package netlink import ( "bytes" "encoding/binary" "errors" "fmt" "io/ioutil" "net" "os" "strconv" "strings" "syscall" "unsafe" "github.com/vishvananda/netlink/nl" "github.com/vishvananda/netns" "golang.org/x/sys/unix" ) const ( SizeofLinkStats32 = 0x5c SizeofLinkStats64 = 0xb8 ) const ( TUNTAP_MODE_TUN TuntapMode = unix.IFF_TUN TUNTAP_MODE_TAP TuntapMode = unix.IFF_TAP TUNTAP_DEFAULTS TuntapFlag = unix.IFF_TUN_EXCL | unix.IFF_ONE_QUEUE TUNTAP_VNET_HDR TuntapFlag = unix.IFF_VNET_HDR TUNTAP_TUN_EXCL TuntapFlag = unix.IFF_TUN_EXCL TUNTAP_NO_PI TuntapFlag = unix.IFF_NO_PI TUNTAP_ONE_QUEUE TuntapFlag = unix.IFF_ONE_QUEUE TUNTAP_MULTI_QUEUE TuntapFlag = unix.IFF_MULTI_QUEUE TUNTAP_MULTI_QUEUE_DEFAULTS TuntapFlag = TUNTAP_MULTI_QUEUE | TUNTAP_NO_PI ) var StringToTuntapModeMap = map[string]TuntapMode{ "tun": TUNTAP_MODE_TUN, "tap": TUNTAP_MODE_TAP, } func (ttm TuntapMode) String() string { switch ttm { case TUNTAP_MODE_TUN: return "tun" case TUNTAP_MODE_TAP: return "tap" } return "unknown" } const ( VF_LINK_STATE_AUTO uint32 = 0 VF_LINK_STATE_ENABLE uint32 = 1 VF_LINK_STATE_DISABLE uint32 = 2 ) var macvlanModes = [...]uint32{ 0, nl.MACVLAN_MODE_PRIVATE, nl.MACVLAN_MODE_VEPA, nl.MACVLAN_MODE_BRIDGE, nl.MACVLAN_MODE_PASSTHRU, nl.MACVLAN_MODE_SOURCE, } func ensureIndex(link *LinkAttrs) { if link != nil && link.Index == 0 { newlink, _ := LinkByName(link.Name) if newlink != nil { link.Index = newlink.Attrs().Index } } } func (h *Handle) ensureIndex(link *LinkAttrs) { if link != nil && link.Index == 0 { newlink, _ := h.LinkByName(link.Name) if newlink != nil { link.Index = newlink.Attrs().Index } } } func (h *Handle) LinkSetARPOff(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change |= unix.IFF_NOARP msg.Flags |= unix.IFF_NOARP msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func LinkSetARPOff(link Link) error { return pkgHandle.LinkSetARPOff(link) } func (h *Handle) LinkSetARPOn(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change |= unix.IFF_NOARP msg.Flags &= ^uint32(unix.IFF_NOARP) msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func LinkSetARPOn(link Link) error { return pkgHandle.LinkSetARPOn(link) } func (h *Handle) SetPromiscOn(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_PROMISC msg.Flags = unix.IFF_PROMISC msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetAllmulticastOn enables the reception of all hardware multicast packets for the link device. // Equivalent to: `ip link set $link allmulticast on` func LinkSetAllmulticastOn(link Link) error { return pkgHandle.LinkSetAllmulticastOn(link) } // LinkSetAllmulticastOn enables the reception of all hardware multicast packets for the link device. // Equivalent to: `ip link set $link allmulticast on` func (h *Handle) LinkSetAllmulticastOn(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_ALLMULTI msg.Flags = unix.IFF_ALLMULTI msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetAllmulticastOff disables the reception of all hardware multicast packets for the link device. // Equivalent to: `ip link set $link allmulticast off` func LinkSetAllmulticastOff(link Link) error { return pkgHandle.LinkSetAllmulticastOff(link) } // LinkSetAllmulticastOff disables the reception of all hardware multicast packets for the link device. // Equivalent to: `ip link set $link allmulticast off` func (h *Handle) LinkSetAllmulticastOff(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_ALLMULTI msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetMulticastOn enables the reception of multicast packets for the link device. // Equivalent to: `ip link set $link multicast on` func LinkSetMulticastOn(link Link) error { return pkgHandle.LinkSetMulticastOn(link) } // LinkSetMulticastOn enables the reception of multicast packets for the link device. // Equivalent to: `ip link set $link multicast on` func (h *Handle) LinkSetMulticastOn(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_MULTICAST msg.Flags = unix.IFF_MULTICAST msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetAllmulticastOff disables the reception of multicast packets for the link device. // Equivalent to: `ip link set $link multicast off` func LinkSetMulticastOff(link Link) error { return pkgHandle.LinkSetMulticastOff(link) } // LinkSetAllmulticastOff disables the reception of multicast packets for the link device. // Equivalent to: `ip link set $link multicast off` func (h *Handle) LinkSetMulticastOff(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_MULTICAST msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func MacvlanMACAddrAdd(link Link, addr net.HardwareAddr) error { return pkgHandle.MacvlanMACAddrAdd(link, addr) } func (h *Handle) MacvlanMACAddrAdd(link Link, addr net.HardwareAddr) error { return h.macvlanMACAddrChange(link, []net.HardwareAddr{addr}, nl.MACVLAN_MACADDR_ADD) } func MacvlanMACAddrDel(link Link, addr net.HardwareAddr) error { return pkgHandle.MacvlanMACAddrDel(link, addr) } func (h *Handle) MacvlanMACAddrDel(link Link, addr net.HardwareAddr) error { return h.macvlanMACAddrChange(link, []net.HardwareAddr{addr}, nl.MACVLAN_MACADDR_DEL) } func MacvlanMACAddrFlush(link Link) error { return pkgHandle.MacvlanMACAddrFlush(link) } func (h *Handle) MacvlanMACAddrFlush(link Link) error { return h.macvlanMACAddrChange(link, nil, nl.MACVLAN_MACADDR_FLUSH) } func MacvlanMACAddrSet(link Link, addrs []net.HardwareAddr) error { return pkgHandle.MacvlanMACAddrSet(link, addrs) } func (h *Handle) MacvlanMACAddrSet(link Link, addrs []net.HardwareAddr) error { return h.macvlanMACAddrChange(link, addrs, nl.MACVLAN_MACADDR_SET) } func (h *Handle) macvlanMACAddrChange(link Link, addrs []net.HardwareAddr, mode uint32) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil) linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type())) inner := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) // IFLA_MACVLAN_MACADDR_MODE = mode b := make([]byte, 4) native.PutUint32(b, mode) inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR_MODE, b) // populate message with MAC addrs, if necessary switch mode { case nl.MACVLAN_MACADDR_ADD, nl.MACVLAN_MACADDR_DEL: if len(addrs) == 1 { inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR, []byte(addrs[0])) } case nl.MACVLAN_MACADDR_SET: mad := inner.AddRtAttr(nl.IFLA_MACVLAN_MACADDR_DATA, nil) for _, addr := range addrs { mad.AddRtAttr(nl.IFLA_MACVLAN_MACADDR, []byte(addr)) } } req.AddData(linkInfo) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetMacvlanMode sets the mode of a macvlan or macvtap link device. // Note that passthrough mode cannot be set to and from and will fail. // Equivalent to: `ip link set $link type (macvlan|macvtap) mode $mode func LinkSetMacvlanMode(link Link, mode MacvlanMode) error { return pkgHandle.LinkSetMacvlanMode(link, mode) } // LinkSetMacvlanMode sets the mode of the macvlan or macvtap link device. // Note that passthrough mode cannot be set to and from and will fail. // Equivalent to: `ip link set $link type (macvlan|macvtap) mode $mode func (h *Handle) LinkSetMacvlanMode(link Link, mode MacvlanMode) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil) linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type())) data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_MACVLAN_MODE, nl.Uint32Attr(macvlanModes[mode])) req.AddData(linkInfo) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func BridgeSetMcastSnoop(link Link, on bool) error { return pkgHandle.BridgeSetMcastSnoop(link, on) } func (h *Handle) BridgeSetMcastSnoop(link Link, on bool) error { bridge := link.(*Bridge) bridge.MulticastSnooping = &on return h.linkModify(bridge, unix.NLM_F_ACK) } func BridgeSetVlanFiltering(link Link, on bool) error { return pkgHandle.BridgeSetVlanFiltering(link, on) } func (h *Handle) BridgeSetVlanFiltering(link Link, on bool) error { bridge := link.(*Bridge) bridge.VlanFiltering = &on return h.linkModify(bridge, unix.NLM_F_ACK) } func BridgeSetVlanDefaultPVID(link Link, pvid uint16) error { return pkgHandle.BridgeSetVlanDefaultPVID(link, pvid) } func (h *Handle) BridgeSetVlanDefaultPVID(link Link, pvid uint16) error { bridge := link.(*Bridge) bridge.VlanDefaultPVID = &pvid return h.linkModify(bridge, unix.NLM_F_ACK) } func SetPromiscOn(link Link) error { return pkgHandle.SetPromiscOn(link) } func (h *Handle) SetPromiscOff(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_PROMISC msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func SetPromiscOff(link Link) error { return pkgHandle.SetPromiscOff(link) } // LinkSetUp enables the link device. // Equivalent to: `ip link set $link up` func LinkSetUp(link Link) error { return pkgHandle.LinkSetUp(link) } // LinkSetUp enables the link device. // Equivalent to: `ip link set $link up` func (h *Handle) LinkSetUp(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_UP msg.Flags = unix.IFF_UP msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetDown disables link device. // Equivalent to: `ip link set $link down` func LinkSetDown(link Link) error { return pkgHandle.LinkSetDown(link) } // LinkSetDown disables link device. // Equivalent to: `ip link set $link down` func (h *Handle) LinkSetDown(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Change = unix.IFF_UP msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetMTU sets the mtu of the link device. // Equivalent to: `ip link set $link mtu $mtu` func LinkSetMTU(link Link, mtu int) error { return pkgHandle.LinkSetMTU(link, mtu) } // LinkSetMTU sets the mtu of the link device. // Equivalent to: `ip link set $link mtu $mtu` func (h *Handle) LinkSetMTU(link Link, mtu int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(mtu)) data := nl.NewRtAttr(unix.IFLA_MTU, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetName sets the name of the link device. // Equivalent to: `ip link set $link name $name` func LinkSetName(link Link, name string) error { return pkgHandle.LinkSetName(link, name) } // LinkSetName sets the name of the link device. // Equivalent to: `ip link set $link name $name` func (h *Handle) LinkSetName(link Link, name string) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_IFNAME, []byte(name)) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetAlias sets the alias of the link device. // Equivalent to: `ip link set dev $link alias $name` func LinkSetAlias(link Link, name string) error { return pkgHandle.LinkSetAlias(link, name) } // LinkSetAlias sets the alias of the link device. // Equivalent to: `ip link set dev $link alias $name` func (h *Handle) LinkSetAlias(link Link, name string) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_IFALIAS, []byte(name)) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkAddAltName adds a new alternative name for the link device. // Equivalent to: `ip link property add $link altname $name` func LinkAddAltName(link Link, name string) error { return pkgHandle.LinkAddAltName(link, name) } // LinkAddAltName adds a new alternative name for the link device. // Equivalent to: `ip link property add $link altname $name` func (h *Handle) LinkAddAltName(link Link, name string) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_NEWLINKPROP, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_PROP_LIST|unix.NLA_F_NESTED, nil) data.AddRtAttr(unix.IFLA_ALT_IFNAME, []byte(name)) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkDelAltName delete an alternative name for the link device. // Equivalent to: `ip link property del $link altname $name` func LinkDelAltName(link Link, name string) error { return pkgHandle.LinkDelAltName(link, name) } // LinkDelAltName delete an alternative name for the link device. // Equivalent to: `ip link property del $link altname $name` func (h *Handle) LinkDelAltName(link Link, name string) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_DELLINKPROP, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_PROP_LIST|unix.NLA_F_NESTED, nil) data.AddRtAttr(unix.IFLA_ALT_IFNAME, []byte(name)) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetHardwareAddr sets the hardware address of the link device. // Equivalent to: `ip link set $link address $hwaddr` func LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error { return pkgHandle.LinkSetHardwareAddr(link, hwaddr) } // LinkSetHardwareAddr sets the hardware address of the link device. // Equivalent to: `ip link set $link address $hwaddr` func (h *Handle) LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_ADDRESS, []byte(hwaddr)) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfHardwareAddr sets the hardware address of a vf for the link. // Equivalent to: `ip link set $link vf $vf mac $hwaddr` func LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error { return