had released. And this
was still inaccurate. The third one tried to cover the accuracy issues
of the second and took into consideration the number of FDs the sessions
would be willing to use, but most of the time we ended up waking up too
many of them for nothing, or deadlocking by lack of buffers.
This patch completely removes the need to allocate two buffers at once.
Instead it splits allocations into critical and non-critical ones and
implements a reserve in the pool for this. The deadlock situation happens
when all buffers are be allocated for requests pending in a maxconn-limited
server queue, because then there's no more way to allocate buffers for
responses, and these responses are critical to release the servers's
connection in order to release the pending requests. In fact maxconn on
a server creates a dependence between sessions and particularly between
oldest session's responses and latest session's requests. Thus, it is
mandatory to get a free buffer for a response in order to release a
server connection which will permit to release a request buffer.
Since we definitely have non-symmetrical buffers, we need to implement
this logic in the buffer allocation mechanism. What this commit does is
implement a reserve of buffers which can only be allocated for responses
and that will never be allocated for requests. This is made possible by
the requester indicating how much margin it wants to leave after the
allocation succeeds. Thus it is a cooperative allocation mechanism : the
requester (process_session() in general) prefers not to get a buffer in
order to respect other's need for response buffers. The session management
code always knows if a buffer will be used for requests or responses, so
that is not difficult :
- either there's an applet on the initiator side and we really need
the request buffer (since currently the applet is called in the
context of the session)
- or we have a connection and we really need the response buffer (in
order to support building and sending an error message back)
This reserve ensures that we don't take all allocatable buffers for
requests waiting in a queue. The downside is that all the extra buffers
are really allocated to ensure they can be allocated. But with small
values it is not an issue.
With this change, we don't observe any more deadlocks even when running
with maxconn 1 on a server under severely constrained memory conditions.
The code becomes a bit tricky, it relies on the scheduler's run queue to
estimate how many sessions are already expected to run so that it doesn't
wake up everyone with too few resources. A better solution would probably
consist in having two queues, one for urgent requests and one for normal
requests. A failed allocation for a session dealing with an error, a
connection event, or the need for a response (or request when there's an
applet on the left) would go to the urgent request queue, while other
requests would go to the other queue. Urgent requests would be served
from 1 entry in the pool, while the regular ones would be served only
according to the reserve. Despite not yet having this, it works
remarkably well.
This mechanism is quite efficient, we don't perform too many wake up calls
anymore. For 1 million sessions elapsed during massive memory contention,
we observe about 4.5M calls to process_session() compared to 4.0M without
memory constraints. Previously we used to observe up to 16M calls, which
rougly means 12M failures.
During a test run under high memory constraints (limit enforced to 27 MB
instead of the 58 MB normally needed), performance used to drop by 53% prior
to this patch. Now with this patch instead it *increases* by about 1.5%.
The best effect of this change is that by limiting the memory usage to about
2/3 to 3/4 of what is needed by default, it's possible to increase performance
by up to about 18% mainly due to the fact that pools are reused more often
and remain hot in the CPU cache (observed on regular HTTP traffic with 20k
objects, buffers.limit = maxconn/10, buffers.reserve = limit/2).
Below is an example of scenario which used to cause a deadlock previously :
- connection is received
- two buffers are allocated in process_session() then released
- one is allocated when receiving an HTTP request
- the second buffer is allocated then released in process_session()
for request parsing then connection establishment.
- poll() says we can send, so the request buffer is sent and released
- process session gets notified that the connection is now established
and allocates two buffers then releases them
- all other sessions do the same till one cannot get the request buffer
without hitting the margin
- and now the server responds. stream_interface allocates the response
buffer and manages to get it since it's higher priority being for a
response.
- but process_session() cannot allocate the request buffer anymore
=> We could end up with all buffers used by responses so that none may
be allocated for a request in process_session().
When the applet processing leaves the session context, the test will have
to be changed so that we always allocate a response buffer regardless of
the left side (eg: H2->H1 gateway). A final improvement would consists in
being able to only retry the failed I/O operation without waking up a
task, but to date all experiments to achieve this have proven not to be
reliable enough.
When a session_alloc_buffers() fails to allocate one or two buffers,
it subscribes the session to buffer_wq, and waits for another session
to release buffers. It's then removed from the queue and woken up with
TASK_WAKE_RES, and can attempt its allocation again.
