netlink/link_linux.go

4003 lines
118 KiB
Go

package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io/ioutil"
"net"
"os"
"strconv"
"strings"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
const (
SizeofLinkStats32 = 0x5c
SizeofLinkStats64 = 0xb8
)
const (
TUNTAP_MODE_TUN TuntapMode = unix.IFF_TUN
TUNTAP_MODE_TAP TuntapMode = unix.IFF_TAP
TUNTAP_DEFAULTS TuntapFlag = unix.IFF_TUN_EXCL | unix.IFF_ONE_QUEUE
TUNTAP_VNET_HDR TuntapFlag = unix.IFF_VNET_HDR
TUNTAP_TUN_EXCL TuntapFlag = unix.IFF_TUN_EXCL
TUNTAP_NO_PI TuntapFlag = unix.IFF_NO_PI
TUNTAP_ONE_QUEUE TuntapFlag = unix.IFF_ONE_QUEUE
TUNTAP_MULTI_QUEUE TuntapFlag = unix.IFF_MULTI_QUEUE
TUNTAP_MULTI_QUEUE_DEFAULTS TuntapFlag = TUNTAP_MULTI_QUEUE | TUNTAP_NO_PI
)
var StringToTuntapModeMap = map[string]TuntapMode{
"tun": TUNTAP_MODE_TUN,
"tap": TUNTAP_MODE_TAP,
}
func (ttm TuntapMode) String() string {
switch ttm {
case TUNTAP_MODE_TUN:
return "tun"
case TUNTAP_MODE_TAP:
return "tap"
}
return "unknown"
}
const (
VF_LINK_STATE_AUTO uint32 = 0
VF_LINK_STATE_ENABLE uint32 = 1
VF_LINK_STATE_DISABLE uint32 = 2
)
var macvlanModes = [...]uint32{
0,
nl.MACVLAN_MODE_PRIVATE,
nl.MACVLAN_MODE_VEPA,
nl.MACVLAN_MODE_BRIDGE,
nl.MACVLAN_MODE_PASSTHRU,
nl.MACVLAN_MODE_SOURCE,
}
func ensureIndex(link *LinkAttrs) {
if link != nil && link.Index == 0 {
newlink, _ := LinkByName(link.Name)
if newlink != nil {
link.Index = newlink.Attrs().Index
}
}
}
func (h *Handle) ensureIndex(link *LinkAttrs) {
if link != nil && link.Index == 0 {
newlink, _ := h.LinkByName(link.Name)
if newlink != nil {
link.Index = newlink.Attrs().Index
}
}
}
func (h *Handle) LinkSetARPOff(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change |= unix.IFF_NOARP
msg.Flags |= unix.IFF_NOARP
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func LinkSetARPOff(link Link) error {
return pkgHandle.LinkSetARPOff(link)
}
func (h *Handle) LinkSetARPOn(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change |= unix.IFF_NOARP
msg.Flags &= ^uint32(unix.IFF_NOARP)
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func LinkSetARPOn(link Link) error {
return pkgHandle.LinkSetARPOn(link)
}
func (h *Handle) SetPromiscOn(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_PROMISC
msg.Flags = unix.IFF_PROMISC
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetAllmulticastOn enables the reception of all hardware multicast packets for the link device.
// Equivalent to: `ip link set $link allmulticast on`
func LinkSetAllmulticastOn(link Link) error {
return pkgHandle.LinkSetAllmulticastOn(link)
}
// LinkSetAllmulticastOn enables the reception of all hardware multicast packets for the link device.
// Equivalent to: `ip link set $link allmulticast on`
func (h *Handle) LinkSetAllmulticastOn(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_ALLMULTI
msg.Flags = unix.IFF_ALLMULTI
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetAllmulticastOff disables the reception of all hardware multicast packets for the link device.
// Equivalent to: `ip link set $link allmulticast off`
func LinkSetAllmulticastOff(link Link) error {
return pkgHandle.LinkSetAllmulticastOff(link)
}
// LinkSetAllmulticastOff disables the reception of all hardware multicast packets for the link device.
// Equivalent to: `ip link set $link allmulticast off`
func (h *Handle) LinkSetAllmulticastOff(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_ALLMULTI
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetMulticastOn enables the reception of multicast packets for the link device.
// Equivalent to: `ip link set $link multicast on`
func LinkSetMulticastOn(link Link) error {
return pkgHandle.LinkSetMulticastOn(link)
}
// LinkSetMulticastOn enables the reception of multicast packets for the link device.
// Equivalent to: `ip link set $link multicast on`
func (h *Handle) LinkSetMulticastOn(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_MULTICAST
msg.Flags = unix.IFF_MULTICAST
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetAllmulticastOff disables the reception of multicast packets for the link device.
// Equivalent to: `ip link set $link multicast off`
func LinkSetMulticastOff(link Link) error {
return pkgHandle.LinkSetMulticastOff(link)
}
// LinkSetAllmulticastOff disables the reception of multicast packets for the link device.
// Equivalent to: `ip link set $link multicast off`
func (h *Handle) LinkSetMulticastOff(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_MULTICAST
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func MacvlanMACAddrAdd(link Link, addr net.HardwareAddr) error {
return pkgHandle.MacvlanMACAddrAdd(link, addr)
}
func (h *Handle) MacvlanMACAddrAdd(link Link, addr net.HardwareAddr) error {
return h.macvlanMACAddrChange(link, []net.HardwareAddr{addr}, nl.MACVLAN_MACADDR_ADD)
}
func MacvlanMACAddrDel(link Link, addr net.HardwareAddr) error {
return pkgHandle.MacvlanMACAddrDel(link, addr)
}
func (h *Handle) MacvlanMACAddrDel(link Link, addr net.HardwareAddr) error {
return h.macvlanMACAddrChange(link, []net.HardwareAddr{addr}, nl.MACVLAN_MACADDR_DEL)
}
func MacvlanMACAddrFlush(link Link) error {
return pkgHandle.MacvlanMACAddrFlush(link)
}
func (h *Handle) MacvlanMACAddrFlush(link Link) error {
return h.macvlanMACAddrChange(link, nil, nl.MACVLAN_MACADDR_FLUSH)
}
func MacvlanMACAddrSet(link Link, addrs []net.HardwareAddr) error {
return pkgHandle.MacvlanMACAddrSet(link, addrs)
}
func (h *Handle) MacvlanMACAddrSet(link Link, addrs []net.HardwareAddr) error {
return h.macvlanMACAddrChange(link, addrs, nl.MACVLAN_MACADDR_SET)
}
func (h *Handle) macvlanMACAddrChange(link Link, addrs []net.HardwareAddr, mode uint32) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil)
linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type()))
inner := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
// IFLA_MACVLAN_MACADDR_MODE = mode
b := make([]byte, 4)
native.PutUint32(b, mode)
inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR_MODE, b)
// populate message with MAC addrs, if necessary
switch mode {
case nl.MACVLAN_MACADDR_ADD, nl.MACVLAN_MACADDR_DEL:
if len(addrs) == 1 {
inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR, []byte(addrs[0]))
}
case nl.MACVLAN_MACADDR_SET:
mad := inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR_DATA, nil)
for _, addr := range addrs {
mad.AddRtAttr(nl.IFLA_MACVLAN_MACADDR, []byte(addr))
}
}
req.AddData(linkInfo)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetMacvlanMode sets the mode of a macvlan or macvtap link device.
// Note that passthrough mode cannot be set to and from and will fail.
// Equivalent to: `ip link set $link type (macvlan|macvtap) mode $mode
func LinkSetMacvlanMode(link Link, mode MacvlanMode) error {
return pkgHandle.LinkSetMacvlanMode(link, mode)
}
// LinkSetMacvlanMode sets the mode of the macvlan or macvtap link device.
// Note that passthrough mode cannot be set to and from and will fail.
// Equivalent to: `ip link set $link type (macvlan|macvtap) mode $mode
func (h *Handle) LinkSetMacvlanMode(link Link, mode MacvlanMode) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil)
linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type()))
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_MACVLAN_MODE, nl.Uint32Attr(macvlanModes[mode]))
req.AddData(linkInfo)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func BridgeSetMcastSnoop(link Link, on bool) error {
return pkgHandle.BridgeSetMcastSnoop(link, on)
}
func (h *Handle) BridgeSetMcastSnoop(link Link, on bool) error {
bridge := link.(*Bridge)
bridge.MulticastSnooping = &on
return h.linkModify(bridge, unix.NLM_F_ACK)
}
func BridgeSetVlanFiltering(link Link, on bool) error {
return pkgHandle.BridgeSetVlanFiltering(link, on)
}
func (h *Handle) BridgeSetVlanFiltering(link Link, on bool) error {
bridge := link.(*Bridge)
bridge.VlanFiltering = &on
return h.linkModify(bridge, unix.NLM_F_ACK)
}
func BridgeSetVlanDefaultPVID(link Link, pvid uint16) error {
return pkgHandle.BridgeSetVlanDefaultPVID(link, pvid)
}
func (h *Handle) BridgeSetVlanDefaultPVID(link Link, pvid uint16) error {
bridge := link.(*Bridge)
bridge.VlanDefaultPVID = &pvid
return h.linkModify(bridge, unix.NLM_F_ACK)
}
func SetPromiscOn(link Link) error {
return pkgHandle.SetPromiscOn(link)
}
func (h *Handle) SetPromiscOff(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_PROMISC
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func SetPromiscOff(link Link) error {
return pkgHandle.SetPromiscOff(link)
}
// LinkSetUp enables the link device.
// Equivalent to: `ip link set $link up`
func LinkSetUp(link Link) error {
return pkgHandle.LinkSetUp(link)
}
// LinkSetUp enables the link device.
// Equivalent to: `ip link set $link up`
func (h *Handle) LinkSetUp(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_UP
msg.Flags = unix.IFF_UP
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetDown disables link device.
// Equivalent to: `ip link set $link down`
func LinkSetDown(link Link) error {
return pkgHandle.LinkSetDown(link)
}
// LinkSetDown disables link device.
// Equivalent to: `ip link set $link down`
func (h *Handle) LinkSetDown(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Change = unix.IFF_UP
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetMTU sets the mtu of the link device.
// Equivalent to: `ip link set $link mtu $mtu`
func LinkSetMTU(link Link, mtu int) error {
return pkgHandle.LinkSetMTU(link, mtu)
}
// LinkSetMTU sets the mtu of the link device.
// Equivalent to: `ip link set $link mtu $mtu`
func (h *Handle) LinkSetMTU(link Link, mtu int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(mtu))
data := nl.NewRtAttr(unix.IFLA_MTU, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetName sets the name of the link device.
// Equivalent to: `ip link set $link name $name`
func LinkSetName(link Link, name string) error {
return pkgHandle.LinkSetName(link, name)
}
// LinkSetName sets the name of the link device.
// Equivalent to: `ip link set $link name $name`
func (h *Handle) LinkSetName(link Link, name string) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_IFNAME, []byte(name))
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetAlias sets the alias of the link device.
// Equivalent to: `ip link set dev $link alias $name`
func LinkSetAlias(link Link, name string) error {
return pkgHandle.LinkSetAlias(link, name)
}
// LinkSetAlias sets the alias of the link device.
// Equivalent to: `ip link set dev $link alias $name`
func (h *Handle) LinkSetAlias(link Link, name string) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_IFALIAS, []byte(name))
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkAddAltName adds a new alternative name for the link device.
// Equivalent to: `ip link property add $link altname $name`
func LinkAddAltName(link Link, name string) error {
return pkgHandle.LinkAddAltName(link, name)
}
// LinkAddAltName adds a new alternative name for the link device.
// Equivalent to: `ip link property add $link altname $name`
func (h *Handle) LinkAddAltName(link Link, name string) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_NEWLINKPROP, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_PROP_LIST|unix.NLA_F_NESTED, nil)
data.AddRtAttr(unix.IFLA_ALT_IFNAME, []byte(name))
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkDelAltName delete an alternative name for the link device.
// Equivalent to: `ip link property del $link altname $name`
func LinkDelAltName(link Link, name string) error {
return pkgHandle.LinkDelAltName(link, name)
}
// LinkDelAltName delete an alternative name for the link device.
// Equivalent to: `ip link property del $link altname $name`
func (h *Handle) LinkDelAltName(link Link, name string) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_DELLINKPROP, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_PROP_LIST|unix.NLA_F_NESTED, nil)
data.AddRtAttr(unix.IFLA_ALT_IFNAME, []byte(name))
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetHardwareAddr sets the hardware address of the link device.
// Equivalent to: `ip link set $link address $hwaddr`
func LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
return pkgHandle.LinkSetHardwareAddr(link, hwaddr)
}
// LinkSetHardwareAddr sets the hardware address of the link device.
// Equivalent to: `ip link set $link address $hwaddr`
func (h *Handle) LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_ADDRESS, []byte(hwaddr))
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfHardwareAddr sets the hardware address of a vf for the link.
// Equivalent to: `ip link set $link vf $vf mac $hwaddr`
func LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
return pkgHandle.LinkSetVfHardwareAddr(link, vf, hwaddr)
}
// LinkSetVfHardwareAddr sets the hardware address of a vf for the link.
// Equivalent to: `ip link set $link vf $vf mac $hwaddr`
func (h *Handle) LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfMac{
Vf: uint32(vf),
}
copy(vfmsg.Mac[:], []byte(hwaddr))
info.AddRtAttr(nl.IFLA_VF_MAC, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfVlan sets the vlan of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan`
func LinkSetVfVlan(link Link, vf, vlan int) error {
return pkgHandle.LinkSetVfVlan(link, vf, vlan)
}
// LinkSetVfVlan sets the vlan of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan`
func (h *Handle) LinkSetVfVlan(link Link, vf, vlan int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfVlan{
Vf: uint32(vf),
Vlan: uint32(vlan),
}
info.AddRtAttr(nl.IFLA_VF_VLAN, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfVlanQos sets the vlan and qos priority of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos`
func LinkSetVfVlanQos(link Link, vf, vlan, qos int) error {
return pkgHandle.LinkSetVfVlanQos(link, vf, vlan, qos)
}
// LinkSetVfVlanQos sets the vlan and qos priority of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos`
func (h *Handle) LinkSetVfVlanQos(link Link, vf, vlan, qos int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfVlan{
Vf: uint32(vf),
Vlan: uint32(vlan),
Qos: uint32(qos),
}
info.AddRtAttr(nl.IFLA_VF_VLAN, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfVlanQosProto sets the vlan, qos and protocol of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos proto $proto`
func LinkSetVfVlanQosProto(link Link, vf, vlan, qos, proto int) error {
return pkgHandle.LinkSetVfVlanQosProto(link, vf, vlan, qos, proto)
}
// LinkSetVfVlanQosProto sets the vlan, qos and protocol of a vf for the link.
// Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos proto $proto`
func (h *Handle) LinkSetVfVlanQosProto(link Link, vf, vlan, qos, proto int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
vfInfo := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfVlanList := vfInfo.AddRtAttr(nl.IFLA_VF_VLAN_LIST, nil)
vfmsg := nl.VfVlanInfo{
VfVlan: nl.VfVlan{
Vf: uint32(vf),
Vlan: uint32(vlan),
Qos: uint32(qos),
},
VlanProto: (uint16(proto)>>8)&0xFF | (uint16(proto)&0xFF)<<8,
}
vfVlanList.AddRtAttr(nl.IFLA_VF_VLAN_INFO, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfTxRate sets the tx rate of a vf for the link.
// Equivalent to: `ip link set $link vf $vf rate $rate`
func LinkSetVfTxRate(link Link, vf, rate int) error {
return pkgHandle.LinkSetVfTxRate(link, vf, rate)
}
// LinkSetVfTxRate sets the tx rate of a vf for the link.