pkgHandle.LinkSetVfHardwareAddr(link, vf, hwaddr) } // LinkSetVfHardwareAddr sets the hardware address of a vf for the link. // Equivalent to: `ip link set $link vf $vf mac $hwaddr` func (h *Handle) LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfMac{ Vf: uint32(vf), } copy(vfmsg.Mac[:], []byte(hwaddr)) info.AddRtAttr(nl.IFLA_VF_MAC, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfVlan sets the vlan of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan` func LinkSetVfVlan(link Link, vf, vlan int) error { return pkgHandle.LinkSetVfVlan(link, vf, vlan) } // LinkSetVfVlan sets the vlan of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan` func (h *Handle) LinkSetVfVlan(link Link, vf, vlan int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfVlan{ Vf: uint32(vf), Vlan: uint32(vlan), } info.AddRtAttr(nl.IFLA_VF_VLAN, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfVlanQos sets the vlan and qos priority of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos` func LinkSetVfVlanQos(link Link, vf, vlan, qos int) error { return pkgHandle.LinkSetVfVlanQos(link, vf, vlan, qos) } // LinkSetVfVlanQos sets the vlan and qos priority of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos` func (h *Handle) LinkSetVfVlanQos(link Link, vf, vlan, qos int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfVlan{ Vf: uint32(vf), Vlan: uint32(vlan), Qos: uint32(qos), } info.AddRtAttr(nl.IFLA_VF_VLAN, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfVlanQosProto sets the vlan, qos and protocol of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos proto $proto` func LinkSetVfVlanQosProto(link Link, vf, vlan, qos, proto int) error { return pkgHandle.LinkSetVfVlanQosProto(link, vf, vlan, qos, proto) } // LinkSetVfVlanQosProto sets the vlan, qos and protocol of a vf for the link. // Equivalent to: `ip link set $link vf $vf vlan $vlan qos $qos proto $proto` func (h *Handle) LinkSetVfVlanQosProto(link Link, vf, vlan, qos, proto int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) vfInfo := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfVlanList := vfInfo.AddRtAttr(nl.IFLA_VF_VLAN_LIST, nil) vfmsg := nl.VfVlanInfo{ VfVlan: nl.VfVlan{ Vf: uint32(vf), Vlan: uint32(vlan), Qos: uint32(qos), }, VlanProto: (uint16(proto)>>8)&0xFF | (uint16(proto)&0xFF)<<8, } vfVlanList.AddRtAttr(nl.IFLA_VF_VLAN_INFO, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfTxRate sets the tx rate of a vf for the link. // Equivalent to: `ip link set $link vf $vf rate $rate` func LinkSetVfTxRate(link Link, vf, rate int) error { return pkgHandle.LinkSetVfTxRate(link, vf, rate) } // LinkSetVfTxRate sets the tx rate of a vf for the link. // Equivalent to: `ip link set $link vf $vf rate $rate` func (h *Handle) LinkSetVfTxRate(link Link, vf, rate int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfTxRate{ Vf: uint32(vf), Rate: uint32(rate), } info.AddRtAttr(nl.IFLA_VF_TX_RATE, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfRate sets the min and max tx rate of a vf for the link. // Equivalent to: `ip link set $link vf $vf min_tx_rate $min_rate max_tx_rate $max_rate` func LinkSetVfRate(link Link, vf, minRate, maxRate int) error { return pkgHandle.LinkSetVfRate(link, vf, minRate, maxRate) } // LinkSetVfRate sets the min and max tx rate of a vf for the link. // Equivalent to: `ip link set $link vf $vf min_tx_rate $min_rate max_tx_rate $max_rate` func (h *Handle) LinkSetVfRate(link Link, vf, minRate, maxRate int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfRate{ Vf: uint32(vf), MinTxRate: uint32(minRate), MaxTxRate: uint32(maxRate), } info.AddRtAttr(nl.IFLA_VF_RATE, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfState enables/disables virtual link state on a vf. // Equivalent to: `ip link set $link vf $vf state $state` func LinkSetVfState(link Link, vf int, state uint32) error { return pkgHandle.LinkSetVfState(link, vf, state) } // LinkSetVfState enables/disables virtual link state on a vf. // Equivalent to: `ip link set $link vf $vf state $state` func (h *Handle) LinkSetVfState(link Link, vf int, state uint32) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfLinkState{ Vf: uint32(vf), LinkState: state, } info.AddRtAttr(nl.IFLA_VF_LINK_STATE, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfSpoofchk enables/disables spoof check on a vf for the link. // Equivalent to: `ip link set $link vf $vf spoofchk $check` func LinkSetVfSpoofchk(link Link, vf int, check bool) error { return pkgHandle.LinkSetVfSpoofchk(link, vf, check) } // LinkSetVfSpoofchk enables/disables spoof check on a vf for the link. // Equivalent to: `ip link set $link vf $vf spoofchk $check` func (h *Handle) LinkSetVfSpoofchk(link Link, vf int, check bool) error { var setting uint32 base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) if check { setting = 1 } vfmsg := nl.VfSpoofchk{ Vf: uint32(vf), Setting: setting, } info.AddRtAttr(nl.IFLA_VF_SPOOFCHK, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfTrust enables/disables trust state on a vf for the link. // Equivalent to: `ip link set $link vf $vf trust $state` func LinkSetVfTrust(link Link, vf int, state bool) error { return pkgHandle.LinkSetVfTrust(link, vf, state) } // LinkSetVfTrust enables/disables trust state on a vf for the link. // Equivalent to: `ip link set $link vf $vf trust $state` func (h *Handle) LinkSetVfTrust(link Link, vf int, state bool) error { var setting uint32 base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) if state { setting = 1 } vfmsg := nl.VfTrust{ Vf: uint32(vf), Setting: setting, } info.AddRtAttr(nl.IFLA_VF_TRUST, vfmsg.Serialize()) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetVfNodeGUID sets the node GUID of a vf for the link. // Equivalent to: `ip link set dev $link vf $vf node_guid $nodeguid` func LinkSetVfNodeGUID(link Link, vf int, nodeguid net.HardwareAddr) error { return pkgHandle.LinkSetVfGUID(link, vf, nodeguid, nl.IFLA_VF_IB_NODE_GUID) } // LinkSetVfPortGUID sets the port GUID of a vf for the link. // Equivalent to: `ip link set dev $link vf $vf port_guid $portguid` func LinkSetVfPortGUID(link Link, vf int, portguid net.HardwareAddr) error { return pkgHandle.LinkSetVfGUID(link, vf, portguid, nl.IFLA_VF_IB_PORT_GUID) } // LinkSetVfGUID sets the node or port GUID of a vf for the link. func (h *Handle) LinkSetVfGUID(link Link, vf int, vfGuid net.HardwareAddr, guidType int) error { var err error var guid uint64 buf := bytes.NewBuffer(vfGuid) err = binary.Read(buf, binary.BigEndian, &guid) if err != nil { return err } base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) data := nl.NewRtAttr(unix.IFLA_VFINFO_LIST, nil) info := data.AddRtAttr(nl.IFLA_VF_INFO, nil) vfmsg := nl.VfGUID{ Vf: uint32(vf), GUID: guid, } info.AddRtAttr(guidType, vfmsg.Serialize()) req.AddData(data) _, err = req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetMaster sets the master of the link device. // Equivalent to: `ip link set $link master $master` func LinkSetMaster(link Link, master Link) error { return pkgHandle.LinkSetMaster(link, master) } // LinkSetMaster sets the master of the link device. // Equivalent to: `ip link set $link master $master` func (h *Handle) LinkSetMaster(link Link, master Link) error { index := 0 if master != nil { masterBase := master.Attrs() h.ensureIndex(masterBase) index = masterBase.Index } if index <= 0 { return fmt.Errorf("Device does not exist") } return h.LinkSetMasterByIndex(link, index) } // LinkSetNoMaster removes the master of the link device. // Equivalent to: `ip link set $link nomaster` func LinkSetNoMaster(link Link) error { return pkgHandle.LinkSetNoMaster(link) } // LinkSetNoMaster removes the master of the link device. // Equivalent to: `ip link set $link nomaster` func (h *Handle) LinkSetNoMaster(link Link) error { return h.LinkSetMasterByIndex(link, 0) } // LinkSetMasterByIndex sets the master of the link device. // Equivalent to: `ip link set $link master $master` func LinkSetMasterByIndex(link Link, masterIndex int) error { return pkgHandle.LinkSetMasterByIndex(link, masterIndex) } // LinkSetMasterByIndex sets the master of the link device. // Equivalent to: `ip link set $link master $master` func (h *Handle) LinkSetMasterByIndex(link Link, masterIndex int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(masterIndex)) data := nl.NewRtAttr(unix.IFLA_MASTER, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetNsPid puts the device into a new network namespace. The // pid must be a pid of a running process. // Equivalent to: `ip link set $link netns $pid` func LinkSetNsPid(link Link, nspid int) error { return pkgHandle.LinkSetNsPid(link, nspid) } // LinkSetNsPid puts the device into a new network namespace. The // pid must be a pid of a running process. // Equivalent to: `ip link set $link netns $pid` func (h *Handle) LinkSetNsPid(link Link, nspid int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(nspid)) data := nl.NewRtAttr(unix.IFLA_NET_NS_PID, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetNsFd puts the device into a new network namespace. The // fd must be an open file descriptor to a network namespace. // Similar to: `ip link set $link netns $ns` func LinkSetNsFd(link Link, fd int) error { return pkgHandle.LinkSetNsFd(link, fd) } // LinkSetNsFd puts the device into a new network namespace. The // fd must be an open file descriptor to a network namespace. // Similar to: `ip link set $link netns $ns` func (h *Handle) LinkSetNsFd(link Link, fd int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(fd)) data := nl.NewRtAttr(unix.IFLA_NET_NS_FD, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetXdpFd adds a bpf function to the driver. The fd must be a bpf // program loaded with bpf(type=BPF_PROG_TYPE_XDP) func LinkSetXdpFd(link Link, fd int) error { return LinkSetXdpFdWithFlags(link, fd, 0) } // LinkSetXdpFdWithFlags adds a bpf function to the driver with the given // options. The fd must be a bpf program loaded with bpf(type=BPF_PROG_TYPE_XDP) func LinkSetXdpFdWithFlags(link Link, fd, flags int) error { base := link.Attrs() ensureIndex(base) req := nl.NewNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) addXdpAttrs(&LinkXdp{Fd: fd, Flags: uint32(flags)}, req) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGSOMaxSegs sets the GSO maximum segment count of the link device. // Equivalent to: `ip link set $link gso_max_segs $maxSegs` func LinkSetGSOMaxSegs(link Link, maxSegs int) error { return pkgHandle.LinkSetGSOMaxSegs(link, maxSegs) } // LinkSetGSOMaxSegs sets the GSO maximum segment count of the link device. // Equivalent to: `ip link set $link gso_max_segs $maxSegs` func (h *Handle) LinkSetGSOMaxSegs(link Link, maxSize int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(maxSize)) data := nl.NewRtAttr(unix.IFLA_GSO_MAX_SEGS, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGSOMaxSize sets the IPv6 GSO maximum size of the link device. // Equivalent to: `ip link set $link gso_max_size $maxSize` func LinkSetGSOMaxSize(link Link, maxSize int) error { return pkgHandle.LinkSetGSOMaxSize(link, maxSize) } // LinkSetGSOMaxSize sets the IPv6 GSO maximum size of the link device. // Equivalent to: `ip link set $link gso_max_size $maxSize` func (h *Handle) LinkSetGSOMaxSize(link Link, maxSize int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(maxSize)) data := nl.NewRtAttr(unix.IFLA_GSO_MAX_SIZE, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGROMaxSize sets the IPv6 GRO maximum size of the link device. // Equivalent to: `ip link set $link gro_max_size $maxSize` func LinkSetGROMaxSize(link Link, maxSize int) error { return pkgHandle.LinkSetGROMaxSize(link, maxSize) } // LinkSetGROMaxSize sets the IPv6 GRO maximum size of the link device. // Equivalent to: `ip link set $link gro_max_size $maxSize` func (h *Handle) LinkSetGROMaxSize(link Link, maxSize int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(maxSize)) data := nl.NewRtAttr(unix.IFLA_GRO_MAX_SIZE, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGSOIPv4MaxSize sets the IPv4 GSO maximum size of the link device. // Equivalent to: `ip link set $link gso_ipv4_max_size $maxSize` func LinkSetGSOIPv4MaxSize(link Link, maxSize int) error { return pkgHandle.LinkSetGSOIPv4MaxSize(link, maxSize) } // LinkSetGSOIPv4MaxSize sets the IPv4 GSO maximum size of the link device. // Equivalent to: `ip link set $link gso_ipv4_max_size $maxSize` func (h *Handle) LinkSetGSOIPv4MaxSize(link Link, maxSize int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(maxSize)) data := nl.NewRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGROIPv4MaxSize sets the IPv4 GRO maximum size of the link device. // Equivalent to: `ip link set $link gro_ipv4_max_size $maxSize` func