We decide to try to wake as many waiters as we release buffers so
that if we release 2 and two waiters need only once, they both have
their chance. We must never come to the situation where we don't wake
enough tasks up.
It's common to release buffers after the completion of an I/O callback,
which can happen even if the I/O could not be performed due to half a
failure on memory allocation. In this situation, we don't want to move
out of the wait queue the session that was just added, otherwise it
will never get any buffer. Thus, we only force ourselves out of the
queue when freeing the session.
Note: at the moment, since session_alloc_buffers() is not used, no task
is subscribed to the wait queue.
This patch introduces session_alloc_recv_buffer(), session_alloc_buffers()
and session_release_buffers() whose purpose will be to allocate missing
buffers and release unneeded ones around the process_session() and during
I/O operations.
I/O callbacks only need a single buffer for recv operations and none
for send. However we still want to ensure that we don't pick the last
buffer. That's what session_alloc_recv_buffer() is for.
This allocator is atomic in that it always ensures we can get 2 buffers
or fails. Here, if any of the buffers is not ready and cannot be
allocated, the operation is cancelled. The purpose is to guarantee that
we don't enter into the deadlock where all buffers are allocated by the
same size of all sessions.
A queue will have to be implemented for failed allocations. For now
they're just reported as failures.
This function is used to allocate a buffer and ensure that we leave
some margin after it in the pool. The function is not obvious. While
we allocate only one buffer, we want to ensure that at least two remain
available after our allocation. The purpose is to ensure we'll never
enter a deadlock where all sessions allocate exactly one buffer, and
none of them will be able to allocate the second buffer needed to build
a response in order to release the first one.
We also take care of remaining fast in the the fast path by first
checking whether or not there is enough margin, in which case we only
rely on b_alloc_fast() which is guaranteed to succeed. Otherwise we
take the slow path using pool_refill_alloc().
This function allocates a buffer and replaces *buf with this buffer. If
no memory is available, &buf_wanted is used instead. No control is made
to check if *buf already pointed to another buffer. The allocated buffer
is returned, or NULL in case no memory is available. The difference with
b_alloc() is that this function only picks from the pool and never calls
malloc(), so it can fail even if some memory is available. It is the
caller's job to refill the buffer pool if needed.
Till now we'd consider a buffer full even if it had size==0 due to pointing
to buf.size. Now we change this : if buf_wanted is present, it means that we
have already tried to allocate a buffer but failed. Thus the buffer must be
considered full so that we stop trying to poll for reads on it. Otherwise if
it's empty, it's buf_empty and we report !full since we may allocate it on
the fly.
Doing so ensures that even when no memory is available, we leave the
channel in a sane condition. There's a special case in proto_http.c
regarding the compression, we simply pre-allocate the tmpbuf to point
to the dummy buffer. Not reusing &buf_empty for this allows the rest
of the code to differenciate an empty buffer that's not used from an
empty buffer that results from a failed allocation which has the same
semantics as a buffer full.
Channels are now created with a valid pointer to a buffer before the
buffer is allocated. This buffer is a global one called "buf_empty" and
of size zero. Thus it prevents any activity from being performed on
the buffer and still ensures that chn->buf may always be dereferenced.
b_free() also resets the buffer to &buf_empty, and was split into
b_drop() which does not reset the buffer.
We don't call pool_free2(pool2_buffers) anymore, we only call b_free()
to do the job. This ensures that we can start to centralize the releasing
of buffers.
b_alloc() now allocates a buffer and initializes it to the size specified
in the pool minus the size of the struct buffer itself. This ensures that
callers do not need to care about buffer details anymore. Also this never
applies memory poisonning, which is slow and useless on buffers.
We'll soon need to be able to switch buffers without touching the
channel, so let's move buffer initialization out of channel_init().
We had the same in compressoin.c.
Till now this function would only allocate one entry at a time. But with
dynamic buffers we'll like to allocate the number of missing entries to
properly refill the pool.
Let's modify it to take a minimum amount of available entries. This means
that when we know we need at least a number of available entries, we can
ask to allocate all of them at once. It also ensures that we don't move
the pointers back and forth between the caller and the pool, and that we
don't call pool_gc2() for each failed malloc. Instead, it's called only
once and the malloc is only allowed to fail once.
pool_alloc2() used to pick the entry from the pool, fall back to
pool_refill_alloc(), and to perform the poisonning itself, which
pool_refill_alloc() was also doing. While this led to optimal
code size, it imposes memory poisonning on the buffers as well,
which is extremely slow on large buffers.