// Equivalent to: `ip link set $link vf $vf rate $rate`
func (h *Handle) LinkSetVfTxRate(link Link, vf, rate int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfTxRate{
Vf: uint32(vf),
Rate: uint32(rate),
}
info.AddRtAttr(nl.IFLA_VF_TX_RATE, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfRate sets the min and max tx rate of a vf for the link.
// Equivalent to: `ip link set $link vf $vf min_tx_rate $min_rate max_tx_rate $max_rate`
func LinkSetVfRate(link Link, vf, minRate, maxRate int) error {
return pkgHandle.LinkSetVfRate(link, vf, minRate, maxRate)
}
// LinkSetVfRate sets the min and max tx rate of a vf for the link.
// Equivalent to: `ip link set $link vf $vf min_tx_rate $min_rate max_tx_rate $max_rate`
func (h *Handle) LinkSetVfRate(link Link, vf, minRate, maxRate int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfRate{
Vf: uint32(vf),
MinTxRate: uint32(minRate),
MaxTxRate: uint32(maxRate),
}
info.AddRtAttr(nl.IFLA_VF_RATE, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfState enables/disables virtual link state on a vf.
// Equivalent to: `ip link set $link vf $vf state $state`
func LinkSetVfState(link Link, vf int, state uint32) error {
return pkgHandle.LinkSetVfState(link, vf, state)
}
// LinkSetVfState enables/disables virtual link state on a vf.
// Equivalent to: `ip link set $link vf $vf state $state`
func (h *Handle) LinkSetVfState(link Link, vf int, state uint32) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfLinkState{
Vf: uint32(vf),
LinkState: state,
}
info.AddRtAttr(nl.IFLA_VF_LINK_STATE, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfSpoofchk enables/disables spoof check on a vf for the link.
// Equivalent to: `ip link set $link vf $vf spoofchk $check`
func LinkSetVfSpoofchk(link Link, vf int, check bool) error {
return pkgHandle.LinkSetVfSpoofchk(link, vf, check)
}
// LinkSetVfSpoofchk enables/disables spoof check on a vf for the link.
// Equivalent to: `ip link set $link vf $vf spoofchk $check`
func (h *Handle) LinkSetVfSpoofchk(link Link, vf int, check bool) error {
var setting uint32
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
if check {
setting = 1
}
vfmsg := nl.VfSpoofchk{
Vf: uint32(vf),
Setting: setting,
}
info.AddRtAttr(nl.IFLA_VF_SPOOFCHK, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfTrust enables/disables trust state on a vf for the link.
// Equivalent to: `ip link set $link vf $vf trust $state`
func LinkSetVfTrust(link Link, vf int, state bool) error {
return pkgHandle.LinkSetVfTrust(link, vf, state)
}
// LinkSetVfTrust enables/disables trust state on a vf for the link.
// Equivalent to: `ip link set $link vf $vf trust $state`
func (h *Handle) LinkSetVfTrust(link Link, vf int, state bool) error {
var setting uint32
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
if state {
setting = 1
}
vfmsg := nl.VfTrust{
Vf: uint32(vf),
Setting: setting,
}
info.AddRtAttr(nl.IFLA_VF_TRUST, vfmsg.Serialize())
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetVfNodeGUID sets the node GUID of a vf for the link.
// Equivalent to: `ip link set dev $link vf $vf node_guid $nodeguid`
func LinkSetVfNodeGUID(link Link, vf int, nodeguid net.HardwareAddr) error {
return pkgHandle.LinkSetVfGUID(link, vf, nodeguid, nl.IFLA_VF_IB_NODE_GUID)
}
// LinkSetVfPortGUID sets the port GUID of a vf for the link.
// Equivalent to: `ip link set dev $link vf $vf port_guid $portguid`
func LinkSetVfPortGUID(link Link, vf int, portguid net.HardwareAddr) error {
return pkgHandle.LinkSetVfGUID(link, vf, portguid, nl.IFLA_VF_IB_PORT_GUID)
}
// LinkSetVfGUID sets the node or port GUID of a vf for the link.
func (h *Handle) LinkSetVfGUID(link Link, vf int, vfGuid net.HardwareAddr, guidType int) error {
var err error
var guid uint64
buf := bytes.NewBuffer(vfGuid)
err = binary.Read(buf, binary.BigEndian, &guid)
if err != nil {
return err
}
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil)
info := data.AddRtAttr(nl.IFLA_VF_INFO, nil)
vfmsg := nl.VfGUID{
Vf: uint32(vf),
GUID: guid,
}
info.AddRtAttr(guidType, vfmsg.Serialize())
req.AddData(data)
_, err = req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetMaster sets the master of the link device.
// Equivalent to: `ip link set $link master $master`
func LinkSetMaster(link Link, master Link) error {
return pkgHandle.LinkSetMaster(link, master)
}
// LinkSetMaster sets the master of the link device.
// Equivalent to: `ip link set $link master $master`
func (h *Handle) LinkSetMaster(link Link, master Link) error {
index := 0
if master != nil {
masterBase := master.Attrs()
h.ensureIndex(masterBase)
index = masterBase.Index
}
if index <= 0 {
return fmt.Errorf("Device does not exist")
}
return h.LinkSetMasterByIndex(link, index)
}
// LinkSetNoMaster removes the master of the link device.
// Equivalent to: `ip link set $link nomaster`
func LinkSetNoMaster(link Link) error {
return pkgHandle.LinkSetNoMaster(link)
}
// LinkSetNoMaster removes the master of the link device.
// Equivalent to: `ip link set $link nomaster`
func (h *Handle) LinkSetNoMaster(link Link) error {
return h.LinkSetMasterByIndex(link, 0)
}
// LinkSetMasterByIndex sets the master of the link device.
// Equivalent to: `ip link set $link master $master`
func LinkSetMasterByIndex(link Link, masterIndex int) error {
return pkgHandle.LinkSetMasterByIndex(link, masterIndex)
}
// LinkSetMasterByIndex sets the master of the link device.
// Equivalent to: `ip link set $link master $master`
func (h *Handle) LinkSetMasterByIndex(link Link, masterIndex int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(masterIndex))
data := nl.NewRtAttr(unix.IFLA_MASTER, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetNsPid puts the device into a new network namespace. The
// pid must be a pid of a running process.
// Equivalent to: `ip link set $link netns $pid`
func LinkSetNsPid(link Link, nspid int) error {
return pkgHandle.LinkSetNsPid(link, nspid)
}
// LinkSetNsPid puts the device into a new network namespace. The
// pid must be a pid of a running process.
// Equivalent to: `ip link set $link netns $pid`
func (h *Handle) LinkSetNsPid(link Link, nspid int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(nspid))
data := nl.NewRtAttr(unix.IFLA_NET_NS_PID, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetNsFd puts the device into a new network namespace. The
// fd must be an open file descriptor to a network namespace.
// Similar to: `ip link set $link netns $ns`
func LinkSetNsFd(link Link, fd int) error {
return pkgHandle.LinkSetNsFd(link, fd)
}
// LinkSetNsFd puts the device into a new network namespace. The
// fd must be an open file descriptor to a network namespace.
// Similar to: `ip link set $link netns $ns`
func (h *Handle) LinkSetNsFd(link Link, fd int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(fd))
data := nl.NewRtAttr(unix.IFLA_NET_NS_FD, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetXdpFd adds a bpf function to the driver. The fd must be a bpf
// program loaded with bpf(type=BPF_PROG_TYPE_XDP)
func LinkSetXdpFd(link Link, fd int) error {
return LinkSetXdpFdWithFlags(link, fd, 0)
}
// LinkSetXdpFdWithFlags adds a bpf function to the driver with the given
// options. The fd must be a bpf program loaded with bpf(type=BPF_PROG_TYPE_XDP)
func LinkSetXdpFdWithFlags(link Link, fd, flags int) error {
base := link.Attrs()
ensureIndex(base)
req := nl.NewNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
addXdpAttrs(&LinkXdp{Fd: fd, Flags: uint32(flags)}, req)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGSOMaxSegs sets the GSO maximum segment count of the link device.
// Equivalent to: `ip link set $link gso_max_segs $maxSegs`
func LinkSetGSOMaxSegs(link Link, maxSegs int) error {
return pkgHandle.LinkSetGSOMaxSegs(link, maxSegs)
}
// LinkSetGSOMaxSegs sets the GSO maximum segment count of the link device.
// Equivalent to: `ip link set $link gso_max_segs $maxSegs`
func (h *Handle) LinkSetGSOMaxSegs(link Link, maxSize int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(maxSize))
data := nl.NewRtAttr(unix.IFLA_GSO_MAX_SEGS, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGSOMaxSize sets the IPv6 GSO maximum size of the link device.
// Equivalent to: `ip link set $link gso_max_size $maxSize`
func LinkSetGSOMaxSize(link Link, maxSize int) error {
return pkgHandle.LinkSetGSOMaxSize(link, maxSize)
}
// LinkSetGSOMaxSize sets the IPv6 GSO maximum size of the link device.
// Equivalent to: `ip link set $link gso_max_size $maxSize`
func (h *Handle) LinkSetGSOMaxSize(link Link, maxSize int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(maxSize))
data := nl.NewRtAttr(unix.IFLA_GSO_MAX_SIZE, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGROMaxSize sets the IPv6 GRO maximum size of the link device.
// Equivalent to: `ip link set $link gro_max_size $maxSize`
func LinkSetGROMaxSize(link Link, maxSize int) error {
return pkgHandle.LinkSetGROMaxSize(link, maxSize)
}
// LinkSetGROMaxSize sets the IPv6 GRO maximum size of the link device.
// Equivalent to: `ip link set $link gro_max_size $maxSize`
func (h *Handle) LinkSetGROMaxSize(link Link, maxSize int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(maxSize))
data := nl.NewRtAttr(unix.IFLA_GRO_MAX_SIZE, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGSOIPv4MaxSize sets the IPv4 GSO maximum size of the link device.
// Equivalent to: `ip link set $link gso_ipv4_max_size $maxSize`
func LinkSetGSOIPv4MaxSize(link Link, maxSize int) error {
return pkgHandle.LinkSetGSOIPv4MaxSize(link, maxSize)
}
// LinkSetGSOIPv4MaxSize sets the IPv4 GSO maximum size of the link device.
// Equivalent to: `ip link set $link gso_ipv4_max_size $maxSize`
func (h *Handle) LinkSetGSOIPv4MaxSize(link Link, maxSize int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(maxSize))
data := nl.NewRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGROIPv4MaxSize sets the IPv4 GRO maximum size of the link device.
// Equivalent to: `ip link set $link gro_ipv4_max_size $maxSize`
func LinkSetGROIPv4MaxSize(link Link, maxSize int) error {
return pkgHandle.LinkSetGROIPv4MaxSize(link, maxSize)
}
// LinkSetGROIPv4MaxSize sets the IPv4 GRO maximum size of the link device.
// Equivalent to: `ip link set $link gro_ipv4_max_size $maxSize`
func (h *Handle) LinkSetGROIPv4MaxSize(link Link, maxSize int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(maxSize))
data := nl.NewRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func boolAttr(val bool) []byte {
var v uint8
if val {
v = 1
}
return nl.Uint8Attr(v)
}
type vxlanPortRange struct {
Lo, Hi uint16
}
func addVxlanAttrs(vxlan *Vxlan, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if vxlan.FlowBased {
vxlan.VxlanId = 0
}
data.AddRtAttr(nl.IFLA_VXLAN_ID, nl.Uint32Attr(uint32(vxlan.VxlanId)))
if vxlan.VtepDevIndex != 0 {
data.AddRtAttr(nl.IFLA_VXLAN_LINK, nl.Uint32Attr(uint32(vxlan.VtepDevIndex)))
}
if vxlan.SrcAddr != nil {
ip := vxlan.SrcAddr.To4()
if ip != nil {
data.AddRtAttr(nl.IFLA_VXLAN_LOCAL, []byte(ip))
} else {
ip = vxlan.SrcAddr.To16()
if ip != nil {
data.AddRtAttr(nl.IFLA_VXLAN_LOCAL6, []byte(ip))
}
}
}
if vxlan.Group != nil {
group := vxlan.Group.To4()
if group != nil {
data.AddRtAttr(nl.IFLA_VXLAN_GROUP, []byte(group))
} else {
group = vxlan.Group.To16()
if group != nil {
data.AddRtAttr(nl.IFLA_VXLAN_GROUP6, []byte(group))
}
}
}
data.AddRtAttr(nl.IFLA_VXLAN_TTL, nl.Uint8Attr(uint8(vxlan.TTL)))
data.AddRtAttr(nl.IFLA_VXLAN_TOS, nl.Uint8Attr(uint8(vxlan.TOS)))
data.AddRtAttr(nl.IFLA_VXLAN_LEARNING, boolAttr(vxlan.Learning))
data.AddRtAttr(nl.IFLA_VXLAN_PROXY, boolAttr(vxlan.Proxy))
data.AddRtAttr(nl.IFLA_VXLAN_RSC, boolAttr(vxlan.RSC))
data.AddRtAttr(nl.IFLA_VXLAN_L2MISS, boolAttr(vxlan.L2miss))
data.AddRtAttr(nl.IFLA_VXLAN_L3MISS, boolAttr(vxlan.L3miss))
data.AddRtAttr(nl.IFLA_VXLAN_UDP_ZERO_CSUM6_TX, boolAttr(vxlan.UDP6ZeroCSumTx))
data.AddRtAttr(nl.IFLA_VXLAN_UDP_ZERO_CSUM6_RX, boolAttr(vxlan.UDP6ZeroCSumRx))
if vxlan.UDPCSum {
data.AddRtAttr(nl.IFLA_VXLAN_UDP_CSUM, boolAttr(vxlan.UDPCSum))
}
if vxlan.GBP {
data.AddRtAttr(nl.IFLA_VXLAN_GBP, []byte{})
}
if vxlan.FlowBased {
data.AddRtAttr(nl.IFLA_VXLAN_FLOWBASED, boolAttr(vxlan.FlowBased))
}
if vxlan.NoAge {
data.AddRtAttr(nl.IFLA_VXLAN_AGEING, nl.Uint32Attr(0))
} else if vxlan.Age > 0 {
data.AddRtAttr(nl.IFLA_VXLAN_AGEING, nl.Uint32Attr(uint32(vxlan.Age)))
}
if vxlan.Limit > 0 {
data.AddRtAttr(nl.IFLA_VXLAN_LIMIT, nl.Uint32Attr(uint32(vxlan.Limit)))
}
if vxlan.Port > 0 {
data.AddRtAttr(nl.IFLA_VXLAN_PORT, htons(uint16(vxlan.Port)))
}
if vxlan.PortLow > 0 || vxlan.PortHigh > 0 {
pr := vxlanPortRange{uint16(vxlan.PortLow), uint16(vxlan.PortHigh)}
buf := new(bytes.Buffer)
binary.Write(buf, binary.BigEndian, &pr)
data.AddRtAttr(nl.IFLA_VXLAN_PORT_RANGE, buf.Bytes())
}
}
func addBondAttrs(bond *Bond, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if bond.Mode >= 0 {
data.AddRtAttr(nl.IFLA_BOND_MODE, nl.Uint8Attr(uint8(bond.Mode)))
}
if bond.ActiveSlave >= 0 {
data.AddRtAttr(nl.IFLA_BOND_ACTIVE_SLAVE, nl.Uint32Attr(uint32(bond.ActiveSlave)))
}
if bond.Miimon >= 0 {
data.AddRtAttr(nl.IFLA_BOND_MIIMON, nl.Uint32Attr(uint32(bond.Miimon)))
}
if bond.UpDelay >= 0 {
data.AddRtAttr(nl.IFLA_BOND_UPDELAY, nl.Uint32Attr(uint32(bond.UpDelay)))
}
if bond.DownDelay >= 0 {
data.AddRtAttr(nl.IFLA_BOND_DOWNDELAY, nl.Uint32Attr(uint32(bond.DownDelay)))
}
if bond.UseCarrier >= 0 {
data.AddRtAttr(nl.IFLA_BOND_USE_CARRIER, nl.Uint8Attr(uint8(bond.UseCarrier)))
}
if bond.ArpInterval >= 0 {
data.AddRtAttr(nl.IFLA_BOND_ARP_INTERVAL, nl.Uint32Attr(uint32(bond.ArpInterval)))
}
if bond.ArpIpTargets != nil {
msg := data.AddRtAttr(nl.IFLA_BOND_ARP_IP_TARGET, nil)