LinkSetGROIPv4MaxSize(link Link, maxSize int) error { return pkgHandle.LinkSetGROIPv4MaxSize(link, maxSize) } // LinkSetGROIPv4MaxSize sets the IPv4 GRO maximum size of the link device. // Equivalent to: `ip link set $link gro_ipv4_max_size $maxSize` func (h *Handle) LinkSetGROIPv4MaxSize(link Link, maxSize int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(maxSize)) data := nl.NewRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func boolAttr(val bool) []byte { var v uint8 if val { v = 1 } return nl.Uint8Attr(v) } type vxlanPortRange struct { Lo, Hi uint16 } func addVxlanAttrs(vxlan *Vxlan, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if vxlan.FlowBased { vxlan.VxlanId = 0 } data.AddRtAttr(nl.IFLA_VXLAN_ID, nl.Uint32Attr(uint32(vxlan.VxlanId))) if vxlan.VtepDevIndex != 0 { data.AddRtAttr(nl.IFLA_VXLAN_LINK, nl.Uint32Attr(uint32(vxlan.VtepDevIndex))) } if vxlan.SrcAddr != nil { ip := vxlan.SrcAddr.To4() if ip != nil { data.AddRtAttr(nl.IFLA_VXLAN_LOCAL, []byte(ip)) } else { ip = vxlan.SrcAddr.To16() if ip != nil { data.AddRtAttr(nl.IFLA_VXLAN_LOCAL6, []byte(ip)) } } } if vxlan.Group != nil { group := vxlan.Group.To4() if group != nil { data.AddRtAttr(nl.IFLA_VXLAN_GROUP, []byte(group)) } else { group = vxlan.Group.To16() if group != nil { data.AddRtAttr(nl.IFLA_VXLAN_GROUP6, []byte(group)) } } } data.AddRtAttr(nl.IFLA_VXLAN_TTL, nl.Uint8Attr(uint8(vxlan.TTL))) data.AddRtAttr(nl.IFLA_VXLAN_TOS, nl.Uint8Attr(uint8(vxlan.TOS))) data.AddRtAttr(nl.IFLA_VXLAN_LEARNING, boolAttr(vxlan.Learning)) data.AddRtAttr(nl.IFLA_VXLAN_PROXY, boolAttr(vxlan.Proxy)) data.AddRtAttr(nl.IFLA_VXLAN_RSC, boolAttr(vxlan.RSC)) data.AddRtAttr(nl.IFLA_VXLAN_L2MISS, boolAttr(vxlan.L2miss)) data.AddRtAttr(nl.IFLA_VXLAN_L3MISS, boolAttr(vxlan.L3miss)) data.AddRtAttr(nl.IFLA_VXLAN_UDP_ZERO_CSUM6_TX, boolAttr(vxlan.UDP6ZeroCSumTx)) data.AddRtAttr(nl.IFLA_VXLAN_UDP_ZERO_CSUM6_RX, boolAttr(vxlan.UDP6ZeroCSumRx)) if vxlan.UDPCSum { data.AddRtAttr(nl.IFLA_VXLAN_UDP_CSUM, boolAttr(vxlan.UDPCSum)) } if vxlan.GBP { data.AddRtAttr(nl.IFLA_VXLAN_GBP, []byte{}) } if vxlan.FlowBased { data.AddRtAttr(nl.IFLA_VXLAN_FLOWBASED, boolAttr(vxlan.FlowBased)) } if vxlan.NoAge { data.AddRtAttr(nl.IFLA_VXLAN_AGEING, nl.Uint32Attr(0)) } else if vxlan.Age > 0 { data.AddRtAttr(nl.IFLA_VXLAN_AGEING, nl.Uint32Attr(uint32(vxlan.Age))) } if vxlan.Limit > 0 { data.AddRtAttr(nl.IFLA_VXLAN_LIMIT, nl.Uint32Attr(uint32(vxlan.Limit))) } if vxlan.Port > 0 { data.AddRtAttr(nl.IFLA_VXLAN_PORT, htons(uint16(vxlan.Port))) } if vxlan.PortLow > 0 || vxlan.PortHigh > 0 { pr := vxlanPortRange{uint16(vxlan.PortLow), uint16(vxlan.PortHigh)} buf := new(bytes.Buffer) binary.Write(buf, binary.BigEndian, &pr) data.AddRtAttr(nl.IFLA_VXLAN_PORT_RANGE, buf.Bytes()) } } func addBondAttrs(bond *Bond, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if bond.Mode >= 0 { data.AddRtAttr(nl.IFLA_BOND_MODE, nl.Uint8Attr(uint8(bond.Mode))) } if bond.ActiveSlave >= 0 { data.AddRtAttr(nl.IFLA_BOND_ACTIVE_SLAVE, nl.Uint32Attr(uint32(bond.ActiveSlave))) } if bond.Miimon >= 0 { data.AddRtAttr(nl.IFLA_BOND_MIIMON, nl.Uint32Attr(uint32(bond.Miimon))) } if bond.UpDelay >= 0 { data.AddRtAttr(nl.IFLA_BOND_UPDELAY, nl.Uint32Attr(uint32(bond.UpDelay))) } if bond.DownDelay >= 0 { data.AddRtAttr(nl.IFLA_BOND_DOWNDELAY, nl.Uint32Attr(uint32(bond.DownDelay))) } if bond.UseCarrier >= 0 { data.AddRtAttr(nl.IFLA_BOND_USE_CARRIER, nl.Uint8Attr(uint8(bond.UseCarrier))) } if bond.ArpInterval >= 0 { data.AddRtAttr(nl.IFLA_BOND_ARP_INTERVAL, nl.Uint32Attr(uint32(bond.ArpInterval))) } if bond.ArpIpTargets != nil { msg := data.AddRtAttr(nl.IFLA_BOND_ARP_IP_TARGET, nil) for i := range bond.ArpIpTargets { ip := bond.ArpIpTargets[i].To4() if ip != nil { msg.AddRtAttr(i, []byte(ip)) continue } ip = bond.ArpIpTargets[i].To16() if ip != nil { msg.AddRtAttr(i, []byte(ip)) } } } if bond.ArpValidate >= 0 { data.AddRtAttr(nl.IFLA_BOND_ARP_VALIDATE, nl.Uint32Attr(uint32(bond.ArpValidate))) } if bond.ArpAllTargets >= 0 { data.AddRtAttr(nl.IFLA_BOND_ARP_ALL_TARGETS, nl.Uint32Attr(uint32(bond.ArpAllTargets))) } if bond.Primary >= 0 { data.AddRtAttr(nl.IFLA_BOND_PRIMARY, nl.Uint32Attr(uint32(bond.Primary))) } if bond.PrimaryReselect >= 0 { data.AddRtAttr(nl.IFLA_BOND_PRIMARY_RESELECT, nl.Uint8Attr(uint8(bond.PrimaryReselect))) } if bond.FailOverMac >= 0 { data.AddRtAttr(nl.IFLA_BOND_FAIL_OVER_MAC, nl.Uint8Attr(uint8(bond.FailOverMac))) } if bond.XmitHashPolicy >= 0 { data.AddRtAttr(nl.IFLA_BOND_XMIT_HASH_POLICY, nl.Uint8Attr(uint8(bond.XmitHashPolicy))) } if bond.ResendIgmp >= 0 { data.AddRtAttr(nl.IFLA_BOND_RESEND_IGMP, nl.Uint32Attr(uint32(bond.ResendIgmp))) } if bond.NumPeerNotif >= 0 { data.AddRtAttr(nl.IFLA_BOND_NUM_PEER_NOTIF, nl.Uint8Attr(uint8(bond.NumPeerNotif))) } if bond.AllSlavesActive >= 0 { data.AddRtAttr(nl.IFLA_BOND_ALL_SLAVES_ACTIVE, nl.Uint8Attr(uint8(bond.AllSlavesActive))) } if bond.MinLinks >= 0 { data.AddRtAttr(nl.IFLA_BOND_MIN_LINKS, nl.Uint32Attr(uint32(bond.MinLinks))) } if bond.LpInterval >= 0 { data.AddRtAttr(nl.IFLA_BOND_LP_INTERVAL, nl.Uint32Attr(uint32(bond.LpInterval))) } if bond.PacketsPerSlave >= 0 { data.AddRtAttr(nl.IFLA_BOND_PACKETS_PER_SLAVE, nl.Uint32Attr(uint32(bond.PacketsPerSlave))) } if bond.LacpRate >= 0 { data.AddRtAttr(nl.IFLA_BOND_AD_LACP_RATE, nl.Uint8Attr(uint8(bond.LacpRate))) } if bond.AdSelect >= 0 { data.AddRtAttr(nl.IFLA_BOND_AD_SELECT, nl.Uint8Attr(uint8(bond.AdSelect))) } if bond.AdActorSysPrio >= 0 { data.AddRtAttr(nl.IFLA_BOND_AD_ACTOR_SYS_PRIO, nl.Uint16Attr(uint16(bond.AdActorSysPrio))) } if bond.AdUserPortKey >= 0 { data.AddRtAttr(nl.IFLA_BOND_AD_USER_PORT_KEY, nl.Uint16Attr(uint16(bond.AdUserPortKey))) } if bond.AdActorSystem != nil { data.AddRtAttr(nl.IFLA_BOND_AD_ACTOR_SYSTEM, []byte(bond.AdActorSystem)) } if bond.TlbDynamicLb >= 0 { data.AddRtAttr(nl.IFLA_BOND_TLB_DYNAMIC_LB, nl.Uint8Attr(uint8(bond.TlbDynamicLb))) } } func cleanupFds(fds []*os.File) { for _, f := range fds { f.Close() } } // LinkAdd adds a new link device. The type and features of the device // are taken from the parameters in the link object. // Equivalent to: `ip link add $link` func LinkAdd(link Link) error { return pkgHandle.LinkAdd(link) } // LinkAdd adds a new link device. The type and features of the device // are taken from the parameters in the link object. // Equivalent to: `ip link add $link` func (h *Handle) LinkAdd(link Link) error { return h.linkModify(link, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK) } func LinkModify(link Link) error { return pkgHandle.LinkModify(link) } func (h *Handle) LinkModify(link Link) error { return h.linkModify(link, unix.NLM_F_REQUEST|unix.NLM_F_ACK) } func (h *Handle) linkModify(link Link, flags int) error { // TODO: support extra data for macvlan base := link.Attrs() // if tuntap, then the name can be empty, OS will provide a name tuntap, isTuntap := link.(*Tuntap) if base.Name == "" && !isTuntap { return fmt.Errorf("LinkAttrs.Name cannot be empty") } if isTuntap { if tuntap.Mode < unix.IFF_TUN || tuntap.Mode > unix.IFF_TAP { return fmt.Errorf("Tuntap.Mode %v unknown", tuntap.Mode) } queues := tuntap.Queues var fds []*os.File var req ifReq copy(req.Name[:15], base.Name) req.Flags = uint16(tuntap.Flags) if queues == 0 { //Legacy compatibility queues = 1 if tuntap.Flags == 0 { req.Flags = uint16(TUNTAP_DEFAULTS) } } else { // For best peformance set Flags to TUNTAP_MULTI_QUEUE_DEFAULTS | TUNTAP_VNET_HDR // when a) KVM has support for this ABI and // b) the value of the flag is queryable using the TUNGETIFF ioctl if tuntap.Flags == 0 { req.Flags = uint16(TUNTAP_MULTI_QUEUE_DEFAULTS) } } req.Flags |= uint16(tuntap.Mode) const TUN = "/dev/net/tun" for i := 0; i < queues; i++ { localReq := req fd, err := unix.Open(TUN, os.O_RDWR|syscall.O_CLOEXEC, 0) if err != nil { cleanupFds(fds) return err } _, _, errno := unix.Syscall(unix.SYS_IOCTL, uintptr(fd), uintptr(unix.TUNSETIFF), uintptr(unsafe.Pointer(&localReq))) if errno != 0 { // close the new fd unix.Close(fd) // and the already opened ones cleanupFds(fds) return fmt.Errorf("Tuntap IOCTL TUNSETIFF failed [%d], errno %v", i, errno) } _, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), syscall.TUNSETOWNER, uintptr(tuntap.Owner)) if errno != 0 { cleanupFds(fds) return fmt.Errorf("Tuntap IOCTL TUNSETOWNER failed [%d], errno %v", i, errno) } _, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), syscall.TUNSETGROUP, uintptr(tuntap.Group)) if errno != 0 { cleanupFds(fds) return fmt.Errorf("Tuntap IOCTL TUNSETGROUP failed [%d], errno %v", i, errno) } // Set the tun device to non-blocking before use. The below comment // taken from: // // https://github.com/mistsys/tuntap/commit/161418c25003bbee77d085a34af64d189df62bea // // Note there is a complication because in go, if a device node is // opened, go sets it to use nonblocking I/O. However a /dev/net/tun // doesn't work with epoll until after the TUNSETIFF ioctl has been // done. So we open the unix fd directly, do the ioctl, then put the // fd in nonblocking mode, an then finally wrap it in a os.File, // which will see the nonblocking mode and add the fd to the // pollable set, so later on when we Read() from it blocked the // calling thread in the kernel. // // See // https://github.com/golang/go/issues/30426 // which got exposed in go 1.13 by the fix to // https://github.com/golang/go/issues/30624 err = unix.SetNonblock(fd, true) if err != nil { cleanupFds(fds) return fmt.Errorf("Tuntap set to non-blocking failed [%d], err %v", i, err) } // create the file from the file descriptor and store it file := os.NewFile(uintptr(fd), TUN) fds = append(fds, file) // 1) we only care for the name of the first tap in the multi queue set // 2) if the original name was empty, the localReq has now the actual name // // In addition: // This ensures that the link name is always identical to what the kernel returns. // Not only in case of an empty name, but also when using name templates. // e.g. when the provided name is "tap%d", the kernel replaces %d with the next available number. if i == 0 { link.Attrs().Name = strings.Trim(string(localReq.Name[:]), "\x00") } } control := func(file *os.File, f func(fd uintptr)) error { name := file.Name() conn, err := file.SyscallConn() if err != nil { return fmt.Errorf("SyscallConn() failed on %s: %v", name, err) } if err := conn.Control(f); err != nil { return fmt.Errorf("Failed to get file descriptor for %s: %v", name, err) } return nil } // only persist interface if NonPersist is NOT set if !tuntap.NonPersist { var errno syscall.Errno if err := control(fds[0], func(fd uintptr) { _, _, errno = unix.Syscall(unix.SYS_IOCTL, fd, uintptr(unix.TUNSETPERSIST), 1) }); err != nil { return err } if errno != 0 { cleanupFds(fds) return fmt.Errorf("Tuntap IOCTL TUNSETPERSIST failed, errno %v", errno) } } h.ensureIndex(base) // can't set master during create, so set it afterwards if base.MasterIndex != 0 { // TODO: verify MasterIndex is actually a bridge? err := h.LinkSetMasterByIndex(link, base.MasterIndex) if err != nil { // un-persist (e.g. allow the interface to be removed) the tuntap // should not hurt if not set prior, condition might be not needed if !tuntap.NonPersist { // ignore error _ = control(fds[0], func(fd uintptr) { _, _, _ = unix.Syscall(unix.SYS_IOCTL, fd, uintptr(unix.TUNSETPERSIST), 0) }) } cleanupFds(fds) return err } } if tuntap.Queues == 0 { cleanupFds(fds) } else { tuntap.Fds = fds } return nil } req := h.newNetlinkRequest(unix.RTM_NEWLINK, flags) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) // TODO: make it shorter if base.Flags&net.FlagUp != 0 { msg.Change = unix.IFF_UP msg.Flags = unix.IFF_UP } if base.Flags&net.FlagBroadcast != 0 { msg.Change |= unix.IFF_BROADCAST msg.Flags |= unix.IFF_BROADCAST } if base.Flags&net.FlagLoopback != 0 { msg.Change |= unix.IFF_LOOPBACK msg.Flags |= unix.IFF_LOOPBACK } if base.Flags&net.FlagPointToPoint != 0 { msg.Change |= unix.IFF_POINTOPOINT msg.Flags |= unix.IFF_POINTOPOINT } if base.Flags&net.FlagMulticast != 0 { msg.Change |= unix.IFF_MULTICAST msg.Flags |= unix.IFF_MULTICAST } if base.Index != 0 { msg.Index = int32(base.Index) } req.AddData(msg) if base.ParentIndex != 0 { b := make([]byte, 4) native.PutUint32(b, uint32(base.ParentIndex)) data := nl.NewRtAttr(unix.IFLA_LINK, b) req.AddData(data) } else if link.Type() == "ipvlan" || link.Type() == "ipoib" { return fmt.Errorf("Can't create %s link without ParentIndex", link.Type()) } nameData := nl.NewRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(base.Name)) req.AddData(nameData) if base.Alias != "" { alias := nl.NewRtAttr(unix.IFLA_IFALIAS, []byte(base.Alias)) req.AddData(alias) } if base.MTU > 0 { mtu := nl.NewRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(base.MTU))) req.AddData(mtu) } if base.TxQLen >= 0 { qlen := nl.NewRtAttr(unix.IFLA_TXQLEN, nl.Uint32Attr(uint32(base.TxQLen))) req.AddData(qlen) } if base.HardwareAddr != nil { hwaddr := nl.NewRtAttr(unix.IFLA_ADDRESS, []byte(base.HardwareAddr)) req.AddData(hwaddr) } if base.NumTxQueues > 0 { txqueues := nl.NewRtAttr(unix.IFLA_NUM_TX_QUEUES, nl.Uint32Attr(uint32(base.NumTxQueues))) req.AddData(txqueues) } if base.NumRxQueues > 0 { rxqueues := nl.NewRtAttr(unix.IFLA_NUM_RX_QUEUES, nl.Uint32Attr(uint32(base.NumRxQueues))) req.AddData(rxqueues) } if base.GSOMaxSegs > 0 { gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_MAX_SEGS, nl.Uint32Attr(base.GSOMaxSegs)) req.AddData(gsoAttr) } if base.GSOMaxSize > 0 { gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_MAX_SIZE, nl.Uint32Attr(base.GSOMaxSize)) req.AddData(gsoAttr) } if base.GROMaxSize > 0 { groAttr := nl.NewRtAttr(unix.IFLA_GRO_MAX_SIZE, nl.Uint32Attr(base.GROMaxSize)) req.AddData(groAttr) } if base.GSOIPv4MaxSize > 0 { gsoAttr := nl.NewRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, nl.Uint32Attr(base.GSOIPv4MaxSize)) req.AddData(gsoAttr) } if base.GROIPv4MaxSize > 0 { groAttr := nl.NewRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, nl.Uint32Attr(base.GROIPv4MaxSize)) req.AddData(groAttr) } if base.Group > 0 { groupAttr := nl.NewRtAttr(unix.IFLA_GROUP, nl.Uint32Attr(base.Group)) req.AddData(groupAttr) } if base.Namespace != nil { var attr *nl.RtAttr switch ns := base.Namespace.