This patch cuts the allocator in 3 layers :
- a layer to pick the first entry from the pool without falling back to
pool_refill_alloc() : pool_get_first()
- a layer to allocate a dirty area by falling back to pool_refill_alloc()
but never performing the poisonning : pool_alloc_dirty()
- pool_alloc2() which calls the latter and optionally poisons the area
No functional changes were made.
Remove the code dealing with the old dual-linked lists imported from
librt that has remained unused for the last 8 years. Now everything
uses the linux-like circular lists instead.
Since commit 656c5fa7e8 ("BUILD: ssl: disable OCSP when using
boringssl) the OCSP code is bypassed when OPENSSL_IS_BORINGSSL
is defined. The correct thing to do here is to use OPENSSL_NO_OCSP
instead, which is defined for this exact purpose in
openssl/opensslfeatures.h.
This makes haproxy forward compatible if boringssl ever introduces
full OCSP support with the additional benefit that it links fine
against a OCSP-disabled openssl.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
Till now, when memory poisonning was enabled, it used to be done only
after a calloc(). But sometimes it's not enough to detect unexpected
sharing, so let's ensure that we now poison every allocation once it's
in place. Note that enabling poisonning significantly hurts performance
(it can typically half the overall performance).
A memory optimization can use the same pattern expression for many
equal pattern list (same parse method, index method and index_smp
method).
The pattern expression is returned by "pattern_new_expr", but this
function dont indicate if the returned pattern is already in use.
So, the caller function reload the list of patterns in addition with
the existing patterns. This behavior is not a problem with tree indexed
pattern, but it grows the lists indexed patterns.
This fix add a "reuse" flag in return of the function "pattern_new_expr".
If the flag is set, I suppose that the patterns are already loaded.
This fix must be backported into 1.5.
In order for HTTP/2 not to eat too much memory, we'll have to support
on-the-fly buffer allocation, since most streams will have an empty
request buffer at some point. Supporting allocation on the fly means
being able to sleep inside I/O callbacks if a buffer is not available.
Till now, the I/O callbacks were called from two locations :
- when processing the cached events
- when processing the polled events from the poller
This change cleans up the design a bit further than what was started in
1.5. It now ensures that we never call any iocb from the poller itself
and that instead, events learned by the poller are put into the cache.
The benefit is important in terms of stability : we don't have to care
anymore about the risk that new events are added into the poller while
processing its events, and we're certain that updates are processed at
a single location.
To achieve this, we now modify all the fd_* functions so that instead of
creating updates, they add/remove the fd to/from the cache depending on
its state, and only create an update when the polling status reaches a
state where it will have to change. Since the pollers make use of these
functions to notify readiness (using fd_may_recv/fd_may_send), the cache
is always up to date with the poller.
Creating updates only when the polling status needs to change saves a
significant amount of work for the pollers : a benchmark showed that on
a typical TCP proxy test, the amount of updates per connection dropped
from 11 to 1 on average. This also means that the update list is smaller
and has more chances of not thrashing too many CPU cache lines. The first
observed benefit is a net 2% performance gain on the connection rate.
A second benefit is that when a connection is accepted, it's only when
we're processing the cache, and the recv event is automatically added
into the cache *after* the current one, resulting in this event to be
processed immediately during the same loop. Previously we used to have
a second run over the updates to detect if new events were added to
catch them before waking up tasks.
The next gain will be offered by the next steps on this subject consisting
in implementing an I/O queue containing all cached events ordered by priority
just like the run queue, and to be able to leave some events pending there
as long as needed. That will allow us *not* to perform some FD processing
if it's not the proper time for this (typically keep waiting for a buffer
to be allocated if none is available for an recv()). And by only processing
a small bunch of them, we'll allow priorities to take place even at the I/O
level.
As a result of this change, functions fd_alloc_or_release_cache_entry()
and fd_process_polled_events() have disappeared, and the code dedicated
to checking for new fd events after the callback during the poll() loop
was removed as well. Despite the patch looking large, it's mostly a
change of what function is falled upon fd_*() and almost nothing was
added.