for i := range bond.ArpIpTargets {
ip := bond.ArpIpTargets[i].To4()
if ip != nil {
msg.AddRtAttr(i, []byte(ip))
continue
}
ip = bond.ArpIpTargets[i].To16()
if ip != nil {
msg.AddRtAttr(i, []byte(ip))
}
}
}
if bond.ArpValidate >= 0 {
data.AddRtAttr(nl.IFLA_BOND_ARP_VALIDATE, nl.Uint32Attr(uint32(bond.ArpValidate)))
}
if bond.ArpAllTargets >= 0 {
data.AddRtAttr(nl.IFLA_BOND_ARP_ALL_TARGETS, nl.Uint32Attr(uint32(bond.ArpAllTargets)))
}
if bond.Primary >= 0 {
data.AddRtAttr(nl.IFLA_BOND_PRIMARY, nl.Uint32Attr(uint32(bond.Primary)))
}
if bond.PrimaryReselect >= 0 {
data.AddRtAttr(nl.IFLA_BOND_PRIMARY_RESELECT, nl.Uint8Attr(uint8(bond.PrimaryReselect)))
}
if bond.FailOverMac >= 0 {
data.AddRtAttr(nl.IFLA_BOND_FAIL_OVER_MAC, nl.Uint8Attr(uint8(bond.FailOverMac)))
}
if bond.XmitHashPolicy >= 0 {
data.AddRtAttr(nl.IFLA_BOND_XMIT_HASH_POLICY, nl.Uint8Attr(uint8(bond.XmitHashPolicy)))
}
if bond.ResendIgmp >= 0 {
data.AddRtAttr(nl.IFLA_BOND_RESEND_IGMP, nl.Uint32Attr(uint32(bond.ResendIgmp)))
}
if bond.NumPeerNotif >= 0 {
data.AddRtAttr(nl.IFLA_BOND_NUM_PEER_NOTIF, nl.Uint8Attr(uint8(bond.NumPeerNotif)))
}
if bond.AllSlavesActive >= 0 {
data.AddRtAttr(nl.IFLA_BOND_ALL_SLAVES_ACTIVE, nl.Uint8Attr(uint8(bond.AllSlavesActive)))
}
if bond.MinLinks >= 0 {
data.AddRtAttr(nl.IFLA_BOND_MIN_LINKS, nl.Uint32Attr(uint32(bond.MinLinks)))
}
if bond.LpInterval >= 0 {
data.AddRtAttr(nl.IFLA_BOND_LP_INTERVAL, nl.Uint32Attr(uint32(bond.LpInterval)))
}
if bond.PacketsPerSlave >= 0 {
data.AddRtAttr(nl.IFLA_BOND_PACKETS_PER_SLAVE, nl.Uint32Attr(uint32(bond.PacketsPerSlave)))
}
if bond.LacpRate >= 0 {
data.AddRtAttr(nl.IFLA_BOND_AD_LACP_RATE, nl.Uint8Attr(uint8(bond.LacpRate)))
}
if bond.AdSelect >= 0 {
data.AddRtAttr(nl.IFLA_BOND_AD_SELECT, nl.Uint8Attr(uint8(bond.AdSelect)))
}
if bond.AdActorSysPrio >= 0 {
data.AddRtAttr(nl.IFLA_BOND_AD_ACTOR_SYS_PRIO, nl.Uint16Attr(uint16(bond.AdActorSysPrio)))
}
if bond.AdUserPortKey >= 0 {
data.AddRtAttr(nl.IFLA_BOND_AD_USER_PORT_KEY, nl.Uint16Attr(uint16(bond.AdUserPortKey)))
}
if bond.AdActorSystem != nil {
data.AddRtAttr(nl.IFLA_BOND_AD_ACTOR_SYSTEM, []byte(bond.AdActorSystem))
}
if bond.TlbDynamicLb >= 0 {
data.AddRtAttr(nl.IFLA_BOND_TLB_DYNAMIC_LB, nl.Uint8Attr(uint8(bond.TlbDynamicLb)))
}
}
func cleanupFds(fds []*os.File) {
for _, f := range fds {
f.Close()
}
}
// LinkAdd adds a new link device. The type and features of the device
// are taken from the parameters in the link object.
// Equivalent to: `ip link add $link`
func LinkAdd(link Link) error {
return pkgHandle.LinkAdd(link)
}
// LinkAdd adds a new link device. The type and features of the device
// are taken from the parameters in the link object.
// Equivalent to: `ip link add $link`
func (h *Handle) LinkAdd(link Link) error {
return h.linkModify(link, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
}
func LinkModify(link Link) error {
return pkgHandle.LinkModify(link)
}
func (h *Handle) LinkModify(link Link) error {
return h.linkModify(link, unix.NLM_F_REQUEST|unix.NLM_F_ACK)
}
func (h *Handle) linkModify(link Link, flags int) error {
// TODO: support extra data for macvlan
base := link.Attrs()
// if tuntap, then the name can be empty, OS will provide a name
tuntap, isTuntap := link.(*Tuntap)
if base.Name == "" && !isTuntap {
return fmt.Errorf("LinkAttrs.Name cannot be empty")
}
if isTuntap {
if tuntap.Mode < unix.IFF_TUN || tuntap.Mode > unix.IFF_TAP {
return fmt.Errorf("Tuntap.Mode %v unknown", tuntap.Mode)
}
queues := tuntap.Queues
var fds []*os.File
var req ifReq
copy(req.Name[:15], base.Name)
req.Flags = uint16(tuntap.Flags)
if queues == 0 { //Legacy compatibility
queues = 1
if tuntap.Flags == 0 {
req.Flags = uint16(TUNTAP_DEFAULTS)
}
} else {
// For best peformance set Flags to TUNTAP_MULTI_QUEUE_DEFAULTS | TUNTAP_VNET_HDR
// when a) KVM has support for this ABI and
// b) the value of the flag is queryable using the TUNGETIFF ioctl
if tuntap.Flags == 0 {
req.Flags = uint16(TUNTAP_MULTI_QUEUE_DEFAULTS)
}
}
req.Flags |= uint16(tuntap.Mode)
const TUN = "/dev/net/tun"
for i := 0; i < queues; i++ {
localReq := req
fd, err := unix.Open(TUN, os.O_RDWR|syscall.O_CLOEXEC, 0)
if err != nil {
cleanupFds(fds)
return err
}
_, _, errno := unix.Syscall(unix.SYS_IOCTL, uintptr(fd), uintptr(unix.TUNSETIFF), uintptr(unsafe.Pointer(&localReq)))
if errno != 0 {
// close the new fd
unix.Close(fd)
// and the already opened ones
cleanupFds(fds)
return fmt.Errorf("Tuntap IOCTL TUNSETIFF failed [%d], errno %v", i, errno)
}
_, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), syscall.TUNSETOWNER, uintptr(tuntap.Owner))
if errno != 0 {
cleanupFds(fds)
return fmt.Errorf("Tuntap IOCTL TUNSETOWNER failed [%d], errno %v", i, errno)
}
_, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), syscall.TUNSETGROUP, uintptr(tuntap.Group))
if errno != 0 {
cleanupFds(fds)
return fmt.Errorf("Tuntap IOCTL TUNSETGROUP failed [%d], errno %v", i, errno)
}
// Set the tun device to non-blocking before use. The below comment
// taken from:
//
// https://github.com/mistsys/tuntap/commit/161418c25003bbee77d085a34af64d189df62bea
//
// Note there is a complication because in go, if a device node is
// opened, go sets it to use nonblocking I/O. However a /dev/net/tun
// doesn't work with epoll until after the TUNSETIFF ioctl has been
// done. So we open the unix fd directly, do the ioctl, then put the
// fd in nonblocking mode, an then finally wrap it in a os.File,
// which will see the nonblocking mode and add the fd to the
// pollable set, so later on when we Read() from it blocked the
// calling thread in the kernel.
//
// See
// https://github.com/golang/go/issues/30426
// which got exposed in go 1.13 by the fix to
// https://github.com/golang/go/issues/30624
err = unix.SetNonblock(fd, true)
if err != nil {
cleanupFds(fds)
return fmt.Errorf("Tuntap set to non-blocking failed [%d], err %v", i, err)
}
// create the file from the file descriptor and store it
file := os.NewFile(uintptr(fd), TUN)
fds = append(fds, file)
// 1) we only care for the name of the first tap in the multi queue set
// 2) if the original name was empty, the localReq has now the actual name
//
// In addition:
// This ensures that the link name is always identical to what the kernel returns.
// Not only in case of an empty name, but also when using name templates.
// e.g. when the provided name is "tap%d", the kernel replaces %d with the next available number.
if i == 0 {
link.Attrs().Name = strings.Trim(string(localReq.Name[:]), "\x00")
}
}
control := func(file *os.File, f func(fd uintptr)) error {
name := file.Name()
conn, err := file.SyscallConn()
if err != nil {
return fmt.Errorf("SyscallConn() failed on %s: %v", name, err)
}
if err := conn.Control(f); err != nil {
return fmt.Errorf("Failed to get file descriptor for %s: %v", name, err)
}
return nil
}
// only persist interface if NonPersist is NOT set
if !tuntap.NonPersist {
var errno syscall.Errno
if err := control(fds[0], func(fd uintptr) {
_, _, errno = unix.Syscall(unix.SYS_IOCTL, fd, uintptr(unix.TUNSETPERSIST), 1)
}); err != nil {
return err
}
if errno != 0 {
cleanupFds(fds)
return fmt.Errorf("Tuntap IOCTL TUNSETPERSIST failed, errno %v", errno)
}
}
h.ensureIndex(base)
// can't set master during create, so set it afterwards
if base.MasterIndex != 0 {
// TODO: verify MasterIndex is actually a bridge?
err := h.LinkSetMasterByIndex(link, base.MasterIndex)
if err != nil {
// un-persist (e.g. allow the interface to be removed) the tuntap
// should not hurt if not set prior, condition might be not needed
if !tuntap.NonPersist {
// ignore error
_ = control(fds[0], func(fd uintptr) {
_, _, _ = unix.Syscall(unix.SYS_IOCTL, fd, uintptr(unix.TUNSETPERSIST), 0)
})
}
cleanupFds(fds)
return err
}
}
if tuntap.Queues == 0 {
cleanupFds(fds)
} else {
tuntap.Fds = fds
}
return nil
}
req := h.newNetlinkRequest(unix.RTM_NEWLINK, flags)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
// TODO: make it shorter
if base.Flags&net.FlagUp != 0 {
msg.Change = unix.IFF_UP
msg.Flags = unix.IFF_UP
}
if base.Flags&net.FlagBroadcast != 0 {
msg.Change |= unix.IFF_BROADCAST
msg.Flags |= unix.IFF_BROADCAST
}
if base.Flags&net.FlagLoopback != 0 {
msg.Change |= unix.IFF_LOOPBACK
msg.Flags |= unix.IFF_LOOPBACK
}
if base.Flags&net.FlagPointToPoint != 0 {
msg.Change |= unix.IFF_POINTOPOINT
msg.Flags |= unix.IFF_POINTOPOINT
}
if base.Flags&net.FlagMulticast != 0 {
msg.Change |= unix.IFF_MULTICAST
msg.Flags |= unix.IFF_MULTICAST
}
if base.Index != 0 {
msg.Index = int32(base.Index)
}
req.AddData(msg)
if base.ParentIndex != 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(base.ParentIndex))
data := nl.NewRtAttr(unix.IFLA_LINK, b)
req.AddData(data)
} else if link.Type() == "ipvlan" || link.Type() == "ipoib" {
return fmt.Errorf("Can't create %s link without ParentIndex", link.Type())
}
nameData := nl.NewRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(base.Name))
req.AddData(nameData)
if base.Alias != "" {
alias := nl.NewRtAttr(unix.IFLA_IFALIAS, []byte(base.Alias))
req.AddData(alias)
}
if base.MTU > 0 {
mtu := nl.NewRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(base.MTU)))
req.AddData(mtu)
}
if base.TxQLen >= 0 {
qlen := nl.NewRtAttr(unix.IFLA_TXQLEN, nl.Uint32Attr(uint32(base.TxQLen)))
req.AddData(qlen)
}
if base.HardwareAddr != nil {
hwaddr := nl.NewRtAttr(unix.IFLA_ADDRESS, []byte(base.HardwareAddr))
req.AddData(hwaddr)
}
if base.NumTxQueues > 0 {
txqueues := nl.NewRtAttr(unix.IFLA_NUM_TX_QUEUES, nl.Uint32Attr(uint32(base.NumTxQueues)))
req.AddData(txqueues)
}
if base.NumRxQueues > 0 {
rxqueues := nl.NewRtAttr(unix.IFLA_NUM_RX_QUEUES, nl.Uint32Attr(uint32(base.NumRxQueues)))
req.AddData(rxqueues)
}
if base.GSOMaxSegs > 0 {
gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_MAX_SEGS, nl.Uint32Attr(base.GSOMaxSegs))
req.AddData(gsoAttr)
}
if base.GSOMaxSize > 0 {
gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_MAX_SIZE, nl.Uint32Attr(base.GSOMaxSize))
req.AddData(gsoAttr)
}
if base.GROMaxSize > 0 {
groAttr := nl.NewRtAttr(unix.IFLA_GRO_MAX_SIZE, nl.Uint32Attr(base.GROMaxSize))
req.AddData(groAttr)
}
if base.GSOIPv4MaxSize > 0 {
gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, nl.Uint32Attr(base.GSOIPv4MaxSize))
req.AddData(gsoAttr)
}
if base.GROIPv4MaxSize > 0 {
groAttr := nl.NewRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, nl.Uint32Attr(base.GROIPv4MaxSize))
req.AddData(groAttr)
}
if base.Group > 0 {
groupAttr := nl.NewRtAttr(unix.IFLA_GROUP, nl.Uint32Attr(base.Group))
req.AddData(groupAttr)
}
if base.Namespace != nil {
var attr *nl.RtAttr
switch ns := base.Namespace.(type) {
case NsPid:
val := nl.Uint32Attr(uint32(ns))
attr = nl.NewRtAttr(unix.IFLA_NET_NS_PID, val)
case NsFd:
val := nl.Uint32Attr(uint32(ns))
attr = nl.NewRtAttr(unix.IFLA_NET_NS_FD, val)
}
req.AddData(attr)
}
if base.Xdp != nil {
addXdpAttrs(base.Xdp, req)
}
linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil)
linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type()))
switch link := link.(type) {
case *Vlan:
b := make([]byte, 2)
native.PutUint16(b, uint16(link.VlanId))
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_VLAN_ID, b)
if link.VlanProtocol != VLAN_PROTOCOL_UNKNOWN {
data.AddRtAttr(nl.IFLA_VLAN_PROTOCOL, htons(uint16(link.VlanProtocol)))
}
case *Netkit:
if err := addNetkitAttrs(link, linkInfo, flags); err != nil {
return err
}
case *Veth:
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
peer := data.AddRtAttr(nl.VETH_INFO_PEER, nil)
nl.NewIfInfomsgChild(peer, unix.AF_UNSPEC)
peer.AddRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(link.PeerName))
if base.TxQLen >= 0 {
peer.AddRtAttr(unix.IFLA_TXQLEN, nl.Uint32Attr(uint32(base.TxQLen)))
}
if base.NumTxQueues > 0 {
peer.AddRtAttr(unix.IFLA_NUM_TX_QUEUES, nl.Uint32Attr(uint32(base.NumTxQueues)))
}
if base.NumRxQueues > 0 {
peer.AddRtAttr(unix.IFLA_NUM_RX_QUEUES, nl.Uint32Attr(uint32(base.NumRxQueues)))
}
if base.MTU > 0 {
peer.AddRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(base.MTU)))
}
if link.PeerHardwareAddr != nil {
peer.AddRtAttr(unix.IFLA_ADDRESS, []byte(link.PeerHardwareAddr))
}
if link.PeerNamespace != nil {
switch ns := link.PeerNamespace.(type) {
case NsPid:
val := nl.Uint32Attr(uint32(ns))
peer.AddRtAttr(unix.IFLA_NET_NS_PID, val)
case NsFd:
val := nl.Uint32Attr(uint32(ns))
peer.AddRtAttr(unix.IFLA_NET_NS_FD, val)
}
}
case *Vxlan:
addVxlanAttrs(link, linkInfo)
case *Bond:
addBondAttrs(link, linkInfo)
case *IPVlan:
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_IPVLAN_MODE, nl.Uint16Attr(uint16(link.Mode)))
data.AddRtAttr(nl.IFLA_IPVLAN_FLAG, nl.Uint16Attr(uint16(link.Flag)))
case *IPVtap:
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_IPVLAN_MODE, nl.Uint16Attr(uint16(link.Mode)))
data.AddRtAttr(nl.IFLA_IPVLAN_FLAG, nl.Uint16Attr(uint16(link.Flag)))
case *Macvlan:
addMacvlanAttrs(link, linkInfo)
case *Macvtap:
addMacvtapAttrs(link, linkInfo)
case *Geneve:
addGeneveAttrs(link, linkInfo)
case *Gretap:
addGretapAttrs(link, linkInfo)
case *Iptun:
addIptunAttrs(link, linkInfo)
case *Ip6tnl:
addIp6tnlAttrs(link, linkInfo)
case *Sittun:
addSittunAttrs(link, linkInfo)
case *Gretun:
addGretunAttrs(link, linkInfo)
case *Vti:
addVtiAttrs(link, linkInfo)
case *Vrf:
addVrfAttrs(link, linkInfo)
case *Bridge:
addBridgeAttrs(link, linkInfo)
case *GTP:
addGTPAttrs(link, linkInfo)
case *Xfrmi:
addXfrmiAttrs(link, linkInfo)
case *IPoIB:
addIPoIBAttrs(link, linkInfo)
case *BareUDP:
addBareUDPAttrs(link, linkInfo)
}
req.AddData(linkInfo)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
return err
}
h.ensureIndex(base)
// can't set master during create, so set it afterwards
if base.MasterIndex != 0 {
// TODO: verify MasterIndex is actually a bridge?