(type) { case NsPid: val := nl.Uint32Attr(uint32(ns)) attr = nl.NewRtAttr(unix.IFLA_NET_NS_PID, val) case NsFd: val := nl.Uint32Attr(uint32(ns)) attr = nl.NewRtAttr(unix.IFLA_NET_NS_FD, val) } req.AddData(attr) } if base.Xdp != nil { addXdpAttrs(base.Xdp, req) } linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil) linkInfo.AddRtAttr(nl.IFLA_INFO_KIND, nl.NonZeroTerminated(link.Type())) switch link := link.(type) { case *Vlan: b := make([]byte, 2) native.PutUint16(b, uint16(link.VlanId)) data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_VLAN_ID, b) if link.VlanProtocol != VLAN_PROTOCOL_UNKNOWN { data.AddRtAttr(nl.IFLA_VLAN_PROTOCOL, htons(uint16(link.VlanProtocol))) } case *Netkit: if err := addNetkitAttrs(link, linkInfo, flags); err != nil { return err } case *Veth: data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) peer := data.AddRtAttr(nl.VETH_INFO_PEER, nil) nl.NewIfInfomsgChild(peer, unix.AF_UNSPEC) peer.AddRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(link.PeerName)) if base.TxQLen >= 0 { peer.AddRtAttr(unix.IFLA_TXQLEN, nl.Uint32Attr(uint32(base.TxQLen))) } if base.NumTxQueues > 0 { peer.AddRtAttr(unix.IFLA_NUM_TX_QUEUES, nl.Uint32Attr(uint32(base.NumTxQueues))) } if base.NumRxQueues > 0 { peer.AddRtAttr(unix.IFLA_NUM_RX_QUEUES, nl.Uint32Attr(uint32(base.NumRxQueues))) } if base.MTU > 0 { peer.AddRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(base.MTU))) } if link.PeerHardwareAddr != nil { peer.AddRtAttr(unix.IFLA_ADDRESS, []byte(link.PeerHardwareAddr)) } if link.PeerNamespace != nil { switch ns := link.PeerNamespace.(type) { case NsPid: val := nl.Uint32Attr(uint32(ns)) peer.AddRtAttr(unix.IFLA_NET_NS_PID, val) case NsFd: val := nl.Uint32Attr(uint32(ns)) peer.AddRtAttr(unix.IFLA_NET_NS_FD, val) } } case *Vxlan: addVxlanAttrs(link, linkInfo) case *Bond: addBondAttrs(link, linkInfo) case *IPVlan: data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_IPVLAN_MODE, nl.Uint16Attr(uint16(link.Mode))) data.AddRtAttr(nl.IFLA_IPVLAN_FLAG, nl.Uint16Attr(uint16(link.Flag))) case *IPVtap: data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_IPVLAN_MODE, nl.Uint16Attr(uint16(link.Mode))) data.AddRtAttr(nl.IFLA_IPVLAN_FLAG, nl.Uint16Attr(uint16(link.Flag))) case *Macvlan: addMacvlanAttrs(link, linkInfo) case *Macvtap: addMacvtapAttrs(link, linkInfo) case *Geneve: addGeneveAttrs(link, linkInfo) case *Gretap: addGretapAttrs(link, linkInfo) case *Iptun: addIptunAttrs(link, linkInfo) case *Ip6tnl: addIp6tnlAttrs(link, linkInfo) case *Sittun: addSittunAttrs(link, linkInfo) case *Gretun: addGretunAttrs(link, linkInfo) case *Vti: addVtiAttrs(link, linkInfo) case *Vrf: addVrfAttrs(link, linkInfo) case *Bridge: addBridgeAttrs(link, linkInfo) case *GTP: addGTPAttrs(link, linkInfo) case *Xfrmi: addXfrmiAttrs(link, linkInfo) case *IPoIB: addIPoIBAttrs(link, linkInfo) case *BareUDP: addBareUDPAttrs(link, linkInfo) } req.AddData(linkInfo) _, err := req.Execute(unix.NETLINK_ROUTE, 0) if err != nil { return err } h.ensureIndex(base) // can't set master during create, so set it afterwards if base.MasterIndex != 0 { // TODO: verify MasterIndex is actually a bridge? return h.LinkSetMasterByIndex(link, base.MasterIndex) } return nil } // LinkDel deletes link device. Either Index or Name must be set in // the link object for it to be deleted. The other values are ignored. // Equivalent to: `ip link del $link` func LinkDel(link Link) error { return pkgHandle.LinkDel(link) } // LinkDel deletes link device. Either Index or Name must be set in // the link object for it to be deleted. The other values are ignored. // Equivalent to: `ip link del $link` func (h *Handle) LinkDel(link Link) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_DELLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func (h *Handle) linkByNameDump(name string) (Link, error) { links, executeErr := h.LinkList() if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) { return nil, executeErr } for _, link := range links { if link.Attrs().Name == name { return link, executeErr } // support finding interfaces also via altnames for _, altName := range link.Attrs().AltNames { if altName == name { return link, executeErr } } } return nil, LinkNotFoundError{fmt.Errorf("Link %s not found", name)} } func (h *Handle) linkByAliasDump(alias string) (Link, error) { links, executeErr := h.LinkList() if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) { return nil, executeErr } for _, link := range links { if link.Attrs().Alias == alias { return link, executeErr } } return nil, LinkNotFoundError{fmt.Errorf("Link alias %s not found", alias)} } // LinkByName finds a link by name and returns a pointer to the object. // // If the kernel doesn't support IFLA_IFNAME, this method will fall back to // filtering a dump of all link names. In this case, if the returned error is // [ErrDumpInterrupted] the result may be missing or outdated. func LinkByName(name string) (Link, error) { return pkgHandle.LinkByName(name) } // LinkByName finds a link by name and returns a pointer to the object. // // If the kernel doesn't support IFLA_IFNAME, this method will fall back to // filtering a dump of all link names. In this case, if the returned error is // [ErrDumpInterrupted] the result may be missing or outdated. func (h *Handle) LinkByName(name string) (Link, error) { if h.lookupByDump { return h.linkByNameDump(name) } req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) req.AddData(msg) attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF)) req.AddData(attr) nameData := nl.NewRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(name)) if len(name) > 15 { nameData = nl.NewRtAttr(unix.IFLA_ALT_IFNAME, nl.ZeroTerminated(name)) } req.AddData(nameData) link, err := execGetLink(req) if err == unix.EINVAL { // older kernels don't support looking up via IFLA_IFNAME // so fall back to dumping all links h.lookupByDump = true return h.linkByNameDump(name) } return link, err } // LinkByAlias finds a link by its alias and returns a pointer to the object. // If there are multiple links with the alias it returns the first one // // If the kernel doesn't support IFLA_IFALIAS, this method will fall back to // filtering a dump of all link names. In this case, if the returned error is // [ErrDumpInterrupted] the result may be missing or outdated. func LinkByAlias(alias string) (Link, error) { return pkgHandle.LinkByAlias(alias) } // LinkByAlias finds a link by its alias and returns a pointer to the object. // If there are multiple links with the alias it returns the first one // // If the kernel doesn't support IFLA_IFALIAS, this method will fall back to // filtering a dump of all link names. In this case, if the returned error is // [ErrDumpInterrupted] the result may be missing or outdated. func (h *Handle) LinkByAlias(alias string) (Link, error) { if h.lookupByDump { return h.linkByAliasDump(alias) } req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) req.AddData(msg) attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF)) req.AddData(attr) nameData := nl.NewRtAttr(unix.IFLA_IFALIAS, nl.ZeroTerminated(alias)) req.AddData(nameData) link, err := execGetLink(req) if err == unix.EINVAL { // older kernels don't support looking up via IFLA_IFALIAS // so fall back to dumping all links h.lookupByDump = true return h.linkByAliasDump(alias) } return link, err } // LinkByIndex finds a link by index and returns a pointer to the object. func LinkByIndex(index int) (Link, error) { return pkgHandle.LinkByIndex(index) } // LinkByIndex finds a link by index and returns a pointer to the object. func (h *Handle) LinkByIndex(index int) (Link, error) { req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(index) req.AddData(msg) attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF)) req.AddData(attr) return execGetLink(req) } func execGetLink(req *nl.NetlinkRequest) (Link, error) { msgs, err := req.Execute(unix.NETLINK_ROUTE, 0) if err != nil { if errno, ok := err.(syscall.Errno); ok { if errno == unix.ENODEV { return nil, LinkNotFoundError{fmt.Errorf("Link not found")} } } return nil, err } switch { case len(msgs) == 0: return nil, LinkNotFoundError{fmt.Errorf("Link not found")} case len(msgs) == 1: return LinkDeserialize(nil, msgs[0]) default: return nil, fmt.Errorf("More than one link found") } } // LinkDeserialize deserializes a raw message received from netlink into // a link object. func LinkDeserialize(hdr *unix.NlMsghdr, m []byte) (Link, error) { msg := nl.DeserializeIfInfomsg(m) attrs, err := nl.ParseRouteAttr(m[msg.Len():]) if err != nil { return nil, err } base := NewLinkAttrs() base.Index = int(msg.Index) base.RawFlags = msg.Flags base.Flags = linkFlags(msg.Flags) base.EncapType = msg.EncapType() base.NetNsID = -1 if msg.Flags&unix.IFF_ALLMULTI != 0 { base.Allmulti = 1 } if msg.Flags&unix.IFF_MULTICAST != 0 { base.Multi = 1 } var ( link Link stats32 *LinkStatistics32 stats64 *LinkStatistics64 linkType string linkSlave LinkSlave slaveType string ) for _, attr := range attrs { switch attr.Attr.Type { case unix.IFLA_LINKINFO: infos, err := nl.ParseRouteAttr(attr.Value) if err != nil { return nil, err } for _, info := range infos { switch info.Attr.Type { case nl.IFLA_INFO_KIND: linkType = string(info.Value[:len(info.Value)-1]) switch linkType { case "dummy": link = &Dummy{} case "ifb": link = &Ifb{} case "bridge": link = &Bridge{} case "vlan": link = &Vlan{} case "netkit": link = &Netkit{} case "veth": link = &Veth{} case "wireguard": link = &Wireguard{} case "vxlan": link = &Vxlan{} case "bond": link = &Bond{} case "ipvlan": link = &IPVlan{} case "ipvtap": link = &IPVtap{} case "macvlan": link = &Macvlan{} case "macvtap": link = &Macvtap{} case "geneve": link = &Geneve{} case "gretap": link = &Gretap{} case "ip6gretap": link = &Gretap{} case "ipip": link = &Iptun{} case "ip6tnl": link = &Ip6tnl{} case "sit": link = &Sittun{} case "gre": link = &Gretun{} case "ip6gre": link = &Gretun{} case "vti", "vti6": link = &Vti{} case "vrf": link = &Vrf{} case "gtp": link = >P{} case "xfrm": link = &Xfrmi{} case "tun": link = &Tuntap{} case "ipoib": link = &IPoIB{} case "can": link = &Can{} case "bareudp": link = &BareUDP{} default: link = &GenericLink{LinkType: linkType} } case nl.IFLA_INFO_DATA: data, err := nl.ParseRouteAttr(info.Value) if err != nil { return nil, err } switch linkType { case "netkit": parseNetkitData(link, data) case "vlan": parseVlanData(link, data) case "vxlan": parseVxlanData(link, data) case "bond": parseBondData(link, data) case "ipvlan": parseIPVlanData(link, data) case "ipvtap": parseIPVtapData(link, data) case "macvlan": parseMacvlanData(link, data) case "macvtap": parseMacvtapData(link, data) case "geneve": parseGeneveData(link, data) case "gretap": parseGretapData(link, data) case "ip6gretap": parseGretapData(link, data) case "ipip": parseIptunData(link, data) case "ip6tnl": parseIp6tnlData(link, data) case "sit": parseSittunData(link, data) case "gre": parseGretunData(link, data) case "ip6gre": parseGretunData(link, data) case "vti", "vti6": parseVtiData(link, data) case "vrf": parseVrfData(link, data) case "bridge": parseBridgeData(link, data) case "gtp": parseGTPData(link, data) case "xfrm": parseXfrmiData(link, data) case "tun": parseTuntapData(link, data) case "ipoib": parseIPoIBData(link, data) case "can": parseCanData(link, data) case "bareudp": parseBareUDPData(link, data) } case nl.IFLA_INFO_SLAVE_KIND: slaveType = string(info.Value[:len(info.Value)-1]) switch slaveType { case "bond": linkSlave = &BondSlave{} case "vrf": linkSlave = &VrfSlave{} } case nl.IFLA_INFO_SLAVE_DATA: switch slaveType { case "bond": data, err := nl.ParseRouteAttr(info.Value) if err != nil { return nil, err } parseBondSlaveData(linkSlave, data) case "vrf": data, err := nl.ParseRouteAttr(info.Value) if err != nil { return nil, err } parseVrfSlaveData(linkSlave, data) } } } case unix.IFLA_ADDRESS: var nonzero bool for _, b := range attr.Value { if b != 0 { nonzero = true } } if nonzero { base.HardwareAddr = attr.Value[:] } case unix.IFLA_IFNAME: base.Name = string(attr.Value[:len(attr.Value)-1]) case unix.IFLA_MTU: base.MTU = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_PROMISCUITY: base.Promisc = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_LINK: base.ParentIndex = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_MASTER: base.MasterIndex = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_TXQLEN: base.TxQLen = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_IFALIAS: base.Alias = string(attr.Value[:len(attr.Value)-1]) case unix.IFLA_STATS: stats32 = new(LinkStatistics32) if err := binary.Read(bytes.NewBuffer(attr.Value[:]), nl.NativeEndian(), stats32); err != nil { return nil, err } case unix.IFLA_STATS64: stats64 = new(LinkStatistics64) if err := binary.Read(bytes.NewBuffer(attr.Value[:]), nl.NativeEndian(), stats64); err != nil { return nil, err } case unix.IFLA_XDP: xdp, err := parseLinkXdp(attr.Value[:]) if err != nil { return nil, err } base.Xdp = xdp case unix.IFLA_PROTINFO | unix.NLA_F_NESTED: if hdr != nil && hdr.Type == unix.RTM_NEWLINK && msg.Family == unix.AF_BRIDGE { attrs, err := nl.ParseRouteAttr(attr.Value[:]) if err != nil { return nil, err } protinfo := parseProtinfo(attrs) base.Protinfo = &protinfo } case unix.IFLA_PROP_LIST | unix.NLA_F_NESTED: attrs, err := nl.ParseRouteAttr(attr.Value[:]) if err != nil { return nil, err } base.AltNames = []string{} for _, attr := range attrs { if attr.Attr.Type == unix.IFLA_ALT_IFNAME { base.AltNames = append(base.AltNames, nl.BytesToString(attr.Value)) } } case unix.IFLA_OPERSTATE: base.OperState = LinkOperState(uint8(attr.Value[0])) case unix.IFLA_PHYS_SWITCH_ID: base.PhysSwitchID = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_LINK_NETNSID: base.NetNsID = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_TSO_MAX_SEGS: base.TSOMaxSegs = native.Uint32(attr.Value[0:4]) case unix.IFLA_TSO_MAX_SIZE: base.TSOMaxSize = native.Uint32(attr.Value[0:4]) case unix.IFLA_GSO_MAX_SEGS: base.GSOMaxSegs = native.Uint32(attr.Value[0:4]) case unix.IFLA_GSO_MAX_SIZE: base.GSOMaxSize = native.Uint32(attr.Value[0:4]) case unix.IFLA_GRO_MAX_SIZE: base.GROMaxSize = native.Uint32(attr.Value[0:4]) case unix.IFLA_GSO_IPV4_MAX_SIZE: base.GSOIPv4MaxSize = native.Uint32(attr.Value[0:4]) case unix.IFLA_GRO_IPV4_MAX_SIZE: base.GROIPv4MaxSize = native.Uint32(attr.Value[0:4]) case unix.IFLA_VFINFO_LIST: data, err := nl.ParseRouteAttr(attr.Value) if err != nil { return nil, err } vfs, err := parseVfInfoList(data) if err != nil { return nil, err } base.Vfs = vfs case unix.IFLA_NUM_TX_QUEUES: base.NumTxQueues = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_NUM_RX_QUEUES: base.NumRxQueues = int(native.Uint32(attr.Value[0:4])) case unix.IFLA_GROUP: base.Group = native.Uint32(attr.Value[0:4]) case unix.IFLA_PERM_ADDRESS: for _, b := range attr.Value { if b != 0 { base.PermHWAddr = attr.Value[:] break } } } } if stats64 != nil { base.Statistics = (*LinkStatistics)(stats64) } else if stats32 != nil { base.Statistics = (*LinkStatistics)(stats32.to64()) } // Links that don't have IFLA_INFO_KIND are hardware devices if link == nil { link = &Device{} } *link.Attrs() = base link.Attrs().Slave = linkSlave // If the tuntap attributes are not updated by netlink due to // an older driver, use sysfs if link != nil && linkType == "tun" { tuntap := link.(*Tuntap) if tuntap.Mode == 0 { ifname := tuntap.Attrs().Name if flags, err := readSysPropAsInt64(ifname, "tun_flags"); err == nil { if flags&unix.IFF_TUN != 0 { tuntap.Mode = unix.IFF_TUN } else if flags&unix.IFF_TAP != 0 { tuntap.Mode = unix.IFF_TAP } tuntap.NonPersist = false if flags&unix.IFF_PERSIST == 0 { tuntap.NonPersist = true } } // The sysfs interface for owner/group returns -1 for root user, instead of returning 0. // So explicitly check for negative value, before assigning the owner uid/gid. if owner, err := readSysPropAsInt64(ifname, "owner"); err == nil && owner > 0 { tuntap.Owner = uint32(owner) } if group, err := readSysPropAsInt64(ifname, "group"); err == nil && group > 0 { tuntap.Group = uint32(group) } } } return link, nil } func readSysPropAsInt64(ifname, prop string) (int64, error) { fname := fmt.Sprintf("/sys/class/net/%s/%s", ifname, prop) contents, err := ioutil.ReadFile(fname) if err != nil { return 0, err } num, err := strconv.ParseInt(strings.TrimSpace(string(contents)), 0, 64) if err == nil { return num, nil } return 0, err } // LinkList gets a list of link devices. // Equivalent to: `ip link show` func LinkList() ([]Link, error) { return pkgHandle.LinkList() } // LinkList gets a list of link devices. // Equivalent to: `ip link show` // // If the returned error is [ErrDumpInterrupted], results may be inconsistent // or incomplete. func (h *Handle) LinkList() ([]Link, error) { // NOTE(vish): This duplicates functionality in net/iface_linux.go, but we need // to get the message ourselves to parse link type. req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) req.AddData(msg) attr := nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(nl.RTEXT_FILTER_VF)) req.AddData(attr) msgs, executeErr := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWLINK) if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) { return nil, executeErr } var res []Link for _, m := range msgs { link, err := LinkDeserialize(nil, m) if err != nil { return nil, err } res = append(res, link) } return res, executeErr } // LinkUpdate is used to pass information back from LinkSubscribe() type LinkUpdate struct { nl.IfInfomsg Header unix.NlMsghdr Link } // LinkSubscribe takes a chan down which notifications will be sent // when links change. Close the 'done' chan to stop subscription. func LinkSubscribe(ch chan<- LinkUpdate, done <-chan struct{}) error { return linkSubscribeAt(netns.None(), netns.None(), ch, done, nil, false, 0, nil, false) } // LinkSubscribeAt works like LinkSubscribe plus it allows the caller // to choose the network namespace in which to subscribe (ns). func LinkSubscribeAt(ns netns.NsHandle, ch chan<- LinkUpdate, done <-chan struct{}) error { return linkSubscribeAt(ns, netns.None(), ch, done, nil, false, 0, nil, false) } // LinkSubscribeOptions contains a set of options to use with // LinkSubscribeWithOptions. type LinkSubscribeOptions struct { Namespace *netns.NsHandle ErrorCallback func(error) ListExisting bool ReceiveBufferSize int ReceiveBufferForceSize bool ReceiveTimeout *unix.Timeval } // LinkSubscribeWithOptions work like LinkSubscribe but enable to // provide additional options to modify the behavior. Currently, the // namespace can be provided as well as an error callback. // // When options.ListExisting is true, options.ErrorCallback may be // called with [ErrDumpInterrupted] to indicate that results from // the initial dump of links may be inconsistent or incomplete. func LinkSubscribeWithOptions(ch chan<- LinkUpdate, done <-chan struct{}, options LinkSubscribeOptions) error { if options.Namespace == nil { none := netns.None() options.Namespace = &none } return linkSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting, options.ReceiveBufferSize, options.ReceiveTimeout, options.ReceiveBufferForceSize) } func linkSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- LinkUpdate, done <-chan struct{}, cberr func(error), listExisting bool, rcvbuf int, rcvTimeout *unix.Timeval, rcvbufForce bool) error { s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_LINK) if err != nil { return err } if rcvTimeout != nil { if err := s.SetReceiveTimeout(rcvTimeout); err != nil { return err } } if rcvbuf != 0 { err = s.SetReceiveBufferSize(rcvbuf, rcvbufForce) if err != nil { return err } } if done != nil { go func() { <-done s.Close() }() } if listExisting { req := pkgHandle.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) req.AddData(msg) if err := s.Send(req); err != nil { return err } } go func() { defer close(ch) for { msgs, from, err := s.Receive() if err != nil { if cberr != nil { cberr(fmt.Errorf("Receive failed: %v", err)) } return } if from.Pid != nl.PidKernel { if cberr != nil { cberr(fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel)) } continue } for _, m := range msgs { if m.Header.Flags&unix.NLM_F_DUMP_INTR != 0 && cberr != nil { cberr(ErrDumpInterrupted) } if m.Header.Type == unix.NLMSG_DONE { continue } if m.Header.Type == unix.NLMSG_ERROR { error := int32(native.Uint32(m.Data[0:4])) if error == 0 { continue } if cberr != nil { cberr(fmt.Errorf("error message: %v", syscall.Errno(-error))) } continue } ifmsg := nl.DeserializeIfInfomsg(m.Data) header := unix.NlMsghdr(m.Header) link, err := LinkDeserialize(&header, m.Data) if err != nil { if cberr != nil { cberr(err) } continue } ch <- LinkUpdate{IfInfomsg: *ifmsg, Header: header, Link: link} } } }() return nil } func LinkSetHairpin(link Link, mode bool) error { return pkgHandle.LinkSetHairpin(link, mode) } func (h *Handle) LinkSetHairpin(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_MODE) } func LinkSetGuard(link Link, mode bool) error { return pkgHandle.LinkSetGuard(link, mode) } func (h *Handle) LinkSetGuard(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_GUARD) } // LinkSetBRSlaveGroupFwdMask set the group_fwd_mask of a bridge slave interface func LinkSetBRSlaveGroupFwdMask(link Link, mask uint16) error { return pkgHandle.LinkSetBRSlaveGroupFwdMask(link, mask) } // LinkSetBRSlaveGroupFwdMask set the group_fwd_mask of a bridge slave interface func (h *Handle) LinkSetBRSlaveGroupFwdMask(link Link, mask uint16) error { return h.setProtinfoAttrRawVal(link, nl.Uint16Attr(mask), nl.IFLA_BRPORT_GROUP_FWD_MASK) } func LinkSetFastLeave(link Link, mode bool) error { return pkgHandle.LinkSetFastLeave(link, mode) } func (h *Handle) LinkSetFastLeave(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_FAST_LEAVE) } func LinkSetLearning(link Link, mode bool) error { return pkgHandle.LinkSetLearning(link, mode) } func (h *Handle) LinkSetLearning(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_LEARNING) } func LinkSetRootBlock(link Link, mode bool) error { return pkgHandle.LinkSetRootBlock(link, mode) } func (h *Handle) LinkSetRootBlock(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROTECT) } func LinkSetFlood(link Link, mode bool) error { return pkgHandle.LinkSetFlood(link, mode) } func (h *Handle) LinkSetFlood(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_UNICAST_FLOOD) } func LinkSetIsolated(link Link, mode bool) error { return pkgHandle.LinkSetIsolated(link, mode) } func (h *Handle) LinkSetIsolated(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_ISOLATED) } func LinkSetBrProxyArp(link Link, mode bool) error { return pkgHandle.LinkSetBrProxyArp(link, mode) } func (h *Handle) LinkSetBrProxyArp(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROXYARP) } func LinkSetBrProxyArpWiFi(link Link, mode bool) error { return pkgHandle.LinkSetBrProxyArpWiFi(link, mode) } func (h *Handle) LinkSetBrProxyArpWiFi(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_PROXYARP_WIFI) } func LinkSetBrNeighSuppress(link Link, mode bool) error { return pkgHandle.LinkSetBrNeighSuppress(link, mode) } func (h *Handle) LinkSetBrNeighSuppress(link Link, mode bool) error { return h.setProtinfoAttr(link, mode, nl.IFLA_BRPORT_NEIGH_SUPPRESS) } func (h *Handle) setProtinfoAttrRawVal(link Link, val []byte, attr int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_BRIDGE) msg.Index = int32(base.Index) req.AddData(msg) br := nl.NewRtAttr(unix.IFLA_PROTINFO|unix.NLA_F_NESTED, nil) br.AddRtAttr(attr, val) req.AddData(br) _, err := req.Execute(unix.NETLINK_ROUTE, 0) if err != nil { return err } return nil } func (h *Handle) setProtinfoAttr(link Link, mode bool, attr int) error { return h.setProtinfoAttrRawVal(link, boolToByte(mode), attr) } // LinkSetTxQLen sets the transaction queue length for the link. // Equivalent to: `ip link set $link txqlen $qlen` func LinkSetTxQLen(link Link, qlen