This patch makes it possible to create binds and servers in separate
namespaces. This can be used to proxy between multiple completely independent
virtual networks (with possibly overlapping IP addresses) and a
non-namespace-aware proxy implementation that supports the proxy protocol (v2).
The setup is something like this:
net1 on VLAN 1 (namespace 1) -\
net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0)
net3 on VLAN 3 (namespace 3) -/
The proxy is configured to make server connections through haproxy and sending
the expected source/target addresses to haproxy using the proxy protocol.
The network namespace setup on the haproxy node is something like this:
= 8< =
$ cat setup.sh
ip netns add 1
ip link add link eth1 type vlan id 1
ip link set eth1.1 netns 1
ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1
ip netns exec 1 ip link set eth1.$id up
...
= 8< =
= 8< =
$ cat haproxy.cfg
frontend clients
bind 127.0.0.1:50022 namespace 1 transparent
default_backend scb
backend server
mode tcp
server server1 192.168.122.4:2222 namespace 2 send-proxy-v2
= 8< =
A bind line creates the listener in the specified namespace, and connections
originating from that listener also have their network namespace set to
that of the listener.
A server line either forces the connection to be made in a specified
namespace or may use the namespace from the client-side connection if that
was set.
For more documentation please read the documentation included in the patch
itself.
Signed-off-by: KOVACS Tamas <ktamas@balabit.com>
Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com>
Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
pcre_study() has been around long before JIT has been added. It also seems to
affect the performance in some cases (positive).
Below I've attached some test restults. The test is based on
http://sljit.sourceforge.net/regex_perf.html (see bottom). It has been modified
to just test pcre_study vs. no pcre_study. Note: This test does not try to
match specific header it's instead run over a larger text with more and less
complex patterns to make the differences more clear.
% ./runtest
'mark.txt' loaded. (Length: 19665221 bytes)
-----------------
Regex: 'Twain'
[pcre-nostudy] time: 14 ms (2388 matches)
[pcre-study] time: 21 ms (2388 matches)
-----------------
Regex: '^Twain'
[pcre-nostudy] time: 109 ms (100 matches)
[pcre-study] time: 109 ms (100 matches)
-----------------
Regex: 'Twain$'
[pcre-nostudy] time: 14 ms (127 matches)
[pcre-study] time: 16 ms (127 matches)
-----------------
Regex: 'Huck[a-zA-Z]+|Finn[a-zA-Z]+'
[pcre-nostudy] time: 695 ms (83 matches)
[pcre-study] time: 26 ms (83 matches)
-----------------
Regex: 'a[^x]{20}b'
[pcre-nostudy] time: 90 ms (12495 matches)
[pcre-study] time: 91 ms (12495 matches)
-----------------
Regex: 'Tom|Sawyer|Huckleberry|Finn'
[pcre-nostudy] time: 1236 ms (3015 matches)
[pcre-study] time: 34 ms (3015 matches)
-----------------
Regex: '.{0,3}(Tom|Sawyer|Huckleberry|Finn)'
[pcre-nostudy] time: 5696 ms (3015 matches)
[pcre-study] time: 5655 ms (3015 matches)
-----------------
Regex: '[a-zA-Z]+ing'
[pcre-nostudy] time: 1290 ms (95863 matches)
[pcre-study] time: 1167 ms (95863 matches)
-----------------
Regex: '^[a-zA-Z]{0,4}ing[^a-zA-Z]'
[pcre-nostudy] time: 136 ms (4507 matches)
[pcre-study] time: 134 ms (4507 matches)
-----------------
Regex: '[a-zA-Z]+ing$'
[pcre-nostudy] time: 1334 ms (5360 matches)
[pcre-study] time: 1214 ms (5360 matches)
-----------------
Regex: '^[a-zA-Z ]{5,}$'
[pcre-nostudy] time: 198 ms (26236 matches)
[pcre-study] time: 197 ms (26236 matches)
-----------------
Regex: '^.{16,20}$'
[pcre-nostudy] time: 173 ms (4902 matches)
[pcre-study] time: 175 ms (4902 matches)
-----------------
Regex: '([a-f](.[d-m].){0,2}[h-n]){2}'
[pcre-nostudy] time: 1242 ms (68621 matches)
[pcre-study] time: 690 ms (68621 matches)
-----------------
Regex: '([A-Za-z]awyer|[A-Za-z]inn)[^a-zA-Z]'
[pcre-nostudy] time: 1215 ms (675 matches)
[pcre-study] time: 952 ms (675 matches)
-----------------
Regex: '"[^"]{0,30}[?!\.]"'