return h.LinkSetMasterByIndex(link, base.MasterIndex)
}
return nil
}
// LinkDel deletes link device. Either Index or Name must be set in
// the link object for it to be deleted. The other values are ignored.
// Equivalent to: `ip link del $link`
func LinkDel(link Link) error {
return pkgHandle.LinkDel(link)
}
// LinkDel deletes link device. Either Index or Name must be set in
// the link object for it to be deleted. The other values are ignored.
// Equivalent to: `ip link del $link`
func (h *Handle) LinkDel(link Link) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_DELLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func (h *Handle) linkByNameDump(name string) (Link, error) {
links, executeErr := h.LinkList()
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
for _, link := range links {
if link.Attrs().Name == name {
return link, executeErr
}
// support finding interfaces also via altnames
for _, altName := range link.Attrs().AltNames {
if altName == name {
return link, executeErr
}
}
}
return nil, LinkNotFoundError{fmt.Errorf("Link %s not found", name)}
}
func (h *Handle) linkByAliasDump(alias string) (Link, error) {
links, executeErr := h.LinkList()
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
for _, link := range links {
if link.Attrs().Alias == alias {
return link, executeErr
}
}
return nil, LinkNotFoundError{fmt.Errorf("Link alias %s not found", alias)}
}
// LinkByName finds a link by name and returns a pointer to the object.
//
// If the kernel doesn't support IFLA_IFNAME, this method will fall back to
// filtering a dump of all link names. In this case, if the returned error is
// [ErrDumpInterrupted] the result may be missing or outdated.
func LinkByName(name string) (Link, error) {
return pkgHandle.LinkByName(name)
}
// LinkByName finds a link by name and returns a pointer to the object.
//
// If the kernel doesn't support IFLA_IFNAME, this method will fall back to
// filtering a dump of all link names. In this case, if the returned error is
// [ErrDumpInterrupted] the result may be missing or outdated.
func (h *Handle) LinkByName(name string) (Link, error) {
if h.lookupByDump {
return h.linkByNameDump(name)
}
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(msg)
attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF))
req.AddData(attr)
nameData := nl.NewRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(name))
if len(name) > 15 {
nameData = nl.NewRtAttr(unix.IFLA_ALT_IFNAME, nl.ZeroTerminated(name))
}
req.AddData(nameData)
link, err := execGetLink(req)
if err == unix.EINVAL {
// older kernels don't support looking up via IFLA_IFNAME
// so fall back to dumping all links
h.lookupByDump = true
return h.linkByNameDump(name)
}
return link, err
}
// LinkByAlias finds a link by its alias and returns a pointer to the object.
// If there are multiple links with the alias it returns the first one
//
// If the kernel doesn't support IFLA_IFALIAS, this method will fall back to
// filtering a dump of all link names. In this case, if the returned error is
// [ErrDumpInterrupted] the result may be missing or outdated.
func LinkByAlias(alias string) (Link, error) {
return pkgHandle.LinkByAlias(alias)
}
// LinkByAlias finds a link by its alias and returns a pointer to the object.
// If there are multiple links with the alias it returns the first one
//
// If the kernel doesn't support IFLA_IFALIAS, this method will fall back to
// filtering a dump of all link names. In this case, if the returned error is
// [ErrDumpInterrupted] the result may be missing or outdated.
func (h *Handle) LinkByAlias(alias string) (Link, error) {
if h.lookupByDump {
return h.linkByAliasDump(alias)
}
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(msg)
attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF))
req.AddData(attr)
nameData := nl.NewRtAttr(unix.IFLA_IFALIAS, nl.ZeroTerminated(alias))
req.AddData(nameData)
link, err := execGetLink(req)
if err == unix.EINVAL {
// older kernels don't support looking up via IFLA_IFALIAS
// so fall back to dumping all links
h.lookupByDump = true
return h.linkByAliasDump(alias)
}
return link, err
}
// LinkByIndex finds a link by index and returns a pointer to the object.
func LinkByIndex(index int) (Link, error) {
return pkgHandle.LinkByIndex(index)
}
// LinkByIndex finds a link by index and returns a pointer to the object.
func (h *Handle) LinkByIndex(index int) (Link, error) {
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(index)
req.AddData(msg)
attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF))
req.AddData(attr)
return execGetLink(req)
}
func execGetLink(req *nl.NetlinkRequest) (Link, error) {
msgs, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
if errno, ok := err.(syscall.Errno); ok {
if errno == unix.ENODEV {
return nil, LinkNotFoundError{fmt.Errorf("Link not found")}
}
}
return nil, err
}
switch {
case len(msgs) == 0:
return nil, LinkNotFoundError{fmt.Errorf("Link not found")}
case len(msgs) == 1:
return LinkDeserialize(nil, msgs[0])
default:
return nil, fmt.Errorf("More than one link found")
}
}
// LinkDeserialize deserializes a raw message received from netlink into
// a link object.
func LinkDeserialize(hdr *unix.NlMsghdr, m []byte) (Link, error) {
msg := nl.DeserializeIfInfomsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
base := NewLinkAttrs()
base.Index = int(msg.Index)
base.RawFlags = msg.Flags
base.Flags = linkFlags(msg.Flags)
base.EncapType = msg.EncapType()
base.NetNsID = -1
if msg.Flags&unix.IFF_ALLMULTI != 0 {
base.Allmulti = 1
}
if msg.Flags&unix.IFF_MULTICAST != 0 {
base.Multi = 1
}
var (
link Link
stats32 *LinkStatistics32
stats64 *LinkStatistics64
linkType string
linkSlave LinkSlave
slaveType string
)
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.IFLA_LINKINFO:
infos, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
for _, info := range infos {
switch info.Attr.Type {
case nl.IFLA_INFO_KIND:
linkType = string(info.Value[:len(info.Value)-1])
switch linkType {
case "dummy":
link = &Dummy{}
case "ifb":
link = &Ifb{}
case "bridge":
link = &Bridge{}
case "vlan":
link = &Vlan{}
case "netkit":
link = &Netkit{}
case "veth":
link = &Veth{}
case "wireguard":
link = &Wireguard{}
case "vxlan":
link = &Vxlan{}
case "bond":
link = &Bond{}
case "ipvlan":
link = &IPVlan{}
case "ipvtap":
link = &IPVtap{}
case "macvlan":
link = &Macvlan{}
case "macvtap":
link = &Macvtap{}
case "geneve":
link = &Geneve{}
case "gretap":
link = &Gretap{}
case "ip6gretap":
link = &Gretap{}
case "ipip":
link = &Iptun{}
case "ip6tnl":
link = &Ip6tnl{}
case "sit":
link = &Sittun{}
case "gre":
link = &Gretun{}
case "ip6gre":
link = &Gretun{}
case "vti", "vti6":
link = &Vti{}
case "vrf":
link = &Vrf{}
case "gtp":
link = &GTP{}
case "xfrm":
link = &Xfrmi{}
case "tun":
link = &Tuntap{}
case "ipoib":
link = &IPoIB{}
case "can":
link = &Can{}
case "bareudp":
link = &BareUDP{}
default:
link = &GenericLink{LinkType: linkType}
}
case nl.IFLA_INFO_DATA:
data, err := nl.ParseRouteAttr(info.Value)
if err != nil {
return nil, err
}
switch linkType {
case "netkit":
parseNetkitData(link, data)
case "vlan":
parseVlanData(link, data)
case "vxlan":
parseVxlanData(link, data)
case "bond":
parseBondData(link, data)
case "ipvlan":
parseIPVlanData(link, data)
case "ipvtap":
parseIPVtapData(link, data)
case "macvlan":
parseMacvlanData(link, data)
case "macvtap":
parseMacvtapData(link, data)
case "geneve":
parseGeneveData(link, data)
case "gretap":
parseGretapData(link, data)
case "ip6gretap":
parseGretapData(link, data)
case "ipip":
parseIptunData(link, data)
case "ip6tnl":
parseIp6tnlData(link, data)
case "sit":
parseSittunData(link, data)
case "gre":
parseGretunData(link, data)
case "ip6gre":
parseGretunData(link, data)
case "vti", "vti6":
parseVtiData(link, data)
case "vrf":
parseVrfData(link, data)
case "bridge":
parseBridgeData(link, data)
case "gtp":
parseGTPData(link, data)
case "xfrm":
parseXfrmiData(link, data)
case "tun":
parseTuntapData(link, data)
case "ipoib":
parseIPoIBData(link, data)
case "can":
parseCanData(link, data)
case "bareudp":
parseBareUDPData(link, data)
}
case nl.IFLA_INFO_SLAVE_KIND:
slaveType = string(info.Value[:len(info.Value)-1])
switch slaveType {
case "bond":
linkSlave = &BondSlave{}
case "vrf":
linkSlave = &VrfSlave{}
}
case nl.IFLA_INFO_SLAVE_DATA:
switch slaveType {
case "bond":
data, err := nl.ParseRouteAttr(info.Value)
if err != nil {
return nil, err
}
parseBondSlaveData(linkSlave, data)
case "vrf":
data, err := nl.ParseRouteAttr(info.Value)
if err != nil {
return nil, err
}
parseVrfSlaveData(linkSlave, data)
}
}
}
case unix.IFLA_ADDRESS:
var nonzero bool
for _, b := range attr.Value {
if b != 0 {
nonzero = true
}
}
if nonzero {
base.HardwareAddr = attr.Value[:]
}
case unix.IFLA_IFNAME:
base.Name = string(attr.Value[:len(attr.Value)-1])
case unix.IFLA_MTU:
base.MTU = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_PROMISCUITY:
base.Promisc = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_LINK:
base.ParentIndex = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_MASTER:
base.MasterIndex = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_TXQLEN:
base.TxQLen = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_IFALIAS:
base.Alias = string(attr.Value[:len(attr.Value)-1])
case unix.IFLA_STATS:
stats32 = new(LinkStatistics32)
if err := binary.Read(bytes.NewBuffer(attr.Value[:]), nl.NativeEndian(), stats32); err != nil {
return nil, err
}
case unix.IFLA_STATS64:
stats64 = new(LinkStatistics64)
if err := binary.Read(bytes.NewBuffer(attr.Value[:]), nl.NativeEndian(), stats64); err != nil {
return nil, err
}
case unix.IFLA_XDP:
xdp, err := parseLinkXdp(attr.Value[:])
if err != nil {
return nil, err
}
base.Xdp = xdp
case unix.IFLA_PROTINFO | unix.NLA_F_NESTED:
if hdr != nil && hdr.Type == unix.RTM_NEWLINK &&
msg.Family == unix.AF_BRIDGE {
attrs, err := nl.ParseRouteAttr(attr.Value[:])
if err != nil {
return nil, err
}
protinfo := parseProtinfo(attrs)
base.Protinfo = &protinfo
}
case unix.IFLA_PROP_LIST | unix.NLA_F_NESTED:
attrs, err := nl.ParseRouteAttr(attr.Value[:])
if err != nil {
return nil, err
}
base.AltNames = []string{}
for _, attr := range attrs {
if attr.Attr.Type == unix.IFLA_ALT_IFNAME {
base.AltNames = append(base.AltNames, nl.BytesToString(attr.Value))
}
}
case unix.IFLA_OPERSTATE:
base.OperState = LinkOperState(uint8(attr.Value[0]))
case unix.IFLA_PHYS_SWITCH_ID:
base.PhysSwitchID = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_LINK_NETNSID:
base.NetNsID = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_TSO_MAX_SEGS:
base.TSOMaxSegs = native.Uint32(attr.Value[0:4])
case unix.IFLA_TSO_MAX_SIZE:
base.TSOMaxSize = native.Uint32(attr.Value[0:4])
case unix.IFLA_GSO_MAX_SEGS:
base.GSOMaxSegs = native.Uint32(attr.Value[0:4])
case unix.IFLA_GSO_MAX_SIZE:
base.GSOMaxSize = native.Uint32(attr.Value[0:4])
case unix.IFLA_GRO_MAX_SIZE:
base.GROMaxSize = native.Uint32(attr.Value[0:4])
case unix.IFLA_GSO_IPV4_MAX_SIZE:
base.GSOIPv4MaxSize = native.Uint32(attr.Value[0:4])
case unix.IFLA_GRO_IPV4_MAX_SIZE:
base.GROIPv4MaxSize = native.Uint32(attr.Value[0:4])
case unix.IFLA_VFINFO_LIST:
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
vfs, err := parseVfInfoList(data)
if err != nil {
return nil, err
}
base.Vfs = vfs
case unix.IFLA_NUM_TX_QUEUES:
base.NumTxQueues = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_NUM_RX_QUEUES:
base.NumRxQueues = int(native.Uint32(attr.Value[0:4]))
case unix.IFLA_GROUP:
base.Group = native.Uint32(attr.Value[0:4])
case unix.IFLA_PERM_ADDRESS:
for _, b := range attr.Value {
if b != 0 {
base.PermHWAddr = attr.Value[:]
break
}
}
}
}
if stats64 != nil {
base.Statistics = (*LinkStatistics)(stats64)
} else if stats32 != nil {
base.Statistics = (*LinkStatistics)(stats32.to64())
}
// Links that don't have IFLA_INFO_KIND are hardware devices
if link == nil {
link = &Device{}
}
*link.Attrs() = base
link.Attrs().Slave = linkSlave
// If the tuntap attributes are not updated by netlink due to
// an older driver, use sysfs
if link != nil && linkType == "tun" {
tuntap := link.(*Tuntap)
if tuntap.Mode == 0 {
ifname := tuntap.Attrs().Name
if flags, err := readSysPropAsInt64(ifname, "tun_flags"); err == nil {
if flags&unix.IFF_TUN != 0 {
tuntap.Mode = unix.IFF_TUN
} else if flags&unix.IFF_TAP != 0 {
tuntap.Mode = unix.IFF_TAP
}
tuntap.NonPersist = false
if flags&unix.IFF_PERSIST == 0 {
tuntap.NonPersist = true
}
}
// The sysfs interface for owner/group returns -1 for root user, instead of returning 0.