int) error { return pkgHandle.LinkSetTxQLen(link, qlen) } // LinkSetTxQLen sets the transaction queue length for the link. // Equivalent to: `ip link set $link txqlen $qlen` func (h *Handle) LinkSetTxQLen(link Link, qlen int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(qlen)) data := nl.NewRtAttr(unix.IFLA_TXQLEN, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetGroup sets the link group id which can be used to perform mass actions // with iproute2 as well use it as a reference in nft filters. // Equivalent to: `ip link set $link group $id` func LinkSetGroup(link Link, group int) error { return pkgHandle.LinkSetGroup(link, group) } // LinkSetGroup sets the link group id which can be used to perform mass actions // with iproute2 as well use it as a reference in nft filters. // Equivalent to: `ip link set $link group $id` func (h *Handle) LinkSetGroup(link Link, group int) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) b := make([]byte, 4) native.PutUint32(b, uint32(group)) data := nl.NewRtAttr(unix.IFLA_GROUP, b) req.AddData(data) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } func addNetkitAttrs(nk *Netkit, linkInfo *nl.RtAttr, flag int) error { if nk.peerLinkAttrs.HardwareAddr != nil || nk.HardwareAddr != nil { return fmt.Errorf("netkit doesn't support setting Ethernet") } data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) // Kernel will return error if trying to change the mode of an existing netkit device data.AddRtAttr(nl.IFLA_NETKIT_MODE, nl.Uint32Attr(uint32(nk.Mode))) data.AddRtAttr(nl.IFLA_NETKIT_POLICY, nl.Uint32Attr(uint32(nk.Policy))) data.AddRtAttr(nl.IFLA_NETKIT_PEER_POLICY, nl.Uint32Attr(uint32(nk.PeerPolicy))) data.AddRtAttr(nl.IFLA_NETKIT_SCRUB, nl.Uint32Attr(uint32(nk.Scrub))) data.AddRtAttr(nl.IFLA_NETKIT_PEER_SCRUB, nl.Uint32Attr(uint32(nk.PeerScrub))) if (flag & unix.NLM_F_EXCL) == 0 { // Modifying peer link attributes will not take effect return nil } peer := data.AddRtAttr(nl.IFLA_NETKIT_PEER_INFO, nil) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) if nk.peerLinkAttrs.Flags&net.FlagUp != 0 { msg.Change = unix.IFF_UP msg.Flags = unix.IFF_UP } if nk.peerLinkAttrs.Index != 0 { msg.Index = int32(nk.peerLinkAttrs.Index) } peer.AddChild(msg) if nk.peerLinkAttrs.Name != "" { peer.AddRtAttr(unix.IFLA_IFNAME, nl.ZeroTerminated(nk.peerLinkAttrs.Name)) } if nk.peerLinkAttrs.MTU > 0 { peer.AddRtAttr(unix.IFLA_MTU, nl.Uint32Attr(uint32(nk.peerLinkAttrs.MTU))) } if nk.peerLinkAttrs.GSOMaxSegs > 0 { peer.AddRtAttr(unix.IFLA_GSO_MAX_SEGS, nl.Uint32Attr(nk.peerLinkAttrs.GSOMaxSegs)) } if nk.peerLinkAttrs.GSOMaxSize > 0 { peer.AddRtAttr(unix.IFLA_GSO_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GSOMaxSize)) } if nk.peerLinkAttrs.GSOIPv4MaxSize > 0 { peer.AddRtAttr(unix.IFLA_GSO_IPV4_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GSOIPv4MaxSize)) } if nk.peerLinkAttrs.GROIPv4MaxSize > 0 { peer.AddRtAttr(unix.IFLA_GRO_IPV4_MAX_SIZE, nl.Uint32Attr(nk.peerLinkAttrs.GROIPv4MaxSize)) } if nk.peerLinkAttrs.Namespace != nil { switch ns := nk.peerLinkAttrs.Namespace.(type) { case NsPid: peer.AddRtAttr(unix.IFLA_NET_NS_PID, nl.Uint32Attr(uint32(ns))) case NsFd: peer.AddRtAttr(unix.IFLA_NET_NS_FD, nl.Uint32Attr(uint32(ns))) } } return nil } func parseNetkitData(link Link, data []syscall.NetlinkRouteAttr) { netkit := link.(*Netkit) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_NETKIT_PRIMARY: isPrimary := datum.Value[0:1][0] if isPrimary != 0 { netkit.isPrimary = true } case nl.IFLA_NETKIT_MODE: netkit.Mode = NetkitMode(native.Uint32(datum.Value[0:4])) case nl.IFLA_NETKIT_POLICY: netkit.Policy = NetkitPolicy(native.Uint32(datum.Value[0:4])) case nl.IFLA_NETKIT_PEER_POLICY: netkit.PeerPolicy = NetkitPolicy(native.Uint32(datum.Value[0:4])) case nl.IFLA_NETKIT_SCRUB: netkit.supportsScrub = true netkit.Scrub = NetkitScrub(native.Uint32(datum.Value[0:4])) case nl.IFLA_NETKIT_PEER_SCRUB: netkit.supportsScrub = true netkit.PeerScrub = NetkitScrub(native.Uint32(datum.Value[0:4])) } } } func parseVlanData(link Link, data []syscall.NetlinkRouteAttr) { vlan := link.(*Vlan) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_VLAN_ID: vlan.VlanId = int(native.Uint16(datum.Value[0:2])) case nl.IFLA_VLAN_PROTOCOL: vlan.VlanProtocol = VlanProtocol(int(ntohs(datum.Value[0:2]))) } } } func parseVxlanData(link Link, data []syscall.NetlinkRouteAttr) { vxlan := link.(*Vxlan) for _, datum := range data { // NOTE(vish): Apparently some messages can be sent with no value. // We special case GBP here to not change existing // functionality. It appears that GBP sends a datum.Value // of null. if len(datum.Value) == 0 && datum.Attr.Type != nl.IFLA_VXLAN_GBP { continue } switch datum.Attr.Type { case nl.IFLA_VXLAN_ID: vxlan.VxlanId = int(native.Uint32(datum.Value[0:4])) case nl.IFLA_VXLAN_LINK: vxlan.VtepDevIndex = int(native.Uint32(datum.Value[0:4])) case nl.IFLA_VXLAN_LOCAL: vxlan.SrcAddr = net.IP(datum.Value[0:4]) case nl.IFLA_VXLAN_LOCAL6: vxlan.SrcAddr = net.IP(datum.Value[0:16]) case nl.IFLA_VXLAN_GROUP: vxlan.Group = net.IP(datum.Value[0:4]) case nl.IFLA_VXLAN_GROUP6: vxlan.Group = net.IP(datum.Value[0:16]) case nl.IFLA_VXLAN_TTL: vxlan.TTL = int(datum.Value[0]) case nl.IFLA_VXLAN_TOS: vxlan.TOS = int(datum.Value[0]) case nl.IFLA_VXLAN_LEARNING: vxlan.Learning = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_PROXY: vxlan.Proxy = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_RSC: vxlan.RSC = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_L2MISS: vxlan.L2miss = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_L3MISS: vxlan.L3miss = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_UDP_CSUM: vxlan.UDPCSum = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_UDP_ZERO_CSUM6_TX: vxlan.UDP6ZeroCSumTx = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_UDP_ZERO_CSUM6_RX: vxlan.UDP6ZeroCSumRx = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_GBP: vxlan.GBP = true case nl.IFLA_VXLAN_FLOWBASED: vxlan.FlowBased = int8(datum.Value[0]) != 0 case nl.IFLA_VXLAN_AGEING: vxlan.Age = int(native.Uint32(datum.Value[0:4])) vxlan.NoAge = vxlan.Age == 0 case nl.IFLA_VXLAN_LIMIT: vxlan.Limit = int(native.Uint32(datum.Value[0:4])) case nl.IFLA_VXLAN_PORT: vxlan.Port = int(ntohs(datum.Value[0:2])) case nl.IFLA_VXLAN_PORT_RANGE: buf := bytes.NewBuffer(datum.Value[0:4]) var pr vxlanPortRange if binary.Read(buf, binary.BigEndian, &pr) != nil { vxlan.PortLow = int(pr.Lo) vxlan.PortHigh = int(pr.Hi) } } } } func parseBondData(link Link, data []syscall.NetlinkRouteAttr) { bond := link.(*Bond) for i := range data { switch data[i].Attr.Type { case nl.IFLA_BOND_MODE: bond.Mode = BondMode(data[i].Value[0]) case nl.IFLA_BOND_ACTIVE_SLAVE: bond.ActiveSlave = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_MIIMON: bond.Miimon = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_UPDELAY: bond.UpDelay = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_DOWNDELAY: bond.DownDelay = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_USE_CARRIER: bond.UseCarrier = int(data[i].Value[0]) case nl.IFLA_BOND_ARP_INTERVAL: bond.ArpInterval = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_ARP_IP_TARGET: bond.ArpIpTargets = parseBondArpIpTargets(data[i].Value) case nl.IFLA_BOND_ARP_VALIDATE: bond.ArpValidate = BondArpValidate(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_ARP_ALL_TARGETS: bond.ArpAllTargets = BondArpAllTargets(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_PRIMARY: bond.Primary = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_PRIMARY_RESELECT: bond.PrimaryReselect = BondPrimaryReselect(data[i].Value[0]) case nl.IFLA_BOND_FAIL_OVER_MAC: bond.FailOverMac = BondFailOverMac(data[i].Value[0]) case nl.IFLA_BOND_XMIT_HASH_POLICY: bond.XmitHashPolicy = BondXmitHashPolicy(data[i].Value[0]) case nl.IFLA_BOND_RESEND_IGMP: bond.ResendIgmp = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_NUM_PEER_NOTIF: bond.NumPeerNotif = int(data[i].Value[0]) case nl.IFLA_BOND_ALL_SLAVES_ACTIVE: bond.AllSlavesActive = int(data[i].Value[0]) case nl.IFLA_BOND_MIN_LINKS: bond.MinLinks = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_LP_INTERVAL: bond.LpInterval = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_PACKETS_PER_SLAVE: bond.PacketsPerSlave = int(native.Uint32(data[i].Value[0:4])) case nl.IFLA_BOND_AD_LACP_RATE: bond.LacpRate = BondLacpRate(data[i].Value[0]) case nl.IFLA_BOND_AD_SELECT: bond.AdSelect = BondAdSelect(data[i].Value[0]) case nl.IFLA_BOND_AD_INFO: // TODO: implement case nl.IFLA_BOND_AD_ACTOR_SYS_PRIO: bond.AdActorSysPrio = int(native.Uint16(data[i].Value[0:2])) case nl.IFLA_BOND_AD_USER_PORT_KEY: bond.AdUserPortKey = int(native.Uint16(data[i].Value[0:2])) case nl.IFLA_BOND_AD_ACTOR_SYSTEM: bond.AdActorSystem = net.HardwareAddr(data[i].Value[0:6]) case nl.IFLA_BOND_TLB_DYNAMIC_LB: bond.TlbDynamicLb = int(data[i].Value[0]) } } } func parseBondArpIpTargets(value []byte) []net.IP { data, err := nl.ParseRouteAttr(value) if err != nil { return nil } targets := []net.IP{} for i := range data { target := net.IP(data[i].Value) if ip := target.To4(); ip != nil { targets = append(targets, ip) continue } if ip := target.To16(); ip != nil { targets = append(targets, ip) } } return targets } func addBondSlaveAttrs(bondSlave *BondSlave, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_SLAVE_DATA, nil) data.AddRtAttr(nl.IFLA_BOND_SLAVE_STATE, nl.Uint8Attr(uint8(bondSlave.State))) data.AddRtAttr(nl.IFLA_BOND_SLAVE_MII_STATUS, nl.Uint8Attr(uint8(bondSlave.MiiStatus))) data.AddRtAttr(nl.IFLA_BOND_SLAVE_LINK_FAILURE_COUNT, nl.Uint32Attr(bondSlave.LinkFailureCount)) data.AddRtAttr(nl.IFLA_BOND_SLAVE_QUEUE_ID, nl.Uint16Attr(bondSlave.QueueId)) data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_AGGREGATOR_ID, nl.Uint16Attr(bondSlave.AggregatorId)) data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE, nl.Uint8Attr(bondSlave.AdActorOperPortState)) data.AddRtAttr(nl.IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE, nl.Uint16Attr(bondSlave.AdPartnerOperPortState)) if mac := bondSlave.PermHardwareAddr; mac != nil { data.AddRtAttr(nl.IFLA_BOND_SLAVE_PERM_HWADDR, []byte(mac)) } } func parseBondSlaveData(slave LinkSlave, data []syscall.NetlinkRouteAttr) { bondSlave := slave.(*BondSlave) for i := range data { switch data[i].Attr.Type { case nl.IFLA_BOND_SLAVE_STATE: bondSlave.State = BondSlaveState(data[i].Value[0]) case nl.IFLA_BOND_SLAVE_MII_STATUS: bondSlave.MiiStatus = BondSlaveMiiStatus(data[i].Value[0]) case nl.IFLA_BOND_SLAVE_LINK_FAILURE_COUNT: bondSlave.LinkFailureCount = native.Uint32(data[i].Value[0:4]) case nl.IFLA_BOND_SLAVE_PERM_HWADDR: bondSlave.PermHardwareAddr = net.HardwareAddr(data[i].Value[0:6]) case nl.IFLA_BOND_SLAVE_QUEUE_ID: bondSlave.QueueId = native.Uint16(data[i].Value[0:2]) case nl.IFLA_BOND_SLAVE_AD_AGGREGATOR_ID: bondSlave.AggregatorId = native.Uint16(data[i].Value[0:2]) case nl.IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE: bondSlave.AdActorOperPortState = uint8(data[i].Value[0]) case nl.IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE: bondSlave.AdPartnerOperPortState = native.Uint16(data[i].Value[0:2]) } } } func parseVrfSlaveData(slave LinkSlave, data []syscall.NetlinkRouteAttr) { vrfSlave := slave.(*VrfSlave) for i := range data { switch data[i].Attr.Type { case nl.IFLA_BOND_SLAVE_STATE: vrfSlave.Table = native.Uint32(data[i].Value[0:4]) } } } func parseIPVlanData(link Link, data []syscall.NetlinkRouteAttr) { ipv := link.(*IPVlan) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPVLAN_MODE: ipv.Mode = IPVlanMode(native.Uint32(datum.Value[0:4])) case nl.IFLA_IPVLAN_FLAG: ipv.Flag = IPVlanFlag(native.Uint32(datum.Value[0:4])) } } } func parseIPVtapData(link Link, data []syscall.NetlinkRouteAttr) { ipv := link.(*IPVtap) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPVLAN_MODE: ipv.Mode = IPVlanMode(native.Uint32(datum.Value[0:4])) case nl.IFLA_IPVLAN_FLAG: ipv.Flag = IPVlanFlag(native.Uint32(datum.Value[0:4])) } } } func addMacvtapAttrs(macvtap *Macvtap, linkInfo *nl.RtAttr) { addMacvlanAttrs(&macvtap.Macvlan, linkInfo) } func parseMacvtapData(link Link, data []syscall.NetlinkRouteAttr) { macv := link.(*Macvtap) parseMacvlanData(&macv.Macvlan, data) } func addMacvlanAttrs(macvlan *Macvlan, linkInfo *nl.RtAttr) { var data *nl.RtAttr if macvlan.Mode != MACVLAN_MODE_DEFAULT || macvlan.BCQueueLen > 0 { data = linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) } if macvlan.Mode != MACVLAN_MODE_DEFAULT { data.AddRtAttr(nl.IFLA_MACVLAN_MODE, nl.Uint32Attr(macvlanModes[macvlan.Mode])) } if macvlan.BCQueueLen > 0 { data.AddRtAttr(nl.IFLA_MACVLAN_BC_QUEUE_LEN, nl.Uint32Attr(macvlan.BCQueueLen)) } } func parseMacvlanData(link Link, data []syscall.NetlinkRouteAttr) { macv := link.