[pcre-nostudy] time: 27 ms (5972 matches)
[pcre-study] time: 28 ms (5972 matches)
-----------------
Regex: 'Tom.{10,25}river|river.{10,25}Tom'
[pcre-nostudy] time: 705 ms (2 matches)
[pcre-study] time: 68 ms (2 matches)
In some cases it's more or less the same but when it's faster than by a huge margin.
It always depends on the pattern, the string(s) to match against etc.
Signed-off-by: Christian Ruppert <c.ruppert@babiel.com>
Lasse Birnbaum Jensen reported an issue when agent checks are used at the same
time as standard healthchecks when SSL is enabled on the server side.
The symptom is that agent checks try to communicate in SSL while it should
manage raw data. This happens because the transport layer is shared between all
kind of checks.
To fix the issue, the transport layer is now stored in each check type,
allowing to use SSL healthchecks when required, while an agent check should
always use the raw_sock implementation.
The fix must be backported to 1.5.
When we're stopping, we're not going to create new tasks anymore, so
let's release the task pool upon each task_free() in order to reduce
memory fragmentation.
Adds global statements 'ssl-default-server-options' and
'ssl-default-bind-options' to force on 'server' and 'bind' lines
some ssl options.
Currently available options are 'no-sslv3', 'no-tlsv10', 'no-tlsv11',
'no-tlsv12', 'force-sslv3', 'force-tlsv10', 'force-tlsv11',
'force-tlsv12', and 'no-tls-tickets'.
Example:
global
ssl-default-server-options no-sslv3
ssl-default-bind-options no-sslv3
This converter escapes string to use it as json/ascii escaped string.
It can read UTF-8 with differents behavior on errors and encode it in
json/ascii.
json([<input-code>])
Escapes the input string and produces an ASCII ouput string ready to use as a
JSON string. The converter tries to decode the input string according to the
<input-code> parameter. It can be "ascii", "utf8", "utf8s", "utf8"" or
"utf8ps". The "ascii" decoder never fails. The "utf8" decoder detects 3 types
of errors:
- bad UTF-8 sequence (lone continuation byte, bad number of continuation
bytes, ...)
- invalid range (the decoded value is within a UTF-8 prohibited range),
- code overlong (the value is encoded with more bytes than necessary).
The UTF-8 JSON encoding can produce a "too long value" error when the UTF-8
character is greater than 0xffff because the JSON string escape specification
only authorizes 4 hex digits for the value encoding. The UTF-8 decoder exists
in 4 variants designated by a combination of two suffix letters : "p" for
"permissive" and "s" for "silently ignore". The behaviors of the decoders
are :
- "ascii" : never fails ;
- "utf8" : fails on any detected errors ;
- "utf8s" : never fails, but removes characters corresponding to errors ;
- "utf8p" : accepts and fixes the overlong errors, but fails on any other
error ;
- "utf8ps" : never fails, accepts and fixes the overlong errors, but removes
characters corresponding to the other errors.
This converter is particularly useful for building properly escaped JSON for
logging to servers which consume JSON-formated traffic logs.
Example:
capture request header user-agent len 150
capture request header Host len 15
log-format {"ip":"%[src]","user-agent":"%[capture.req.hdr(1),json]"}
Input request from client 127.0.0.1:
GET / HTTP/1.0
User-Agent: Very "Ugly" UA 1/2
Output log:
{"ip":"127.0.0.1","user-agent":"Very \"Ugly\" UA 1\/2"}
Commit 179085c ("MEDIUM: http: move Connection header processing earlier")
introduced a regression : the backend's HTTP mode is not considered anymore
when setting the session's HTTP mode, because wait_for_request() is only
called once, when the frontend receives the request (or when the frontend
is in TCP mode, when the backend receives the request).
The net effect is that in some situations when the frontend and the backend
do not work in the same mode (eg: keep-alive vs close), the backend's mode
is ignored.
This patch moves all that processing to a dedicated function, which is
called from the original place, as well as from session_set_backend()
when switching from an HTTP frontend to an HTTP backend in different
modes.