// So explicitly check for negative value, before assigning the owner uid/gid.
if owner, err := readSysPropAsInt64(ifname, "owner"); err == nil && owner > 0 {
tuntap.Owner = uint32(owner)
}
if group, err := readSysPropAsInt64(ifname, "group"); err == nil && group > 0 {
tuntap.Group = uint32(group)
}
}
}
return link, nil
}
func readSysPropAsInt64(ifname, prop string) (int64, error) {
fname := fmt.Sprintf("/sys/class/net/%s/%s", ifname, prop)
contents, err := ioutil.ReadFile(fname)
if err != nil {
return 0, err
}
num, err := strconv.ParseInt(strings.TrimSpace(string(contents)), 0, 64)
if err == nil {
return num, nil
}
return 0, err
}
// LinkList gets a list of link devices.
// Equivalent to: `ip link show`
func LinkList() ([]Link, error) {
return pkgHandle.LinkList()
}
// LinkList gets a list of link devices.
// Equivalent to: `ip link show`
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func (h *Handle) LinkList() ([]Link, error) {
// NOTE(vish): This duplicates functionality in net/iface_linux.go, but we need
// to get the message ourselves to parse link type.
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(msg)
attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF))
req.AddData(attr)
msgs, executeErr := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWLINK)
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
var res []Link
for _, m := range msgs {
link, err := LinkDeserialize(nil, m)
if err != nil {
return nil, err
}
res = append(res, link)
}
return res, executeErr
}
// LinkUpdate is used to pass information back from LinkSubscribe()
type LinkUpdate struct {
nl.IfInfomsg
Header unix.NlMsghdr
Link
}
// LinkSubscribe takes a chan down which notifications will be sent
// when links change. Close the 'done' chan to stop subscription.
func LinkSubscribe(ch chan<- LinkUpdate, done <-chan struct{}) error {
return linkSubscribeAt(netns.None(), netns.None(), ch, done, nil, false, 0, nil, false)
}
// LinkSubscribeAt works like LinkSubscribe plus it allows the caller
// to choose the network namespace in which to subscribe (ns).
func LinkSubscribeAt(ns netns.NsHandle, ch chan<- LinkUpdate, done <-chan struct{}) error {
return linkSubscribeAt(ns, netns.None(), ch, done, nil, false, 0, nil, false)
}
// LinkSubscribeOptions contains a set of options to use with
// LinkSubscribeWithOptions.
type LinkSubscribeOptions struct {
Namespace *netns.NsHandle
ErrorCallback func(error)
ListExisting bool
ReceiveBufferSize int
ReceiveBufferForceSize bool
ReceiveTimeout *unix.Timeval
}
// LinkSubscribeWithOptions work like LinkSubscribe but enable to
// provide additional options to modify the behavior. Currently, the
// namespace can be provided as well as an error callback.
//
// When options.ListExisting is true, options.ErrorCallback may be
// called with [ErrDumpInterrupted] to indicate that results from
// the initial dump of links may be inconsistent or incomplete.
func LinkSubscribeWithOptions(ch chan<- LinkUpdate, done <-chan struct{}, options LinkSubscribeOptions) error {
if options.Namespace == nil {
none := netns.None()
options.Namespace = &none
}
return linkSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting,
options.ReceiveBufferSize, options.ReceiveTimeout, options.ReceiveBufferForceSize)
}
func linkSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- LinkUpdate, done <-chan struct{}, cberr func(error), listExisting bool,
rcvbuf int, rcvTimeout *unix.Timeval, rcvbufForce bool) error {
s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_LINK)
if err != nil {
return err
}
if rcvTimeout != nil {
if err := s.SetReceiveTimeout(rcvTimeout); err != nil {
return err
}
}
if rcvbuf != 0 {
err = s.SetReceiveBufferSize(rcvbuf, rcvbufForce)
if err != nil {
return err
}
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
if listExisting {
req := pkgHandle.newNetlinkRequest(unix.RTM_GETLINK,
unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(msg)
if err := s.Send(req); err != nil {
return err
}
}
go func() {
defer close(ch)
for {
msgs, from, err := s.Receive()
if err != nil {
if cberr != nil {
cberr(fmt.Errorf("Receive failed: %v",
err))
}
return
}
if from.Pid != nl.PidKernel {
if cberr != nil {
cberr(fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel))
}
continue
}
for _, m := range msgs {
if m.Header.Flags&unix.NLM_F_DUMP_INTR != 0 && cberr != nil {
cberr(ErrDumpInterrupted)
}
if m.Header.Type == unix.NLMSG_DONE {
continue
}
if m.Header.Type == unix.NLMSG_ERROR {
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
continue
}
if cberr != nil {
cberr(fmt.Errorf("error message: %v",
syscall.Errno(-error)))
}
continue
}
ifmsg := nl.DeserializeIfInfomsg(m.Data)
header := unix.NlMsghdr(m.Header)
link, err := LinkDeserialize(&header, m.Data)
if err != nil {
if cberr != nil {
cberr(err)
}
continue
}
ch <- LinkUpdate{IfInfomsg: *ifmsg, Header: header, Link: link}
}
}
}()
return nil
}
func LinkSetHairpin(link Link, mode bool) error {
return pkgHandle.LinkSetHairpin(link, mode)
}
func (h *Handle) LinkSetHairpin(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_MODE)
}
func LinkSetGuard(link Link, mode bool) error {
return pkgHandle.LinkSetGuard(link, mode)
}
func (h *Handle) LinkSetGuard(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_GUARD)
}
// LinkSetBRSlaveGroupFwdMask set the group_fwd_mask of a bridge slave interface
func LinkSetBRSlaveGroupFwdMask(link Link, mask uint16) error {
return pkgHandle.LinkSetBRSlaveGroupFwdMask(link, mask)
}
// LinkSetBRSlaveGroupFwdMask set the group_fwd_mask of a bridge slave interface
func (h *Handle) LinkSetBRSlaveGroupFwdMask(link Link, mask uint16) error {
return h.setProtinfoAttrRawVal(link, nl.Uint16Attr(mask), nl.IFLA_BRPORT_GROUP_FWD_MASK)
}
func LinkSetFastLeave(link Link, mode bool) error {
return pkgHandle.LinkSetFastLeave(link, mode)
}
func (h *Handle) LinkSetFastLeave(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_FAST_LEAVE)
}
func LinkSetLearning(link Link, mode bool) error {
return pkgHandle.LinkSetLearning(link, mode)
}
func (h *Handle) LinkSetLearning(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_LEARNING)
}
func LinkSetRootBlock(link Link, mode bool) error {
return pkgHandle.LinkSetRootBlock(link, mode)
}
func (h *Handle) LinkSetRootBlock(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROTECT)
}
func LinkSetFlood(link Link, mode bool) error {
return pkgHandle.LinkSetFlood(link, mode)
}
func (h *Handle) LinkSetFlood(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_UNICAST_FLOOD)
}
func LinkSetIsolated(link Link, mode bool) error {
return pkgHandle.LinkSetIsolated(link, mode)
}
func (h *Handle) LinkSetIsolated(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_ISOLATED)
}
func LinkSetBrProxyArp(link Link, mode bool) error {
return pkgHandle.LinkSetBrProxyArp(link, mode)
}
func (h *Handle) LinkSetBrProxyArp(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROXYARP)
}
func LinkSetBrProxyArpWiFi(link Link, mode bool) error {
return pkgHandle.LinkSetBrProxyArpWiFi(link, mode)
}
func (h *Handle) LinkSetBrProxyArpWiFi(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROXYARP_WIFI)
}
func LinkSetBrNeighSuppress(link Link, mode bool) error {
return pkgHandle.LinkSetBrNeighSuppress(link, mode)
}
func (h *Handle) LinkSetBrNeighSuppress(link Link, mode bool) error {
return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_NEIGH_SUPPRESS)
}
func (h *Handle) setProtinfoAttrRawVal(link Link, val []byte, attr int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
msg.Index = int32(base.Index)
req.AddData(msg)
br := nl.NewRtAttr(unix.IFLA_PROTINFO|unix.NLA_F_NESTED, nil)
br.AddRtAttr(attr, val)
req.AddData(br)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
return err
}
return nil
}
func (h *Handle) setProtinfoAttr(link Link, mode bool, attr int) error {
return h.setProtinfoAttrRawVal(link, boolToByte(mode), attr)
}
// LinkSetTxQLen sets the transaction queue length for the link.
// Equivalent to: `ip link set $link txqlen $qlen`
func LinkSetTxQLen(link Link, qlen int) error {
return pkgHandle.LinkSetTxQLen(link, qlen)
}
// LinkSetTxQLen sets the transaction queue length for the link.
// Equivalent to: `ip link set $link txqlen $qlen`
func (h *Handle) LinkSetTxQLen(link Link, qlen int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(qlen))
data := nl.NewRtAttr(unix.IFLA_TXQLEN, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetGroup sets the link group id which can be used to perform mass actions
// with iproute2 as well use it as a reference in nft filters.
// Equivalent to: `ip link set $link group $id`
func LinkSetGroup(link Link, group int) error {
return pkgHandle.LinkSetGroup(link, group)
}
// LinkSetGroup sets the link group id which can be used to perform mass actions
// with iproute2 as well use it as a reference in nft filters.
// Equivalent to: `ip link set $link group $id`
func (h *Handle) LinkSetGroup(link Link, group int) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
b := make([]byte, 4)
native.PutUint32(b, uint32(group))
data := nl.NewRtAttr(unix.IFLA_GROUP, b)
req.AddData(data)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func addNetkitAttrs(nk *Netkit, linkInfo *nl.RtAttr, flag int) error {
if nk.peerLinkAttrs.HardwareAddr != nil || nk.HardwareAddr != nil {
return fmt.Errorf("netkit doesn't support setting Ethernet")
}
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
// Kernel will return error if trying to change the mode of an existing netkit device
data.AddRtAttr(nl.IFLA_NETKIT_MODE, nl.Uint32Attr(uint32(nk.Mode)))
data.AddRtAttr(nl.IFLA_NETKIT_POLICY, nl.Uint32Attr(uint32(nk.Policy)))
data.AddRtAttr(nl.IFLA_NETKIT_PEER_POLICY, nl.Uint32Attr(uint32(nk.PeerPolicy)))
data.AddRtAttr(nl.IFLA_NETKIT_SCRUB, nl.Uint32Attr(uint32(nk.Scrub)))
data.AddRtAttr(nl.IFLA_NETKIT_PEER_SCRUB, nl.Uint32Attr(uint32(nk.PeerScrub)))
if (flag & unix.NLM_F_EXCL) == 0 {
// Modifying peer link attributes will not take effect
return nil
}
peer := data.AddRtAttr(nl.IFLA_NETKIT_PEER_INFO, nil)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
if nk.peerLinkAttrs.Flags&net.FlagUp != 0 {
msg.Change = unix.IFF_UP
msg.Flags = unix.IFF_UP
}
if nk.peerLinkAttrs.Index != 0 {
msg.Index = int32(nk.peerLinkAttrs.Index)
}
peer.AddChild(msg)
if nk.peerLinkAttrs.Name != "" {
peer.AddRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(nk.peerLinkAttrs.Name))
}
if nk.peerLinkAttrs.MTU > 0 {
peer.AddRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(nk.peerLinkAttrs.MTU)))
}
if nk.peerLinkAttrs.GSOMaxSegs > 0 {
peer.AddRtAttr(unix.IFLA_GSO_MAX_SEGS, nl.Uint32Attr(nk.peerLinkAttrs.GSOMaxSegs))
}
if nk.peerLinkAttrs.GSOMaxSize > 0 {
peer.AddRtAttr(unix.IFLA_GSO_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GSOMaxSize))
}
if nk.peerLinkAttrs.GSOIPv4MaxSize > 0 {
peer.AddRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GSOIPv4MaxSize))
}
if nk.peerLinkAttrs.GROIPv4MaxSize > 0 {
peer.AddRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GROIPv4MaxSize))
}
if nk.peerLinkAttrs.Namespace != nil {
switch ns := nk.peerLinkAttrs.Namespace.(type) {
case NsPid:
peer.AddRtAttr(unix.IFLA_NET_NS_PID, nl.Uint32Attr(uint32(ns)))
case NsFd:
peer.AddRtAttr(unix.IFLA_NET_NS_FD, nl.Uint32Attr(uint32(ns)))
}
}
return nil
}
func parseNetkitData(link Link, data []syscall.NetlinkRouteAttr) {
netkit := link.(*Netkit)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_NETKIT_PRIMARY:
isPrimary := datum.Value[0:1][0]
if isPrimary != 0 {
netkit.isPrimary = true
}
case nl.IFLA_NETKIT_MODE:
netkit.Mode = NetkitMode(native.Uint32(datum.Value[0:4]))
case nl.IFLA_NETKIT_POLICY:
netkit.Policy = NetkitPolicy(native.Uint32(datum.Value[0:4]))
case nl.IFLA_NETKIT_PEER_POLICY:
netkit.PeerPolicy = NetkitPolicy(native.Uint32(datum.Value[0:4]))
case nl.IFLA_NETKIT_SCRUB:
netkit.supportsScrub = true
netkit.Scrub = NetkitScrub(native.Uint32(datum.Value[0:4]))
case nl.IFLA_NETKIT_PEER_SCRUB:
netkit.supportsScrub = true
netkit.PeerScrub = NetkitScrub(native.Uint32(datum.Value[0:4]))
}
}
}
func parseVlanData(link Link, data []syscall.NetlinkRouteAttr) {
vlan := link.(*Vlan)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_VLAN_ID:
vlan.VlanId = int(native.Uint16(datum.Value[0:2]))
case nl.IFLA_VLAN_PROTOCOL:
vlan.VlanProtocol = VlanProtocol(int(ntohs(datum.Value[0:2])))
}
}
}
func parseVxlanData(link Link, data []syscall.NetlinkRouteAttr) {
vxlan := link.(*Vxlan)
for _, datum := range data {
// NOTE(vish): Apparently some messages can be sent with no value.