(*Macvlan) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_MACVLAN_MODE: switch native.Uint32(datum.Value[0:4]) { case nl.MACVLAN_MODE_PRIVATE: macv.Mode = MACVLAN_MODE_PRIVATE case nl.MACVLAN_MODE_VEPA: macv.Mode = MACVLAN_MODE_VEPA case nl.MACVLAN_MODE_BRIDGE: macv.Mode = MACVLAN_MODE_BRIDGE case nl.MACVLAN_MODE_PASSTHRU: macv.Mode = MACVLAN_MODE_PASSTHRU case nl.MACVLAN_MODE_SOURCE: macv.Mode = MACVLAN_MODE_SOURCE } case nl.IFLA_MACVLAN_MACADDR_COUNT: macv.MACAddrs = make([]net.HardwareAddr, 0, int(native.Uint32(datum.Value[0:4]))) case nl.IFLA_MACVLAN_MACADDR_DATA: macs, err := nl.ParseRouteAttr(datum.Value[:]) if err != nil { panic(fmt.Sprintf("failed to ParseRouteAttr for IFLA_MACVLAN_MACADDR_DATA: %v", err)) } for _, macDatum := range macs { macv.MACAddrs = append(macv.MACAddrs, net.HardwareAddr(macDatum.Value[0:6])) } case nl.IFLA_MACVLAN_BC_QUEUE_LEN: macv.BCQueueLen = native.Uint32(datum.Value[0:4]) case nl.IFLA_MACVLAN_BC_QUEUE_LEN_USED: macv.UsedBCQueueLen = native.Uint32(datum.Value[0:4]) } } } // copied from pkg/net_linux.go func linkFlags(rawFlags uint32) net.Flags { var f net.Flags if rawFlags&unix.IFF_UP != 0 { f |= net.FlagUp } if rawFlags&unix.IFF_BROADCAST != 0 { f |= net.FlagBroadcast } if rawFlags&unix.IFF_LOOPBACK != 0 { f |= net.FlagLoopback } if rawFlags&unix.IFF_POINTOPOINT != 0 { f |= net.FlagPointToPoint } if rawFlags&unix.IFF_MULTICAST != 0 { f |= net.FlagMulticast } return f } func addGeneveAttrs(geneve *Geneve, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if geneve.InnerProtoInherit { data.AddRtAttr(nl.IFLA_GENEVE_INNER_PROTO_INHERIT, []byte{}) } if geneve.FlowBased { geneve.ID = 0 data.AddRtAttr(nl.IFLA_GENEVE_COLLECT_METADATA, []byte{}) } if ip := geneve.Remote; ip != nil { if ip4 := ip.To4(); ip4 != nil { data.AddRtAttr(nl.IFLA_GENEVE_REMOTE, ip.To4()) } else { data.AddRtAttr(nl.IFLA_GENEVE_REMOTE6, []byte(ip)) } } if geneve.ID != 0 { data.AddRtAttr(nl.IFLA_GENEVE_ID, nl.Uint32Attr(geneve.ID)) } if geneve.Dport != 0 { data.AddRtAttr(nl.IFLA_GENEVE_PORT, htons(geneve.Dport)) } if geneve.Ttl != 0 { data.AddRtAttr(nl.IFLA_GENEVE_TTL, nl.Uint8Attr(geneve.Ttl)) } if geneve.Tos != 0 { data.AddRtAttr(nl.IFLA_GENEVE_TOS, nl.Uint8Attr(geneve.Tos)) } data.AddRtAttr(nl.IFLA_GENEVE_DF, nl.Uint8Attr(uint8(geneve.Df))) } func parseGeneveData(link Link, data []syscall.NetlinkRouteAttr) { geneve := link.(*Geneve) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_GENEVE_ID: geneve.ID = native.Uint32(datum.Value[0:4]) case nl.IFLA_GENEVE_REMOTE, nl.IFLA_GENEVE_REMOTE6: geneve.Remote = datum.Value case nl.IFLA_GENEVE_PORT: geneve.Dport = ntohs(datum.Value[0:2]) case nl.IFLA_GENEVE_TTL: geneve.Ttl = uint8(datum.Value[0]) case nl.IFLA_GENEVE_TOS: geneve.Tos = uint8(datum.Value[0]) case nl.IFLA_GENEVE_COLLECT_METADATA: geneve.FlowBased = true case nl.IFLA_GENEVE_INNER_PROTO_INHERIT: geneve.InnerProtoInherit = true } } } func addGretapAttrs(gretap *Gretap, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if gretap.FlowBased { // In flow based mode, no other attributes need to be configured data.AddRtAttr(nl.IFLA_GRE_COLLECT_METADATA, []byte{}) return } if ip := gretap.Local; ip != nil { if ip.To4() != nil { ip = ip.To4() } data.AddRtAttr(nl.IFLA_GRE_LOCAL, []byte(ip)) } if ip := gretap.Remote; ip != nil { if ip.To4() != nil { ip = ip.To4() } data.AddRtAttr(nl.IFLA_GRE_REMOTE, []byte(ip)) } if gretap.IKey != 0 { data.AddRtAttr(nl.IFLA_GRE_IKEY, htonl(gretap.IKey)) gretap.IFlags |= uint16(nl.GRE_KEY) } if gretap.OKey != 0 { data.AddRtAttr(nl.IFLA_GRE_OKEY, htonl(gretap.OKey)) gretap.OFlags |= uint16(nl.GRE_KEY) } data.AddRtAttr(nl.IFLA_GRE_IFLAGS, htons(gretap.IFlags)) data.AddRtAttr(nl.IFLA_GRE_OFLAGS, htons(gretap.OFlags)) if gretap.Link != 0 { data.AddRtAttr(nl.IFLA_GRE_LINK, nl.Uint32Attr(gretap.Link)) } data.AddRtAttr(nl.IFLA_GRE_PMTUDISC, nl.Uint8Attr(gretap.PMtuDisc)) data.AddRtAttr(nl.IFLA_GRE_TTL, nl.Uint8Attr(gretap.Ttl)) data.AddRtAttr(nl.IFLA_GRE_TOS, nl.Uint8Attr(gretap.Tos)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_TYPE, nl.Uint16Attr(gretap.EncapType)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_FLAGS, nl.Uint16Attr(gretap.EncapFlags)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_SPORT, htons(gretap.EncapSport)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_DPORT, htons(gretap.EncapDport)) } func parseGretapData(link Link, data []syscall.NetlinkRouteAttr) { gre := link.(*Gretap) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_GRE_OKEY: gre.IKey = ntohl(datum.Value[0:4]) case nl.IFLA_GRE_IKEY: gre.OKey = ntohl(datum.Value[0:4]) case nl.IFLA_GRE_LOCAL: gre.Local = net.IP(datum.Value) case nl.IFLA_GRE_REMOTE: gre.Remote = net.IP(datum.Value) case nl.IFLA_GRE_ENCAP_SPORT: gre.EncapSport = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_ENCAP_DPORT: gre.EncapDport = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_IFLAGS: gre.IFlags = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_OFLAGS: gre.OFlags = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_TTL: gre.Ttl = uint8(datum.Value[0]) case nl.IFLA_GRE_TOS: gre.Tos = uint8(datum.Value[0]) case nl.IFLA_GRE_PMTUDISC: gre.PMtuDisc = uint8(datum.Value[0]) case nl.IFLA_GRE_ENCAP_TYPE: gre.EncapType = native.Uint16(datum.Value[0:2]) case nl.IFLA_GRE_ENCAP_FLAGS: gre.EncapFlags = native.Uint16(datum.Value[0:2]) case nl.IFLA_GRE_COLLECT_METADATA: gre.FlowBased = true } } } func addGretunAttrs(gre *Gretun, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if gre.FlowBased { // In flow based mode, no other attributes need to be configured data.AddRtAttr(nl.IFLA_GRE_COLLECT_METADATA, []byte{}) return } if ip := gre.Local; ip != nil { if ip.To4() != nil { ip = ip.To4() } data.AddRtAttr(nl.IFLA_GRE_LOCAL, []byte(ip)) } if ip := gre.Remote; ip != nil { if ip.To4() != nil { ip = ip.To4() } data.AddRtAttr(nl.IFLA_GRE_REMOTE, []byte(ip)) } if gre.IKey != 0 { data.AddRtAttr(nl.IFLA_GRE_IKEY, htonl(gre.IKey)) gre.IFlags |= uint16(nl.GRE_KEY) } if gre.OKey != 0 { data.AddRtAttr(nl.IFLA_GRE_OKEY, htonl(gre.OKey)) gre.OFlags |= uint16(nl.GRE_KEY) } data.AddRtAttr(nl.IFLA_GRE_IFLAGS, htons(gre.IFlags)) data.AddRtAttr(nl.IFLA_GRE_OFLAGS, htons(gre.OFlags)) if gre.Link != 0 { data.AddRtAttr(nl.IFLA_GRE_LINK, nl.Uint32Attr(gre.Link)) } data.AddRtAttr(nl.IFLA_GRE_PMTUDISC, nl.Uint8Attr(gre.PMtuDisc)) data.AddRtAttr(nl.IFLA_GRE_TTL, nl.Uint8Attr(gre.Ttl)) data.AddRtAttr(nl.IFLA_GRE_TOS, nl.Uint8Attr(gre.Tos)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_TYPE, nl.Uint16Attr(gre.EncapType)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_FLAGS, nl.Uint16Attr(gre.EncapFlags)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_SPORT, htons(gre.EncapSport)) data.AddRtAttr(nl.IFLA_GRE_ENCAP_DPORT, htons(gre.EncapDport)) } func parseGretunData(link Link, data []syscall.NetlinkRouteAttr) { gre := link.(*Gretun) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_GRE_IKEY: gre.IKey = ntohl(datum.Value[0:4]) case nl.IFLA_GRE_OKEY: gre.OKey = ntohl(datum.Value[0:4]) case nl.IFLA_GRE_LOCAL: gre.Local = net.IP(datum.Value) case nl.IFLA_GRE_REMOTE: gre.Remote = net.IP(datum.Value) case nl.IFLA_GRE_IFLAGS: gre.IFlags = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_OFLAGS: gre.OFlags = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_TTL: gre.Ttl = uint8(datum.Value[0]) case nl.IFLA_GRE_TOS: gre.Tos = uint8(datum.Value[0]) case nl.IFLA_GRE_PMTUDISC: gre.PMtuDisc = uint8(datum.Value[0]) case nl.IFLA_GRE_ENCAP_TYPE: gre.EncapType = native.Uint16(datum.Value[0:2]) case nl.IFLA_GRE_ENCAP_FLAGS: gre.EncapFlags = native.Uint16(datum.Value[0:2]) case nl.IFLA_GRE_ENCAP_SPORT: gre.EncapSport = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_ENCAP_DPORT: gre.EncapDport = ntohs(datum.Value[0:2]) case nl.IFLA_GRE_COLLECT_METADATA: gre.FlowBased = true } } } func addXdpAttrs(xdp *LinkXdp, req *nl.NetlinkRequest) { attrs := nl.NewRtAttr(unix.IFLA_XDP|unix.NLA_F_NESTED, nil) b := make([]byte, 4) native.PutUint32(b, uint32(xdp.Fd)) attrs.AddRtAttr(nl.IFLA_XDP_FD, b) if xdp.Flags != 0 { b := make([]byte, 4) native.PutUint32(b, xdp.Flags) attrs.AddRtAttr(nl.IFLA_XDP_FLAGS, b) } req.AddData(attrs) } func parseLinkXdp(data []byte) (*LinkXdp, error) { attrs, err := nl.ParseRouteAttr(data) if err != nil { return nil, err } xdp := &LinkXdp{} for _, attr := range attrs { switch attr.Attr.Type { case nl.IFLA_XDP_FD: xdp.Fd = int(native.Uint32(attr.Value[0:4])) case nl.IFLA_XDP_ATTACHED: xdp.AttachMode = uint32(attr.Value[0]) xdp.Attached = xdp.AttachMode != 0 case nl.IFLA_XDP_FLAGS: xdp.Flags = native.Uint32(attr.Value[0:4]) case nl.IFLA_XDP_PROG_ID: xdp.ProgId = native.Uint32(attr.Value[0:4]) } } return xdp, nil } func addIptunAttrs(iptun *Iptun, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if iptun.FlowBased { // In flow based mode, no other attributes need to be configured data.AddRtAttr(nl.IFLA_IPTUN_COLLECT_METADATA, []byte{}) return } ip := iptun.Local.To4() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip)) } ip = iptun.Remote.To4() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip)) } if iptun.Link != 0 { data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(iptun.Link)) } data.AddRtAttr(nl.IFLA_IPTUN_PMTUDISC, nl.Uint8Attr(iptun.PMtuDisc)) data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(iptun.Ttl)) data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(iptun.Tos)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(iptun.EncapType)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(iptun.EncapFlags)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(iptun.EncapSport)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(iptun.EncapDport)) data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(iptun.Proto)) } func parseIptunData(link Link, data []syscall.NetlinkRouteAttr) { iptun := link.(*Iptun) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPTUN_LOCAL: iptun.Local = net.IP(datum.Value[0:4]) case nl.IFLA_IPTUN_REMOTE: iptun.Remote = net.IP(datum.Value[0:4]) case nl.IFLA_IPTUN_TTL: iptun.Ttl = uint8(datum.Value[0]) case nl.IFLA_IPTUN_TOS: iptun.Tos = uint8(datum.Value[0]) case nl.IFLA_IPTUN_PMTUDISC: iptun.PMtuDisc = uint8(datum.Value[0]) case nl.IFLA_IPTUN_ENCAP_SPORT: iptun.EncapSport = ntohs(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_DPORT: iptun.EncapDport = ntohs(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_TYPE: iptun.EncapType = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_FLAGS: iptun.EncapFlags = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_COLLECT_METADATA: iptun.FlowBased = true case nl.IFLA_IPTUN_PROTO: iptun.Proto = datum.Value[0] } } } func addIp6tnlAttrs(ip6tnl *Ip6tnl, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if ip6tnl.FlowBased { // In flow based mode, no other attributes need to be configured data.AddRtAttr(nl.IFLA_IPTUN_COLLECT_METADATA, []byte{}) return } if ip6tnl.Link != 0 { data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(ip6tnl.Link)) } ip := ip6tnl.Local.To16() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip)) } ip = ip6tnl.Remote.To16() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip)) } data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(ip6tnl.Ttl)) data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(ip6tnl.Tos)) data.AddRtAttr(nl.IFLA_IPTUN_FLAGS, nl.Uint32Attr(ip6tnl.Flags)) data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(ip6tnl.Proto)) data.AddRtAttr(nl.IFLA_IPTUN_FLOWINFO, nl.Uint32Attr(ip6tnl.FlowInfo)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_LIMIT, nl.Uint8Attr(ip6tnl.EncapLimit)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(ip6tnl.EncapType)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(ip6tnl.EncapFlags)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(ip6tnl.EncapSport)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(ip6tnl.EncapDport)) } func parseIp6tnlData(link Link, data []syscall.NetlinkRouteAttr) { ip6tnl := link.