This fix must be backported to 1.5.
A config where a tcp-request rule appears after an http-request rule
might seem valid but it is not. So let's report a warning about this
since this case is hard to detect by the naked eye.
Commit bb2e669 ("BUG/MAJOR: http: correctly rewind the request body
after start of forwarding") was incorrect/incomplete. It used to rely on
CF_READ_ATTACHED to stop updating msg->sov once data start to leave the
buffer, but this is unreliable because since commit a6eebb3 ("[BUG]
session: clear BF_READ_ATTACHED before next I/O") merged in 1.5-dev1,
this flag is only ephemeral and is cleared once all analysers have
seen it. So we can start updating msg->sov again each time we pass
through this place with new data. With a sufficiently large amount of
data, it is possible to make msg->sov wrap and validate the if()
condition at the top, causing the buffer to advance by about 2GB and
crash the process.
Note that the offset cannot be controlled by the attacker because it is
a sum of millions of small random sizes depending on how many bytes were
read by the server and how many were left in the buffer, only because
of the speed difference between reading and writing. Also, nothing is
written, the invalid pointer resulting from this operation is only read.
Many thanks to James Dempsey for reporting this bug and to Chris Forbes for
narrowing down the faulty area enough to make its root cause analysable.
This fix must be backported to haproxy 1.5.
Sometimes it would be convenient to have a log counter so that from a log
server we know whether some logs were lost or not. The frontend's log counter
serves exactly this purpose. It's incremented each time a traffic log is
produced. If a log is disabled using "http-request set-log-level silent",
the counter will not be incremented. However, admin logs are not accounted
for. Also, if logs are filtered out before being sent to the server because
of a minimum level set on the log line, the counter will be increased anyway.
The counter is 32-bit, so it will wrap, but that's not an issue considering
that 4 billion logs are rarely in the same file, let alone close to each
other.
Just by moving a few struct members around, we can avoid 32-bit holes
between 64-bit pointers and shrink the struct size by 48 bytes. That's
not huge but that's for free, so let's do it.
There are two sample commands to get information about the presence of a
client certificate.
ssl_fc_has_crt is true if there is a certificate present in the current
connection
ssl_c_used is true if there is a certificate present in the session.
If a session has stopped and resumed, then ssl_c_used could be true, while
ssl_fc_has_crt is false.
In the client byte of the TLS TLV of Proxy Protocol V2, there is only one
bit to indicate whether a certificate is present on the connection. The
attached patch adds a second bit to indicate the presence for the session.
This maintains backward compatibility.
[wt: this should be backported to 1.5 to help maintain compatibility
between versions]
Google's boringssl doesn't currently support OCSP, so
disable it if detected.
OCSP support may be reintroduced as per:
https://code.google.com/p/chromium/issues/detail?id=398677
In that case we can simply revert this commit.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
If a source file includes proto/server.h twice or more, redefinition errors will
be triggered for such inline functions as server_throttle_rate(),
server_is_draining(), srv_adm_set_maint() and so on. Just move #endif directive
to the end of file to solve this issue.
Signed-off-by: Godbach <nylzhaowei@gmail.com>
Add support for http-request track-sc, similar to what is done in
tcp-request for backends. A new act_prm field was added to HTTP
request rules to store the track params (table, counter). Just
like for TCP rules, the table is resolved while checking for
config validity. The code was mostly copied from the TCP code
with the exception that here we also count the HTTP request count
and rate by hand. Probably that something could be factored out in
the future.
It seems like tracking flags should be improved to mark each hook
which tracks a key so that we can have some check points where to
increase counters of the past if not done yet, a bit like is done
for TRACK_BACKEND.
Some users want to add their own data types to stick tables. We don't
want to use a linked list here for performance reasons, so we need to
continue to use an indexed array. This patch allows one to reserve a
compile-time-defined number of extra data types by setting the new
macro STKTABLE_EXTRA_DATA_TYPES to anything greater than zero, keeping
in mind that anything larger will slightly inflate the memory consumed
by stick tables (not per entry though).
Then calling stktable_register_data_store() with the new keyword will
either register a new keyword or fail if the desired entry was already
taken or the keyword already registered.