// We special case GBP here to not change existing
// functionality. It appears that GBP sends a datum.Value
// of null.
if len(datum.Value) == 0 && datum.Attr.Type != nl.IFLA_VXLAN_GBP {
continue
}
switch datum.Attr.Type {
case nl.IFLA_VXLAN_ID:
vxlan.VxlanId = int(native.Uint32(datum.Value[0:4]))
case nl.IFLA_VXLAN_LINK:
vxlan.VtepDevIndex = int(native.Uint32(datum.Value[0:4]))
case nl.IFLA_VXLAN_LOCAL:
vxlan.SrcAddr = net.IP(datum.Value[0:4])
case nl.IFLA_VXLAN_LOCAL6:
vxlan.SrcAddr = net.IP(datum.Value[0:16])
case nl.IFLA_VXLAN_GROUP:
vxlan.Group = net.IP(datum.Value[0:4])
case nl.IFLA_VXLAN_GROUP6:
vxlan.Group = net.IP(datum.Value[0:16])
case nl.IFLA_VXLAN_TTL:
vxlan.TTL = int(datum.Value[0])
case nl.IFLA_VXLAN_TOS:
vxlan.TOS = int(datum.Value[0])
case nl.IFLA_VXLAN_LEARNING:
vxlan.Learning = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_PROXY:
vxlan.Proxy = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_RSC:
vxlan.RSC = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_L2MISS:
vxlan.L2miss = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_L3MISS:
vxlan.L3miss = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_UDP_CSUM:
vxlan.UDPCSum = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_UDP_ZERO_CSUM6_TX:
vxlan.UDP6ZeroCSumTx = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_UDP_ZERO_CSUM6_RX:
vxlan.UDP6ZeroCSumRx = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_GBP:
vxlan.GBP = true
case nl.IFLA_VXLAN_FLOWBASED:
vxlan.FlowBased = int8(datum.Value[0]) != 0
case nl.IFLA_VXLAN_AGEING:
vxlan.Age = int(native.Uint32(datum.Value[0:4]))
vxlan.NoAge = vxlan.Age == 0
case nl.IFLA_VXLAN_LIMIT:
vxlan.Limit = int(native.Uint32(datum.Value[0:4]))
case nl.IFLA_VXLAN_PORT:
vxlan.Port = int(ntohs(datum.Value[0:2]))
case nl.IFLA_VXLAN_PORT_RANGE:
buf := bytes.NewBuffer(datum.Value[0:4])
var pr vxlanPortRange
if binary.Read(buf, binary.BigEndian, &pr) != nil {
vxlan.PortLow = int(pr.Lo)
vxlan.PortHigh = int(pr.Hi)
}
}
}
}
func parseBondData(link Link, data []syscall.NetlinkRouteAttr) {
bond := link.(*Bond)
for i := range data {
switch data[i].Attr.Type {
case nl.IFLA_BOND_MODE:
bond.Mode = BondMode(data[i].Value[0])
case nl.IFLA_BOND_ACTIVE_SLAVE:
bond.ActiveSlave = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_MIIMON:
bond.Miimon = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_UPDELAY:
bond.UpDelay = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_DOWNDELAY:
bond.DownDelay = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_USE_CARRIER:
bond.UseCarrier = int(data[i].Value[0])
case nl.IFLA_BOND_ARP_INTERVAL:
bond.ArpInterval = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_ARP_IP_TARGET:
bond.ArpIpTargets = parseBondArpIpTargets(data[i].Value)
case nl.IFLA_BOND_ARP_VALIDATE:
bond.ArpValidate = BondArpValidate(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_ARP_ALL_TARGETS:
bond.ArpAllTargets = BondArpAllTargets(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_PRIMARY:
bond.Primary = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_PRIMARY_RESELECT:
bond.PrimaryReselect = BondPrimaryReselect(data[i].Value[0])
case nl.IFLA_BOND_FAIL_OVER_MAC:
bond.FailOverMac = BondFailOverMac(data[i].Value[0])
case nl.IFLA_BOND_XMIT_HASH_POLICY:
bond.XmitHashPolicy = BondXmitHashPolicy(data[i].Value[0])
case nl.IFLA_BOND_RESEND_IGMP:
bond.ResendIgmp = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_NUM_PEER_NOTIF:
bond.NumPeerNotif = int(data[i].Value[0])
case nl.IFLA_BOND_ALL_SLAVES_ACTIVE:
bond.AllSlavesActive = int(data[i].Value[0])
case nl.IFLA_BOND_MIN_LINKS:
bond.MinLinks = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_LP_INTERVAL:
bond.LpInterval = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_PACKETS_PER_SLAVE:
bond.PacketsPerSlave = int(native.Uint32(data[i].Value[0:4]))
case nl.IFLA_BOND_AD_LACP_RATE:
bond.LacpRate = BondLacpRate(data[i].Value[0])
case nl.IFLA_BOND_AD_SELECT:
bond.AdSelect = BondAdSelect(data[i].Value[0])
case nl.IFLA_BOND_AD_INFO:
// TODO: implement
case nl.IFLA_BOND_AD_ACTOR_SYS_PRIO:
bond.AdActorSysPrio = int(native.Uint16(data[i].Value[0:2]))
case nl.IFLA_BOND_AD_USER_PORT_KEY:
bond.AdUserPortKey = int(native.Uint16(data[i].Value[0:2]))
case nl.IFLA_BOND_AD_ACTOR_SYSTEM:
bond.AdActorSystem = net.HardwareAddr(data[i].Value[0:6])
case nl.IFLA_BOND_TLB_DYNAMIC_LB:
bond.TlbDynamicLb = int(data[i].Value[0])
}
}
}
func parseBondArpIpTargets(value []byte) []net.IP {
data, err := nl.ParseRouteAttr(value)
if err != nil {
return nil
}
targets := []net.IP{}
for i := range data {
target := net.IP(data[i].Value)
if ip := target.To4(); ip != nil {
targets = append(targets, ip)
continue
}
if ip := target.To16(); ip != nil {
targets = append(targets, ip)
}
}
return targets
}
func addBondSlaveAttrs(bondSlave *BondSlave, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_SLAVE_DATA, nil)
data.AddRtAttr(nl.IFLA_BOND_SLAVE_STATE, nl.Uint8Attr(uint8(bondSlave.State)))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_MII_STATUS, nl.Uint8Attr(uint8(bondSlave.MiiStatus)))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_LINK_FAILURE_COUNT, nl.Uint32Attr(bondSlave.LinkFailureCount))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_QUEUE_ID, nl.Uint16Attr(bondSlave.QueueId))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_AGGREGATOR_ID, nl.Uint16Attr(bondSlave.AggregatorId))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE, nl.Uint8Attr(bondSlave.AdActorOperPortState))
data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE, nl.Uint16Attr(bondSlave.AdPartnerOperPortState))
if mac := bondSlave.PermHardwareAddr; mac != nil {
data.AddRtAttr(nl.IFLA_BOND_SLAVE_PERM_HWADDR, []byte(mac))
}
}
func parseBondSlaveData(slave LinkSlave, data []syscall.NetlinkRouteAttr) {
bondSlave := slave.(*BondSlave)
for i := range data {
switch data[i].Attr.Type {
case nl.IFLA_BOND_SLAVE_STATE:
bondSlave.State = BondSlaveState(data[i].Value[0])
case nl.IFLA_BOND_SLAVE_MII_STATUS:
bondSlave.MiiStatus = BondSlaveMiiStatus(data[i].Value[0])
case nl.IFLA_BOND_SLAVE_LINK_FAILURE_COUNT:
bondSlave.LinkFailureCount = native.Uint32(data[i].Value[0:4])
case nl.IFLA_BOND_SLAVE_PERM_HWADDR:
bondSlave.PermHardwareAddr = net.HardwareAddr(data[i].Value[0:6])
case nl.IFLA_BOND_SLAVE_QUEUE_ID:
bondSlave.QueueId = native.Uint16(data[i].Value[0:2])
case nl.IFLA_BOND_SLAVE_AD_AGGREGATOR_ID:
bondSlave.AggregatorId = native.Uint16(data[i].Value[0:2])
case nl.IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE:
bondSlave.AdActorOperPortState = uint8(data[i].Value[0])
case nl.IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE:
bondSlave.AdPartnerOperPortState = native.Uint16(data[i].Value[0:2])
}
}
}
func parseVrfSlaveData(slave LinkSlave, data []syscall.NetlinkRouteAttr) {
vrfSlave := slave.(*VrfSlave)
for i := range data {
switch data[i].Attr.Type {
case nl.IFLA_BOND_SLAVE_STATE:
vrfSlave.Table = native.Uint32(data[i].Value[0:4])
}
}
}
func parseIPVlanData(link Link, data []syscall.NetlinkRouteAttr) {
ipv := link.(*IPVlan)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPVLAN_MODE:
ipv.Mode = IPVlanMode(native.Uint32(datum.Value[0:4]))
case nl.IFLA_IPVLAN_FLAG:
ipv.Flag = IPVlanFlag(native.Uint32(datum.Value[0:4]))
}
}
}
func parseIPVtapData(link Link, data []syscall.NetlinkRouteAttr) {
ipv := link.(*IPVtap)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPVLAN_MODE:
ipv.Mode = IPVlanMode(native.Uint32(datum.Value[0:4]))
case nl.IFLA_IPVLAN_FLAG:
ipv.Flag = IPVlanFlag(native.Uint32(datum.Value[0:4]))
}
}
}
func addMacvtapAttrs(macvtap *Macvtap, linkInfo *nl.RtAttr) {
addMacvlanAttrs(&macvtap.Macvlan, linkInfo)
}
func parseMacvtapData(link Link, data []syscall.NetlinkRouteAttr) {
macv := link.(*Macvtap)
parseMacvlanData(&macv.Macvlan, data)
}
func addMacvlanAttrs(macvlan *Macvlan, linkInfo *nl.RtAttr) {
var data *nl.RtAttr
if macvlan.Mode != MACVLAN_MODE_DEFAULT || macvlan.BCQueueLen > 0 {
data = linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
}
if macvlan.Mode != MACVLAN_MODE_DEFAULT {
data.AddRtAttr(nl.IFLA_MACVLAN_MODE, nl.Uint32Attr(macvlanModes[macvlan.Mode]))
}
if macvlan.BCQueueLen > 0 {
data.AddRtAttr(nl.IFLA_MACVLAN_BC_QUEUE_LEN, nl.Uint32Attr(macvlan.BCQueueLen))
}
}
func parseMacvlanData(link Link, data []syscall.NetlinkRouteAttr) {
macv := link.(*Macvlan)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_MACVLAN_MODE:
switch native.Uint32(datum.Value[0:4]) {
case nl.MACVLAN_MODE_PRIVATE:
macv.Mode = MACVLAN_MODE_PRIVATE
case nl.MACVLAN_MODE_VEPA:
macv.Mode = MACVLAN_MODE_VEPA
case nl.MACVLAN_MODE_BRIDGE:
macv.Mode = MACVLAN_MODE_BRIDGE
case nl.MACVLAN_MODE_PASSTHRU:
macv.Mode = MACVLAN_MODE_PASSTHRU
case nl.MACVLAN_MODE_SOURCE:
macv.Mode = MACVLAN_MODE_SOURCE
}
case nl.IFLA_MACVLAN_MACADDR_COUNT:
macv.MACAddrs = make([]net.HardwareAddr, 0, int(native.Uint32(datum.Value[0:4])))
case nl.IFLA_MACVLAN_MACADDR_DATA:
macs, err := nl.ParseRouteAttr(datum.Value[:])
if err != nil {
panic(fmt.Sprintf("failed to ParseRouteAttr for IFLA_MACVLAN_MACADDR_DATA: %v", err))
}
for _, macDatum := range macs {
macv.MACAddrs = append(macv.MACAddrs, net.HardwareAddr(macDatum.Value[0:6]))
}
case nl.IFLA_MACVLAN_BC_QUEUE_LEN:
macv.BCQueueLen = native.Uint32(datum.Value[0:4])
case nl.IFLA_MACVLAN_BC_QUEUE_LEN_USED:
macv.UsedBCQueueLen = native.Uint32(datum.Value[0:4])
}
}
}
// copied from pkg/net_linux.go
func linkFlags(rawFlags uint32) net.Flags {
var f net.Flags
if rawFlags&unix.IFF_UP != 0 {
f |= net.FlagUp
}
if rawFlags&unix.IFF_BROADCAST != 0 {
f |= net.FlagBroadcast
}
if rawFlags&unix.IFF_LOOPBACK != 0 {
f |= net.FlagLoopback
}
if rawFlags&unix.IFF_POINTOPOINT != 0 {
f |= net.FlagPointToPoint
}
if rawFlags&unix.IFF_MULTICAST != 0 {
f |= net.FlagMulticast
}
return f
}
func addGeneveAttrs(geneve *Geneve, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if geneve.InnerProtoInherit {
data.AddRtAttr(nl.IFLA_GENEVE_INNER_PROTO_INHERIT, []byte{})
}
if geneve.FlowBased {
geneve.ID = 0
data.AddRtAttr(nl.IFLA_GENEVE_COLLECT_METADATA, []byte{})
}
if ip := geneve.Remote; ip != nil {
if ip4 := ip.To4(); ip4 != nil {
data.AddRtAttr(nl.IFLA_GENEVE_REMOTE, ip.To4())
} else {
data.AddRtAttr(nl.IFLA_GENEVE_REMOTE6, []byte(ip))
}
}
if geneve.ID != 0 {
data.AddRtAttr(nl.IFLA_GENEVE_ID, nl.Uint32Attr(geneve.ID))
}
if geneve.Dport != 0 {
data.AddRtAttr(nl.IFLA_GENEVE_PORT, htons(geneve.Dport))
}
if geneve.Ttl != 0 {
data.AddRtAttr(nl.IFLA_GENEVE_TTL, nl.Uint8Attr(geneve.Ttl))
}
if geneve.Tos != 0 {
data.AddRtAttr(nl.IFLA_GENEVE_TOS, nl.Uint8Attr(geneve.Tos))
}
data.AddRtAttr(nl.IFLA_GENEVE_DF, nl.Uint8Attr(uint8(geneve.Df)))
}
func parseGeneveData(link Link, data []syscall.NetlinkRouteAttr) {
geneve := link.(*Geneve)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_GENEVE_ID:
geneve.ID = native.Uint32(datum.Value[0:4])
case nl.IFLA_GENEVE_REMOTE, nl.IFLA_GENEVE_REMOTE6:
geneve.Remote = datum.Value
case nl.IFLA_GENEVE_PORT:
geneve.Dport = ntohs(datum.Value[0:2])
case nl.IFLA_GENEVE_TTL:
geneve.Ttl = uint8(datum.Value[0])
case nl.IFLA_GENEVE_TOS:
geneve.Tos = uint8(datum.Value[0])
case nl.IFLA_GENEVE_COLLECT_METADATA:
geneve.FlowBased = true
case nl.IFLA_GENEVE_INNER_PROTO_INHERIT:
geneve.InnerProtoInherit = true
}
}
}
func addGretapAttrs(gretap *Gretap, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if gretap.FlowBased {
// In flow based mode, no other attributes need to be configured
data.AddRtAttr(nl.IFLA_GRE_COLLECT_METADATA, []byte{})
return
}
if ip := gretap.Local; ip != nil {
if ip.To4() != nil {
ip = ip.To4()
}
data.AddRtAttr(nl.IFLA_GRE_LOCAL, []byte(ip))
}
if ip := gretap.Remote; ip != nil {
if ip.To4() != nil {
ip = ip.To4()
}
data.AddRtAttr(nl.IFLA_GRE_REMOTE, []byte(ip))
}
if gretap.IKey != 0 {
data.AddRtAttr(nl.IFLA_GRE_IKEY, htonl(gretap.IKey))
gretap.IFlags |= uint16(nl.GRE_KEY)
}
if gretap.OKey != 0 {
data.AddRtAttr(nl.IFLA_GRE_OKEY, htonl(gretap.OKey))
gretap.OFlags |= uint16(nl.GRE_KEY)
}
data.AddRtAttr(nl.IFLA_GRE_IFLAGS, htons(gretap.IFlags))
data.AddRtAttr(nl.IFLA_GRE_OFLAGS, htons(gretap.OFlags))
if gretap.Link != 0 {
data.AddRtAttr(nl.IFLA_GRE_LINK, nl.Uint32Attr(gretap.Link))
}
data.AddRtAttr(nl.IFLA_GRE_PMTUDISC, nl.Uint8Attr(gretap.PMtuDisc))
data.AddRtAttr(nl.IFLA_GRE_TTL, nl.Uint8Attr(gretap.Ttl))
data.AddRtAttr(nl.IFLA_GRE_TOS, nl.Uint8Attr(gretap.Tos))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_TYPE, nl.Uint16Attr(gretap.EncapType))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_FLAGS, nl.Uint16Attr(gretap.EncapFlags))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_SPORT, htons(gretap.EncapSport))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_DPORT, htons(gretap.EncapDport))
}
func parseGretapData(link Link, data []syscall.NetlinkRouteAttr) {
gre := link.(*Gretap)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_GRE_OKEY:
gre.IKey = ntohl(datum.Value[0:4])
case nl.IFLA_GRE_IKEY:
gre.OKey = ntohl(datum.Value[0:4])
case nl.IFLA_GRE_LOCAL:
gre.Local = net.IP(datum.Value)
case nl.IFLA_GRE_REMOTE:
gre.Remote = net.IP(datum.Value)
case nl.IFLA_GRE_ENCAP_SPORT:
gre.EncapSport = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_ENCAP_DPORT:
gre.EncapDport = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_IFLAGS:
gre.IFlags = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_OFLAGS:
gre.OFlags = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_TTL:
gre.Ttl = uint8(datum.Value[0])
case nl.IFLA_GRE_TOS:
gre.Tos = uint8(datum.Value[0])
case nl.IFLA_GRE_PMTUDISC:
gre.PMtuDisc = uint8(datum.Value[0])
case nl.IFLA_GRE_ENCAP_TYPE:
gre.EncapType = native.Uint16(datum.Value[0:2])
case nl.IFLA_GRE_ENCAP_FLAGS:
gre.EncapFlags = native.Uint16(datum.Value[0:2])
case nl.IFLA_GRE_COLLECT_METADATA:
gre.FlowBased = true
}
}
}
func addGretunAttrs(gre *Gretun, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if gre.FlowBased {
// In flow based mode, no other attributes need to be configured
data.AddRtAttr(nl.IFLA_GRE_COLLECT_METADATA, []byte{})
return
}
if ip := gre.Local; ip != nil {
if ip.To4() != nil {
ip = ip.To4()
}
data.AddRtAttr(nl.IFLA_GRE_LOCAL, []byte(ip))
}
if ip := gre.Remote; ip != nil {
if ip.To4() != nil {
ip = ip.To4()
}
data.AddRtAttr(nl.IFLA_GRE_REMOTE, []byte(ip))
}
if gre.IKey != 0 {
data.AddRtAttr(nl.IFLA_GRE_IKEY, htonl(gre.IKey))
gre.IFlags |= uint16(nl.GRE_KEY)
}
if gre.OKey != 0 {
data.AddRtAttr(nl.IFLA_GRE_OKEY, htonl(gre.OKey))
gre.OFlags |= uint16(nl.GRE_KEY)
}
data.AddRtAttr(nl.IFLA_GRE_IFLAGS, htons(gre.IFlags))
data.AddRtAttr(nl.IFLA_GRE_OFLAGS, htons(gre.OFlags))
if gre.Link != 0 {
data.AddRtAttr(nl.IFLA_GRE_LINK, nl.Uint32Attr(gre.Link))
}
data.AddRtAttr(nl.IFLA_GRE_PMTUDISC, nl.Uint8Attr(gre.PMtuDisc))
data.AddRtAttr(nl.IFLA_GRE_TTL, nl.Uint8Attr(gre.Ttl))
data.AddRtAttr(nl.IFLA_GRE_TOS, nl.Uint8Attr(gre.Tos))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_TYPE, nl.Uint16Attr(gre.EncapType))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_FLAGS, nl.Uint16Attr(gre.EncapFlags))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_SPORT, htons(gre.EncapSport))
data.AddRtAttr(nl.IFLA_GRE_ENCAP_DPORT, htons(gre.EncapDport))
}
func parseGretunData(link Link, data []syscall.NetlinkRouteAttr) {
gre := link.(*Gretun)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_GRE_IKEY:
gre.IKey = ntohl(datum.Value[0:4])
case nl.IFLA_GRE_OKEY:
gre.OKey = ntohl(datum.Value[0:4])
case nl.IFLA_GRE_LOCAL:
gre.Local = net.IP(datum.Value)
case nl.IFLA_GRE_REMOTE:
gre.Remote = net.IP(datum.Value)
case nl.IFLA_GRE_IFLAGS:
gre.IFlags = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_OFLAGS:
gre.OFlags = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_TTL:
gre.Ttl = uint8(datum.Value[0])
case nl.IFLA_GRE_TOS:
gre.Tos = uint8(datum.Value[0])
case nl.IFLA_GRE_PMTUDISC:
gre.PMtuDisc = uint8(datum.Value[0])
case nl.IFLA_GRE_ENCAP_TYPE:
gre.EncapType = native.Uint16(datum.Value[0:2])
case nl.IFLA_GRE_ENCAP_FLAGS:
gre.EncapFlags = native.Uint16(datum.Value[0:2])
case nl.IFLA_GRE_ENCAP_SPORT:
gre.EncapSport = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_ENCAP_DPORT:
gre.EncapDport = ntohs(datum.Value[0:2])
case nl.IFLA_GRE_COLLECT_METADATA:
gre.FlowBased = true
}
}
}
func addXdpAttrs(xdp *LinkXdp, req *nl.NetlinkRequest) {
attrs := nl.NewRtAttr(unix.IFLA_XDP|unix.NLA_F_NESTED, nil)
b := make([]byte, 4)
native.PutUint32(b, uint32(xdp.Fd))
attrs.AddRtAttr(nl.IFLA_XDP_FD, b)
if xdp.Flags != 0 {
b := make([]byte, 4)
native.PutUint32(b, xdp.Flags)
attrs.AddRtAttr(nl.IFLA_XDP_FLAGS, b)
}
req.AddData(attrs)
}
func parseLinkXdp(data []byte) (*LinkXdp, error) {
attrs, err := nl.ParseRouteAttr(data)
if err != nil {
return nil, err
}
xdp := &LinkXdp{}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.IFLA_XDP_FD:
xdp.Fd = int(native.Uint32(attr.Value[0:4]))
case nl.IFLA_XDP_ATTACHED:
xdp.AttachMode = uint32(attr.Value[0])
xdp.Attached = xdp.AttachMode != 0
case nl.IFLA_XDP_FLAGS:
xdp.Flags = native.Uint32(attr.Value[0:4])
case nl.IFLA_XDP_PROG_ID:
xdp.ProgId = native.Uint32(attr.Value[0:4])
}
}
return xdp, nil
}
func addIptunAttrs(iptun *Iptun, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if iptun.FlowBased {
// In flow based mode, no other attributes need to be configured
data.AddRtAttr(nl.IFLA_IPTUN_COLLECT_METADATA, []byte{})
return
}
ip := iptun.Local.To4()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip))
}
ip = iptun.Remote.To4()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip))
}
if iptun.Link != 0 {
data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(iptun.Link))
}
data.AddRtAttr(nl.IFLA_IPTUN_PMTUDISC, nl.Uint8Attr(iptun.PMtuDisc))
data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(iptun.Ttl))
data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(iptun.Tos))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(iptun.EncapType))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(iptun.EncapFlags))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(iptun.EncapSport))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(iptun.EncapDport))
data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(iptun.Proto))
}
func parseIptunData(link Link, data []syscall.NetlinkRouteAttr) {
iptun := link.(*Iptun)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPTUN_LOCAL:
iptun.Local = net.IP(datum.Value[0:4])
case nl.IFLA_IPTUN_REMOTE:
iptun.Remote = net.IP(datum.Value[0:4])
case nl.IFLA_IPTUN_TTL:
iptun.Ttl = uint8(datum.Value[0])
case nl.IFLA_IPTUN_TOS:
iptun.Tos = uint8(datum.Value[0])
case nl.IFLA_IPTUN_PMTUDISC:
iptun.PMtuDisc = uint8(datum.Value[0])
case nl.IFLA_IPTUN_ENCAP_SPORT:
iptun.EncapSport = ntohs(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_DPORT:
iptun.EncapDport = ntohs(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_TYPE:
iptun.EncapType = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_FLAGS:
iptun.EncapFlags = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_COLLECT_METADATA:
iptun.FlowBased = true
case nl.IFLA_IPTUN_PROTO:
iptun.Proto = datum.Value[0]
}
}
}
func addIp6tnlAttrs(ip6tnl *Ip6tnl, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if ip6tnl.FlowBased {
// In flow based mode, no other attributes need to be configured
data.AddRtAttr(nl.IFLA_IPTUN_COLLECT_METADATA, []byte{})
return
}
if ip6tnl.Link != 0 {
data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(ip6tnl.Link))
}
ip := ip6tnl.Local.To16()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip))
}
ip = ip6tnl.Remote.To16()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip))
}
data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(ip6tnl.Ttl))
data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(ip6tnl.Tos))
data.AddRtAttr(nl.IFLA_IPTUN_FLAGS, nl.Uint32Attr(ip6tnl.Flags))
data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(ip6tnl.Proto))
data.AddRtAttr(nl.IFLA_IPTUN_FLOWINFO, nl.Uint32Attr(ip6tnl.FlowInfo))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_LIMIT, nl.Uint8Attr(ip6tnl.EncapLimit))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(ip6tnl.EncapType))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(ip6tnl.EncapFlags))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(ip6tnl.EncapSport))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(ip6tnl.EncapDport))
}
func parseIp6tnlData(link Link, data []syscall.NetlinkRouteAttr) {
ip6tnl := link.(*Ip6tnl)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPTUN_LOCAL:
ip6tnl.Local = net.IP(datum.Value[:16])
case nl.IFLA_IPTUN_REMOTE:
ip6tnl.Remote = net.IP(datum.Value[:16])
case nl.IFLA_IPTUN_TTL:
ip6tnl.Ttl = datum.Value[0]
case nl.IFLA_IPTUN_TOS:
ip6tnl.Tos = datum.Value[0]
case nl.IFLA_IPTUN_FLAGS:
ip6tnl.Flags = native.Uint32(datum.Value[:4])
case nl.IFLA_IPTUN_PROTO:
ip6tnl.Proto = datum.Value[0]
case nl.IFLA_IPTUN_FLOWINFO:
ip6tnl.FlowInfo = native.Uint32(datum.Value[:4])
case nl.IFLA_IPTUN_ENCAP_LIMIT:
ip6tnl.EncapLimit = datum.Value[0]
case nl.IFLA_IPTUN_ENCAP_TYPE:
ip6tnl.EncapType = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_FLAGS:
ip6tnl.EncapFlags = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_SPORT:
ip6tnl.EncapSport = ntohs(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_DPORT:
ip6tnl.EncapDport = ntohs(datum.Value[0:2])
case nl.IFLA_IPTUN_COLLECT_METADATA:
ip6tnl.FlowBased = true
}
}
}
func addSittunAttrs(sittun *Sittun, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if sittun.Link != 0 {
data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(sittun.Link))
}
ip := sittun.Local.To4()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip))
}
ip = sittun.Remote.To4()
if ip != nil {
data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip))
}
if sittun.Ttl > 0 {
// Would otherwise fail on 3.10 kernel
data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(sittun.Ttl))
}
data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(sittun.Proto))
data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(sittun.Tos))
data.AddRtAttr(nl.IFLA_IPTUN_PMTUDISC, nl.Uint8Attr(sittun.PMtuDisc))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_LIMIT, nl.Uint8Attr(sittun.EncapLimit))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(sittun.EncapType))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(sittun.EncapFlags))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(sittun.EncapSport))
data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(sittun.EncapDport))
}
func parseSittunData(link Link, data []syscall.NetlinkRouteAttr) {
sittun := link.(*Sittun)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPTUN_LOCAL:
sittun.Local = net.IP(datum.Value[0:4])
case nl.IFLA_IPTUN_REMOTE:
sittun.Remote = net.IP(datum.Value[0:4])
case nl.IFLA_IPTUN_TTL:
sittun.Ttl = datum.Value[0]
case nl.IFLA_IPTUN_TOS:
sittun.Tos = datum.Value[0]
case nl.IFLA_IPTUN_PMTUDISC:
sittun.PMtuDisc = datum.Value[0]
case nl.IFLA_IPTUN_PROTO:
sittun.Proto = datum.Value[0]
case nl.IFLA_IPTUN_ENCAP_TYPE:
sittun.EncapType = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_FLAGS:
sittun.EncapFlags = native.Uint16(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_SPORT:
sittun.EncapSport = ntohs(datum.Value[0:2])
case nl.IFLA_IPTUN_ENCAP_DPORT:
sittun.EncapDport = ntohs(datum.Value[0:2])
}
}
}
func addVtiAttrs(vti *Vti, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
family := FAMILY_V4
if vti.Local.To4() == nil {
family = FAMILY_V6
}
var ip net.IP
if family == FAMILY_V4 {
ip = vti.Local.To4()
} else {
ip = vti.Local
}
if ip != nil {
data.AddRtAttr(nl.IFLA_VTI_LOCAL, []byte(ip))
}
if family == FAMILY_V4 {
ip = vti.Remote.To4()
} else {
ip = vti.Remote
}
if ip != nil {
data.AddRtAttr(nl.IFLA_VTI_REMOTE, []byte(ip))
}
if vti.Link != 0 {
data.AddRtAttr(nl.IFLA_VTI_LINK, nl.Uint32Attr(vti.Link))
}
data.AddRtAttr(nl.IFLA_VTI_IKEY, htonl(vti.IKey))
data.AddRtAttr(nl.IFLA_VTI_OKEY, htonl(vti.OKey))
}
func parseVtiData(link Link, data []syscall.NetlinkRouteAttr) {
vti := link.(*Vti)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_VTI_LOCAL:
vti.Local = net.IP(datum.Value)
case nl.IFLA_VTI_REMOTE:
vti.Remote = net.IP(datum.Value)
case nl.IFLA_VTI_IKEY:
vti.IKey = ntohl(datum.Value[0:4])
case nl.IFLA_VTI_OKEY:
vti.OKey = ntohl(datum.Value[0:4])
}
}
}
func addVrfAttrs(vrf *Vrf, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
b := make([]byte, 4)
native.PutUint32(b, uint32(vrf.Table))
data.AddRtAttr(nl.IFLA_VRF_TABLE, b)
}
func parseVrfData(link Link, data []syscall.NetlinkRouteAttr) {
vrf := link.(*Vrf)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_VRF_TABLE:
vrf.Table = native.Uint32(datum.Value[0:4])
}
}
}