Note that this patch does not dictate how the data will be used, it only
offers the possibility to create new keywords and have an index to
reference them in the config and in the tables. The caller will not be
able to use stktable_data_cast() and will have to explicitly cast the
stable pointers to the expected types. It can be used for experimentation
as well.
Daniel Dubovik reported an interesting bug showing that the request body
processing was still not 100% fixed. If a POST request contained short
enough data to be forwarded at once before trying to establish the
connection to the server, we had no way to correctly rewind the body.
The first visible case is that balancing on a header does not always work
on such POST requests since the header cannot be found. But there are even
nastier implications which are that http-send-name-header would apply to
the wrong location and possibly even affect part of the request's body
due to an incorrect rewinding.
There are two options to fix the problem :
- first one is to force the HTTP_MSG_F_WAIT_CONN flag on all hash-based
balancing algorithms and http-send-name-header, but there's always a
risk that any new algorithm forgets to set it ;
- the second option is to account for the amount of skipped data before
the connection establishes so that we always know the position of the
request's body relative to the buffer's origin.
The second option is much more reliable and fits very well in the spirit
of the past changes to fix forwarding. Indeed, at the moment we have
msg->sov which points to the start of the body before headers are forwarded
and which equals zero afterwards (so it still points to the start of the
body before forwarding data). A minor change consists in always making it
point to the start of the body even after data have been forwarded. It means
that it can get a negative value (so we need to change its type to signed)..
In order to avoid wrapping, we only do this as long as the other side of
the buffer is not connected yet.
Doing this definitely fixes the issues above for the requests. Since the
response cannot be rewound we don't need to perform any change there.
This bug was introduced/remained unfixed in 1.5-dev23 so the fix must be
backported to 1.5.
Currently we have stktable_fetch_key() which fetches a sample according
to an expression and returns a stick table key, but we also need a function
which does only the second half of it from a known sample. So let's cut the
function in two and introduce smp_to_stkey() to perform this lookup. The
first function was adapted to make use of it in order to avoid code
duplication.
When we were generating a hash, it was done using an unsigned long. When the hash was used
to select a backend, it was sent as an unsigned int. This made it difficult to predict which
backend would be selected.
This patch updates get_hash, and the hash methods to use an unsigned int, to remain consistent
throughout the codebase.
This fix should be backported to 1.5 and probably in part to 1.4.
Abstract namespace sockets ignore the shutdown() call and do not make
it possible to temporarily stop listening. The issue it causes is that
during a soft reload, the new process cannot bind, complaining that the
address is already in use.
This change registers a new pause() function for unix sockets and
completely unbinds the abstract ones since it's possible to rebind
them later. It requires the two previous patches as well as preceeding
fixes.
This fix should be backported into 1.5 since the issue apperas there.
In order to fix the abstact socket pause mechanism during soft restarts,
we'll need to proceed differently depending on the socket protocol. The
pause_listener() function already supports some protocol-specific handling
for the TCP case.
This commit makes this cleaner by adding a new ->pause() function to the
protocol struct, which, if defined, may be used to pause a listener of a
given protocol.
For now, only TCP has been adapted, with the specific code moved from
pause_listener() to tcp_pause_listener().
With all the goodies supported by logformat, people find that the limit
of 1024 chars for log lines is too short. Some servers do not support
larger lines and can simply drop them, so changing the default value is
not always the best choice.
This patch takes a different approach. Log line length is specified per
log server on the "log" line, with a value between 80 and 65535. That
way it's possibly to satisfy all needs, even with some fat local servers
and small remote ones.
This value was set in log.h without any #ifndef around, so when one
wanted to change it, a patch was needed. Let's move it to defaults.h
with the usual #ifndef so that it's easier to change it.
stktable_fetch_key() does not indicate whether it returns NULL because
the input sample was not found or because it's unstable. It causes trouble
with track-sc* rules. Just like with sample_fetch_string(), we want it to
be able to give more information to the caller about what it found. Thus,
now we use the pointer to a sample passed by the caller, and fill it with
the information we have about the sample. That way, even if we return NULL,
the caller has the ability to check whether a sample was found and if it is
still changing or not.
'ssl_sock_get_common_name' applied to a connection was also renamed
'ssl_sock_get_remote_common_name'. Currently, this function is only used
with protocol PROXYv2 to retrieve the client certificate's common name.
A further usage could be to retrieve the server certificate's common name
on an outgoing connection.