func addBridgeAttrs(bridge *Bridge, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
if bridge.MulticastSnooping != nil {
data.AddRtAttr(nl.IFLA_BR_MCAST_SNOOPING, boolToByte(*bridge.MulticastSnooping))
}
if bridge.AgeingTime != nil {
data.AddRtAttr(nl.IFLA_BR_AGEING_TIME, nl.Uint32Attr(*bridge.AgeingTime))
}
if bridge.HelloTime != nil {
data.AddRtAttr(nl.IFLA_BR_HELLO_TIME, nl.Uint32Attr(*bridge.HelloTime))
}
if bridge.VlanFiltering != nil {
data.AddRtAttr(nl.IFLA_BR_VLAN_FILTERING, boolToByte(*bridge.VlanFiltering))
}
if bridge.VlanDefaultPVID != nil {
data.AddRtAttr(nl.IFLA_BR_VLAN_DEFAULT_PVID, nl.Uint16Attr(*bridge.VlanDefaultPVID))
}
if bridge.GroupFwdMask != nil {
data.AddRtAttr(nl.IFLA_BR_GROUP_FWD_MASK, nl.Uint16Attr(*bridge.GroupFwdMask))
}
}
func parseBridgeData(bridge Link, data []syscall.NetlinkRouteAttr) {
br := bridge.(*Bridge)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_BR_AGEING_TIME:
ageingTime := native.Uint32(datum.Value[0:4])
br.AgeingTime = &ageingTime
case nl.IFLA_BR_HELLO_TIME:
helloTime := native.Uint32(datum.Value[0:4])
br.HelloTime = &helloTime
case nl.IFLA_BR_MCAST_SNOOPING:
mcastSnooping := datum.Value[0] == 1
br.MulticastSnooping = &mcastSnooping
case nl.IFLA_BR_VLAN_FILTERING:
vlanFiltering := datum.Value[0] == 1
br.VlanFiltering = &vlanFiltering
case nl.IFLA_BR_VLAN_DEFAULT_PVID:
vlanDefaultPVID := native.Uint16(datum.Value[0:2])
br.VlanDefaultPVID = &vlanDefaultPVID
case nl.IFLA_BR_GROUP_FWD_MASK:
mask := native.Uint16(datum.Value[0:2])
br.GroupFwdMask = &mask
}
}
}
func addGTPAttrs(gtp *GTP, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_GTP_FD0, nl.Uint32Attr(uint32(gtp.FD0)))
data.AddRtAttr(nl.IFLA_GTP_FD1, nl.Uint32Attr(uint32(gtp.FD1)))
data.AddRtAttr(nl.IFLA_GTP_PDP_HASHSIZE, nl.Uint32Attr(131072))
if gtp.Role != nl.GTP_ROLE_GGSN {
data.AddRtAttr(nl.IFLA_GTP_ROLE, nl.Uint32Attr(uint32(gtp.Role)))
}
}
func parseGTPData(link Link, data []syscall.NetlinkRouteAttr) {
gtp := link.(*GTP)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_GTP_FD0:
gtp.FD0 = int(native.Uint32(datum.Value))
case nl.IFLA_GTP_FD1:
gtp.FD1 = int(native.Uint32(datum.Value))
case nl.IFLA_GTP_PDP_HASHSIZE:
gtp.PDPHashsize = int(native.Uint32(datum.Value))
case nl.IFLA_GTP_ROLE:
gtp.Role = int(native.Uint32(datum.Value))
}
}
}
func parseVfInfoList(data []syscall.NetlinkRouteAttr) ([]VfInfo, error) {
var vfs []VfInfo
for i, element := range data {
if element.Attr.Type != nl.IFLA_VF_INFO {
return nil, fmt.Errorf("Incorrect element type in vf info list: %d", element.Attr.Type)
}
vfAttrs, err := nl.ParseRouteAttr(element.Value)
if err != nil {
return nil, err
}
vf, err := parseVfInfo(vfAttrs, i)
if err != nil {
return nil, err
}
vfs = append(vfs, vf)
}
return vfs, nil
}
func parseVfInfo(data []syscall.NetlinkRouteAttr, id int) (VfInfo, error) {
vf := VfInfo{ID: id}
for _, element := range data {
switch element.Attr.Type {
case nl.IFLA_VF_MAC:
mac := nl.DeserializeVfMac(element.Value[:])
vf.Mac = mac.Mac[:6]
case nl.IFLA_VF_VLAN:
vl := nl.DeserializeVfVlan(element.Value[:])
vf.Vlan = int(vl.Vlan)
vf.Qos = int(vl.Qos)
case nl.IFLA_VF_VLAN_LIST:
vfVlanInfoList, err := nl.DeserializeVfVlanList(element.Value[:])
if err != nil {
return vf, err
}
vf.VlanProto = int(vfVlanInfoList[0].VlanProto)
case nl.IFLA_VF_TX_RATE:
txr := nl.DeserializeVfTxRate(element.Value[:])
vf.TxRate = int(txr.Rate)
case nl.IFLA_VF_SPOOFCHK:
sp := nl.DeserializeVfSpoofchk(element.Value[:])
vf.Spoofchk = sp.Setting != 0
case nl.IFLA_VF_LINK_STATE:
ls := nl.DeserializeVfLinkState(element.Value[:])
vf.LinkState = ls.LinkState
case nl.IFLA_VF_RATE:
vfr := nl.DeserializeVfRate(element.Value[:])
vf.MaxTxRate = vfr.MaxTxRate
vf.MinTxRate = vfr.MinTxRate
case nl.IFLA_VF_STATS:
vfstats := nl.DeserializeVfStats(element.Value[:])
vf.RxPackets = vfstats.RxPackets
vf.TxPackets = vfstats.TxPackets
vf.RxBytes = vfstats.RxBytes
vf.TxBytes = vfstats.TxBytes
vf.Multicast = vfstats.Multicast
vf.Broadcast = vfstats.Broadcast
vf.RxDropped = vfstats.RxDropped
vf.TxDropped = vfstats.TxDropped
case nl.IFLA_VF_RSS_QUERY_EN:
result := nl.DeserializeVfRssQueryEn(element.Value)
vf.RssQuery = result.Setting
case nl.IFLA_VF_TRUST:
result := nl.DeserializeVfTrust(element.Value)
vf.Trust = result.Setting
}
}
return vf, nil
}
func addXfrmiAttrs(xfrmi *Xfrmi, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_XFRM_LINK, nl.Uint32Attr(uint32(xfrmi.ParentIndex)))
if xfrmi.Ifid != 0 {
data.AddRtAttr(nl.IFLA_XFRM_IF_ID, nl.Uint32Attr(xfrmi.Ifid))
}
}
func parseXfrmiData(link Link, data []syscall.NetlinkRouteAttr) {
xfrmi := link.(*Xfrmi)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_XFRM_LINK:
xfrmi.ParentIndex = int(native.Uint32(datum.Value))
case nl.IFLA_XFRM_IF_ID:
xfrmi.Ifid = native.Uint32(datum.Value)
}
}
}
func ioctlBondSlave(cmd uintptr, link Link, master *Bond) error {
fd, err := getSocketUDP()
if err != nil {
return err
}
defer syscall.Close(fd)
ifreq := newIocltSlaveReq(link.Attrs().Name, master.Attrs().Name)
_, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), cmd, uintptr(unsafe.Pointer(ifreq)))
if errno != 0 {
return fmt.Errorf("errno=%v", errno)
}
return nil
}
// LinkSetBondSlaveActive sets specified slave to ACTIVE in an `active-backup` bond link via ioctl interface.
//
// Multiple calls keeps the status unchanged(shown in the unit test).
func LinkSetBondSlaveActive(link Link, master *Bond) error {
err := ioctlBondSlave(unix.SIOCBONDCHANGEACTIVE, link, master)
if err != nil {
return fmt.Errorf("Failed to set slave %q active in %q, %v", link.Attrs().Name, master.Attrs().Name, err)
}
return nil
}
// LinkSetBondSlave add slave to bond link via ioctl interface.
func LinkSetBondSlave(link Link, master *Bond) error {
err := ioctlBondSlave(unix.SIOCBONDENSLAVE, link, master)
if err != nil {
return fmt.Errorf("Failed to enslave %q to %q, %v", link.Attrs().Name, master.Attrs().Name, err)
}
return nil
}
// LinkSetBondSlave removes specified slave from bond link via ioctl interface.
func LinkDelBondSlave(link Link, master *Bond) error {
err := ioctlBondSlave(unix.SIOCBONDRELEASE, link, master)
if err != nil {
return fmt.Errorf("Failed to del slave %q from %q, %v", link.Attrs().Name, master.Attrs().Name, err)
}
return nil
}
// LinkSetBondSlaveQueueId modify bond slave queue-id.
func (h *Handle) LinkSetBondSlaveQueueId(link Link, queueId uint16) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_UNSPEC)
msg.Index = int32(base.Index)
req.AddData(msg)
linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil)
data := linkInfo.AddRtAttr(nl.IFLA_INFO_SLAVE_DATA, nil)
data.AddRtAttr(nl.IFLA_BOND_SLAVE_QUEUE_ID, nl.Uint16Attr(queueId))
req.AddData(linkInfo)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// LinkSetBondSlaveQueueId modify bond slave queue-id.
func LinkSetBondSlaveQueueId(link Link, queueId uint16) error {
return pkgHandle.LinkSetBondSlaveQueueId(link, queueId)
}
func vethStatsSerialize(stats ethtoolStats) ([]byte, error) {
statsSize := int(unsafe.Sizeof(stats)) + int(stats.nStats)*int(unsafe.Sizeof(uint64(0)))
b := make([]byte, 0, statsSize)
buf := bytes.NewBuffer(b)
err := binary.Write(buf, nl.NativeEndian(), stats)
return buf.Bytes()[:statsSize], err
}
type vethEthtoolStats struct {
Cmd uint32
NStats uint32
Peer uint64
// Newer kernels have XDP stats in here, but we only care
// to extract the peer ifindex here.
}
func vethStatsDeserialize(b []byte) (vethEthtoolStats, error) {
var stats = vethEthtoolStats{}
err := binary.Read(bytes.NewReader(b), nl.NativeEndian(), &stats)
return stats, err
}
// VethPeerIndex get veth peer index.
func VethPeerIndex(link *Veth) (int, error) {
fd, err := getSocketUDP()
if err != nil {
return -1, err
}
defer syscall.Close(fd)
ifreq, sSet := newIocltStringSetReq(link.Name)
_, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), SIOCETHTOOL, uintptr(unsafe.Pointer(ifreq)))
if errno != 0 {
return -1, fmt.Errorf("SIOCETHTOOL request for %q failed, errno=%v", link.Attrs().Name, errno)
}
stats := ethtoolStats{
cmd: ETHTOOL_GSTATS,
nStats: sSet.data[0],
}
buffer, err := vethStatsSerialize(stats)
if err != nil {
return -1, err
}
ifreq.Data = uintptr(unsafe.Pointer(&buffer[0]))
_, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), SIOCETHTOOL, uintptr(unsafe.Pointer(ifreq)))
if errno != 0 {
return -1, fmt.Errorf("SIOCETHTOOL request for %q failed, errno=%v", link.Attrs().Name, errno)
}
vstats, err := vethStatsDeserialize(buffer)
if err != nil {
return -1, err
}
return int(vstats.Peer), nil
}
func parseTuntapData(link Link, data []syscall.NetlinkRouteAttr) {
tuntap := link.(*Tuntap)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_TUN_OWNER:
tuntap.Owner = native.Uint32(datum.Value)
case nl.IFLA_TUN_GROUP:
tuntap.Group = native.Uint32(datum.Value)
case nl.IFLA_TUN_TYPE:
tuntap.Mode = TuntapMode(uint8(datum.Value[0]))
case nl.IFLA_TUN_PERSIST:
tuntap.NonPersist = false
if uint8(datum.Value[0]) == 0 {
tuntap.NonPersist = true
}
}
}
}
func parseIPoIBData(link Link, data []syscall.NetlinkRouteAttr) {
ipoib := link.(*IPoIB)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_IPOIB_PKEY:
ipoib.Pkey = uint16(native.Uint16(datum.Value))
case nl.IFLA_IPOIB_MODE:
ipoib.Mode = IPoIBMode(native.Uint16(datum.Value))
case nl.IFLA_IPOIB_UMCAST:
ipoib.Umcast = uint16(native.Uint16(datum.Value))
}
}
}
func parseCanData(link Link, data []syscall.NetlinkRouteAttr) {
can := link.(*Can)
for _, datum := range data {
switch datum.Attr.Type {
case nl.IFLA_CAN_BITTIMING:
can.BitRate = native.Uint32(datum.Value)
can.SamplePoint = native.Uint32(datum.Value[4:])
can.TimeQuanta = native.Uint32(datum.Value[8:])
can.PropagationSegment = native.Uint32(datum.Value[12:])
can.PhaseSegment1 = native.Uint32(datum.Value[16:])
can.PhaseSegment2 = native.Uint32(datum.Value[20:])
can.SyncJumpWidth = native.Uint32(datum.Value[24:])
can.BitRatePreScaler = native.Uint32(datum.Value[28:])
case nl.IFLA_CAN_BITTIMING_CONST:
can.Name = string(datum.Value[:16])
can.TimeSegment1Min = native.Uint32(datum.Value[16:])
can.TimeSegment1Max = native.Uint32(datum.Value[20:])
can.TimeSegment2Min = native.Uint32(datum.Value[24:])
can.TimeSegment2Max = native.Uint32(datum.Value[28:])
can.SyncJumpWidthMax = native.Uint32(datum.Value[32:])
can.BitRatePreScalerMin = native.Uint32(datum.Value[36:])
can.BitRatePreScalerMax = native.Uint32(datum.Value[40:])
can.BitRatePreScalerInc = native.Uint32(datum.Value[44:])
case nl.IFLA_CAN_CLOCK:
can.ClockFrequency = native.Uint32(datum.Value)
case nl.IFLA_CAN_STATE:
can.State = native.Uint32(datum.Value)
case nl.IFLA_CAN_CTRLMODE:
can.Mask = native.Uint32(datum.Value)
can.Flags = native.Uint32(datum.Value[4:])
case nl.IFLA_CAN_BERR_COUNTER:
can.TxError = native.Uint16(datum.Value)
can.RxError = native.Uint16(datum.Value[2:])
case nl.IFLA_CAN_RESTART_MS:
can.RestartMs = native.Uint32(datum.Value)
case nl.IFLA_CAN_DATA_BITTIMING_CONST:
case nl.IFLA_CAN_RESTART:
case nl.IFLA_CAN_DATA_BITTIMING:
case nl.IFLA_CAN_TERMINATION:
case nl.IFLA_CAN_TERMINATION_CONST:
case nl.IFLA_CAN_BITRATE_CONST:
case nl.IFLA_CAN_DATA_BITRATE_CONST:
case nl.IFLA_CAN_BITRATE_MAX:
}
}
}
func addIPoIBAttrs(ipoib *IPoIB, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_IPOIB_PKEY, nl.Uint16Attr(uint16(ipoib.Pkey)))
data.AddRtAttr(nl.IFLA_IPOIB_MODE, nl.Uint16Attr(uint16(ipoib.Mode)))
data.AddRtAttr(nl.IFLA_IPOIB_UMCAST, nl.Uint16Attr(uint16(ipoib.Umcast)))
}
func addBareUDPAttrs(bareudp *BareUDP, linkInfo *nl.RtAttr) {
data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil)
data.AddRtAttr(nl.IFLA_BAREUDP_PORT, nl.Uint16Attr(nl.Swap16(bareudp.Port)))
data.AddRtAttr(nl.IFLA_BAREUDP_ETHERTYPE, nl.Uint16Attr(nl.Swap16(bareudp.EtherType)))
if bareudp.SrcPortMin != 0 {
data.AddRtAttr(nl.IFLA_BAREUDP_SRCPORT_MIN, nl.Uint16Attr(bareudp.SrcPortMin))
}
if bareudp.MultiProto {
data.AddRtAttr(nl.IFLA_BAREUDP_MULTIPROTO_MODE, []byte{})
}
}
func parseBareUDPData(link Link, data []syscall.NetlinkRouteAttr) {
bareudp := link.(*BareUDP)
for _, attr := range data {
switch attr.Attr.Type {
case nl.IFLA_BAREUDP_PORT:
bareudp.Port = binary.BigEndian.Uint16(attr.Value)
case nl.IFLA_BAREUDP_ETHERTYPE:
bareudp.EtherType = binary.BigEndian.Uint16(attr.Value)
case nl.IFLA_BAREUDP_SRCPORT_MIN:
bareudp.SrcPortMin = native.Uint16(attr.Value)
case nl.IFLA_BAREUDP_MULTIPROTO_MODE:
bareudp.MultiProto = true
}
}
}