(*Ip6tnl) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPTUN_LOCAL: ip6tnl.Local = net.IP(datum.Value[:16]) case nl.IFLA_IPTUN_REMOTE: ip6tnl.Remote = net.IP(datum.Value[:16]) case nl.IFLA_IPTUN_TTL: ip6tnl.Ttl = datum.Value[0] case nl.IFLA_IPTUN_TOS: ip6tnl.Tos = datum.Value[0] case nl.IFLA_IPTUN_FLAGS: ip6tnl.Flags = native.Uint32(datum.Value[:4]) case nl.IFLA_IPTUN_PROTO: ip6tnl.Proto = datum.Value[0] case nl.IFLA_IPTUN_FLOWINFO: ip6tnl.FlowInfo = native.Uint32(datum.Value[:4]) case nl.IFLA_IPTUN_ENCAP_LIMIT: ip6tnl.EncapLimit = datum.Value[0] case nl.IFLA_IPTUN_ENCAP_TYPE: ip6tnl.EncapType = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_FLAGS: ip6tnl.EncapFlags = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_SPORT: ip6tnl.EncapSport = ntohs(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_DPORT: ip6tnl.EncapDport = ntohs(datum.Value[0:2]) case nl.IFLA_IPTUN_COLLECT_METADATA: ip6tnl.FlowBased = true } } } func addSittunAttrs(sittun *Sittun, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if sittun.Link != 0 { data.AddRtAttr(nl.IFLA_IPTUN_LINK, nl.Uint32Attr(sittun.Link)) } ip := sittun.Local.To4() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_LOCAL, []byte(ip)) } ip = sittun.Remote.To4() if ip != nil { data.AddRtAttr(nl.IFLA_IPTUN_REMOTE, []byte(ip)) } if sittun.Ttl > 0 { // Would otherwise fail on 3.10 kernel data.AddRtAttr(nl.IFLA_IPTUN_TTL, nl.Uint8Attr(sittun.Ttl)) } data.AddRtAttr(nl.IFLA_IPTUN_PROTO, nl.Uint8Attr(sittun.Proto)) data.AddRtAttr(nl.IFLA_IPTUN_TOS, nl.Uint8Attr(sittun.Tos)) data.AddRtAttr(nl.IFLA_IPTUN_PMTUDISC, nl.Uint8Attr(sittun.PMtuDisc)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_LIMIT, nl.Uint8Attr(sittun.EncapLimit)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_TYPE, nl.Uint16Attr(sittun.EncapType)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_FLAGS, nl.Uint16Attr(sittun.EncapFlags)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_SPORT, htons(sittun.EncapSport)) data.AddRtAttr(nl.IFLA_IPTUN_ENCAP_DPORT, htons(sittun.EncapDport)) } func parseSittunData(link Link, data []syscall.NetlinkRouteAttr) { sittun := link.(*Sittun) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPTUN_LOCAL: sittun.Local = net.IP(datum.Value[0:4]) case nl.IFLA_IPTUN_REMOTE: sittun.Remote = net.IP(datum.Value[0:4]) case nl.IFLA_IPTUN_TTL: sittun.Ttl = datum.Value[0] case nl.IFLA_IPTUN_TOS: sittun.Tos = datum.Value[0] case nl.IFLA_IPTUN_PMTUDISC: sittun.PMtuDisc = datum.Value[0] case nl.IFLA_IPTUN_PROTO: sittun.Proto = datum.Value[0] case nl.IFLA_IPTUN_ENCAP_TYPE: sittun.EncapType = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_FLAGS: sittun.EncapFlags = native.Uint16(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_SPORT: sittun.EncapSport = ntohs(datum.Value[0:2]) case nl.IFLA_IPTUN_ENCAP_DPORT: sittun.EncapDport = ntohs(datum.Value[0:2]) } } } func addVtiAttrs(vti *Vti, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) family := FAMILY_V4 if vti.Local.To4() == nil { family = FAMILY_V6 } var ip net.IP if family == FAMILY_V4 { ip = vti.Local.To4() } else { ip = vti.Local } if ip != nil { data.AddRtAttr(nl.IFLA_VTI_LOCAL, []byte(ip)) } if family == FAMILY_V4 { ip = vti.Remote.To4() } else { ip = vti.Remote } if ip != nil { data.AddRtAttr(nl.IFLA_VTI_REMOTE, []byte(ip)) } if vti.Link != 0 { data.AddRtAttr(nl.IFLA_VTI_LINK, nl.Uint32Attr(vti.Link)) } data.AddRtAttr(nl.IFLA_VTI_IKEY, htonl(vti.IKey)) data.AddRtAttr(nl.IFLA_VTI_OKEY, htonl(vti.OKey)) } func parseVtiData(link Link, data []syscall.NetlinkRouteAttr) { vti := link.(*Vti) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_VTI_LOCAL: vti.Local = net.IP(datum.Value) case nl.IFLA_VTI_REMOTE: vti.Remote = net.IP(datum.Value) case nl.IFLA_VTI_IKEY: vti.IKey = ntohl(datum.Value[0:4]) case nl.IFLA_VTI_OKEY: vti.OKey = ntohl(datum.Value[0:4]) } } } func addVrfAttrs(vrf *Vrf, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) b := make([]byte, 4) native.PutUint32(b, uint32(vrf.Table)) data.AddRtAttr(nl.IFLA_VRF_TABLE, b) } func parseVrfData(link Link, data []syscall.NetlinkRouteAttr) { vrf := link.(*Vrf) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_VRF_TABLE: vrf.Table = native.Uint32(datum.Value[0:4]) } } } func addBridgeAttrs(bridge *Bridge, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) if bridge.MulticastSnooping != nil { data.AddRtAttr(nl.IFLA_BR_MCAST_SNOOPING, boolToByte(*bridge.MulticastSnooping)) } if bridge.AgeingTime != nil { data.AddRtAttr(nl.IFLA_BR_AGEING_TIME, nl.Uint32Attr(*bridge.AgeingTime)) } if bridge.HelloTime != nil { data.AddRtAttr(nl.IFLA_BR_HELLO_TIME, nl.Uint32Attr(*bridge.HelloTime)) } if bridge.VlanFiltering != nil { data.AddRtAttr(nl.IFLA_BR_VLAN_FILTERING, boolToByte(*bridge.VlanFiltering)) } if bridge.VlanDefaultPVID != nil { data.AddRtAttr(nl.IFLA_BR_VLAN_DEFAULT_PVID, nl.Uint16Attr(*bridge.VlanDefaultPVID)) } if bridge.GroupFwdMask != nil { data.AddRtAttr(nl.IFLA_BR_GROUP_FWD_MASK, nl.Uint16Attr(*bridge.GroupFwdMask)) } } func parseBridgeData(bridge Link, data []syscall.NetlinkRouteAttr) { br := bridge.(*Bridge) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_BR_AGEING_TIME: ageingTime := native.Uint32(datum.Value[0:4]) br.AgeingTime = &ageingTime case nl.IFLA_BR_HELLO_TIME: helloTime := native.Uint32(datum.Value[0:4]) br.HelloTime = &helloTime case nl.IFLA_BR_MCAST_SNOOPING: mcastSnooping := datum.Value[0] == 1 br.MulticastSnooping = &mcastSnooping case nl.IFLA_BR_VLAN_FILTERING: vlanFiltering := datum.Value[0] == 1 br.VlanFiltering = &vlanFiltering case nl.IFLA_BR_VLAN_DEFAULT_PVID: vlanDefaultPVID := native.Uint16(datum.Value[0:2]) br.VlanDefaultPVID = &vlanDefaultPVID case nl.IFLA_BR_GROUP_FWD_MASK: mask := native.Uint16(datum.Value[0:2]) br.GroupFwdMask = &mask } } } func addGTPAttrs(gtp *GTP, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_GTP_FD0, nl.Uint32Attr(uint32(gtp.FD0))) data.AddRtAttr(nl.IFLA_GTP_FD1, nl.Uint32Attr(uint32(gtp.FD1))) data.AddRtAttr(nl.IFLA_GTP_PDP_HASHSIZE, nl.Uint32Attr(131072)) if gtp.Role != nl.GTP_ROLE_GGSN { data.AddRtAttr(nl.IFLA_GTP_ROLE, nl.Uint32Attr(uint32(gtp.Role))) } } func parseGTPData(link Link, data []syscall.NetlinkRouteAttr) { gtp := link.(*GTP) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_GTP_FD0: gtp.FD0 = int(native.Uint32(datum.Value)) case nl.IFLA_GTP_FD1: gtp.FD1 = int(native.Uint32(datum.Value)) case nl.IFLA_GTP_PDP_HASHSIZE: gtp.PDPHashsize = int(native.Uint32(datum.Value)) case nl.IFLA_GTP_ROLE: gtp.Role = int(native.Uint32(datum.Value)) } } } func parseVfInfoList(data []syscall.NetlinkRouteAttr) ([]VfInfo, error) { var vfs []VfInfo for i, element := range data { if element.Attr.Type != nl.IFLA_VF_INFO { return nil, fmt.Errorf("Incorrect element type in vf info list: %d", element.Attr.Type) } vfAttrs, err := nl.ParseRouteAttr(element.Value) if err != nil { return nil, err } vf, err := parseVfInfo(vfAttrs, i) if err != nil { return nil, err } vfs = append(vfs, vf) } return vfs, nil } func parseVfInfo(data []syscall.NetlinkRouteAttr, id int) (VfInfo, error) { vf := VfInfo{ID: id} for _, element := range data { switch element.Attr.Type { case nl.IFLA_VF_MAC: mac := nl.DeserializeVfMac(element.Value[:]) vf.Mac = mac.Mac[:6] case nl.IFLA_VF_VLAN: vl := nl.DeserializeVfVlan(element.Value[:]) vf.Vlan = int(vl.Vlan) vf.Qos = int(vl.Qos) case nl.IFLA_VF_VLAN_LIST: vfVlanInfoList, err := nl.DeserializeVfVlanList(element.Value[:]) if err != nil { return vf, err } vf.VlanProto = int(vfVlanInfoList[0].VlanProto) case nl.IFLA_VF_TX_RATE: txr := nl.DeserializeVfTxRate(element.Value[:]) vf.TxRate = int(txr.Rate) case nl.IFLA_VF_SPOOFCHK: sp := nl.DeserializeVfSpoofchk(element.Value[:]) vf.Spoofchk = sp.Setting != 0 case nl.IFLA_VF_LINK_STATE: ls := nl.DeserializeVfLinkState(element.Value[:]) vf.LinkState = ls.LinkState case nl.IFLA_VF_RATE: vfr := nl.DeserializeVfRate(element.Value[:]) vf.MaxTxRate = vfr.MaxTxRate vf.MinTxRate = vfr.MinTxRate case nl.IFLA_VF_STATS: vfstats := nl.DeserializeVfStats(element.Value[:]) vf.RxPackets = vfstats.RxPackets vf.TxPackets = vfstats.TxPackets vf.RxBytes = vfstats.RxBytes vf.TxBytes = vfstats.TxBytes vf.Multicast = vfstats.Multicast vf.Broadcast = vfstats.Broadcast vf.RxDropped = vfstats.RxDropped vf.TxDropped = vfstats.TxDropped case nl.IFLA_VF_RSS_QUERY_EN: result := nl.DeserializeVfRssQueryEn(element.Value) vf.RssQuery = result.Setting case nl.IFLA_VF_TRUST: result := nl.DeserializeVfTrust(element.Value) vf.Trust = result.Setting } } return vf, nil } func addXfrmiAttrs(xfrmi *Xfrmi, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_XFRM_LINK, nl.Uint32Attr(uint32(xfrmi.ParentIndex))) if xfrmi.Ifid != 0 { data.AddRtAttr(nl.IFLA_XFRM_IF_ID, nl.Uint32Attr(xfrmi.Ifid)) } } func parseXfrmiData(link Link, data []syscall.NetlinkRouteAttr) { xfrmi := link.(*Xfrmi) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_XFRM_LINK: xfrmi.ParentIndex = int(native.Uint32(datum.Value)) case nl.IFLA_XFRM_IF_ID: xfrmi.Ifid = native.Uint32(datum.Value) } } } func ioctlBondSlave(cmd uintptr, link Link, master *Bond) error { fd, err := getSocketUDP() if err != nil { return err } defer syscall.Close(fd) ifreq := newIocltSlaveReq(link.Attrs().Name, master.Attrs().Name) _, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), cmd, uintptr(unsafe.Pointer(ifreq))) if errno != 0 { return fmt.Errorf("errno=%v", errno) } return nil } // LinkSetBondSlaveActive sets specified slave to ACTIVE in an `active-backup` bond link via ioctl interface. // // Multiple calls keeps the status unchanged(shown in the unit test). func LinkSetBondSlaveActive(link Link, master *Bond) error { err := ioctlBondSlave(unix.SIOCBONDCHANGEACTIVE, link, master) if err != nil { return fmt.Errorf("Failed to set slave %q active in %q, %v", link.Attrs().Name, master.Attrs().Name, err) } return nil } // LinkSetBondSlave add slave to bond link via ioctl interface. func LinkSetBondSlave(link Link, master *Bond) error { err := ioctlBondSlave(unix.SIOCBONDENSLAVE, link, master) if err != nil { return fmt.Errorf("Failed to enslave %q to %q, %v", link.Attrs().Name, master.Attrs().Name, err) } return nil } // LinkSetBondSlave removes specified slave from bond link via ioctl interface. func LinkDelBondSlave(link Link, master *Bond) error { err := ioctlBondSlave(unix.SIOCBONDRELEASE, link, master) if err != nil { return fmt.Errorf("Failed to del slave %q from %q, %v", link.Attrs().Name, master.Attrs().Name, err) } return nil } // LinkSetBondSlaveQueueId modify bond slave queue-id. func (h *Handle) LinkSetBondSlaveQueueId(link Link, queueId uint16) error { base := link.Attrs() h.ensureIndex(base) req := h.newNetlinkRequest(unix.RTM_SETLINK, unix.NLM_F_ACK) msg := nl.NewIfInfomsg(unix.AF_UNSPEC) msg.Index = int32(base.Index) req.AddData(msg) linkInfo := nl.NewRtAttr(unix.IFLA_LINKINFO, nil) data := linkInfo.AddRtAttr(nl.IFLA_INFO_SLAVE_DATA, nil) data.AddRtAttr(nl.IFLA_BOND_SLAVE_QUEUE_ID, nl.Uint16Attr(queueId)) req.AddData(linkInfo) _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // LinkSetBondSlaveQueueId modify bond slave queue-id. func LinkSetBondSlaveQueueId(link Link, queueId uint16) error { return pkgHandle.LinkSetBondSlaveQueueId(link, queueId) } func vethStatsSerialize(stats ethtoolStats) ([]byte, error) { statsSize := int(unsafe.Sizeof(stats)) + int(stats.nStats)*int(unsafe.Sizeof(uint64(0))) b := make([]byte, 0, statsSize) buf := bytes.NewBuffer(b) err := binary.Write(buf, nl.NativeEndian(), stats) return buf.Bytes()[:statsSize], err } type vethEthtoolStats struct { Cmd uint32 NStats uint32 Peer uint64 // Newer kernels have XDP stats in here, but we only care // to extract the peer ifindex here. } func vethStatsDeserialize(b []byte) (vethEthtoolStats, error) { var stats = vethEthtoolStats{} err := binary.Read(bytes.NewReader(b), nl.NativeEndian(), &stats) return stats, err } // VethPeerIndex get veth peer index. func VethPeerIndex(link *Veth) (int, error) { fd, err := getSocketUDP() if err != nil { return -1, err } defer syscall.Close(fd) ifreq, sSet := newIocltStringSetReq(link.Name) _, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), SIOCETHTOOL, uintptr(unsafe.Pointer(ifreq))) if errno != 0 { return -1, fmt.Errorf("SIOCETHTOOL request for %q failed, errno=%v", link.Attrs().Name, errno) } stats := ethtoolStats{ cmd: ETHTOOL_GSTATS, nStats: sSet.data[0], } buffer, err := vethStatsSerialize(stats) if err != nil { return -1, err } ifreq.Data = uintptr(unsafe.Pointer(&buffer[0])) _, _, errno = syscall.Syscall(syscall.SYS_IOCTL, uintptr(fd), SIOCETHTOOL, uintptr(unsafe.Pointer(ifreq))) if errno != 0 { return -1, fmt.Errorf("SIOCETHTOOL request for %q failed, errno=%v", link.Attrs().Name, errno) } vstats, err := vethStatsDeserialize(buffer) if err != nil { return -1, err } return int(vstats.Peer), nil } func parseTuntapData(link Link, data []syscall.NetlinkRouteAttr) { tuntap := link.(*Tuntap) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_TUN_OWNER: tuntap.Owner = native.Uint32(datum.Value) case nl.IFLA_TUN_GROUP: tuntap.Group = native.Uint32(datum.Value) case nl.IFLA_TUN_TYPE: tuntap.Mode = TuntapMode(uint8(datum.Value[0])) case nl.IFLA_TUN_PERSIST: tuntap.NonPersist = false if uint8(datum.Value[0]) == 0 { tuntap.NonPersist = true } } } } func parseIPoIBData(link Link, data []syscall.NetlinkRouteAttr) { ipoib := link.(*IPoIB) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_IPOIB_PKEY: ipoib.Pkey = uint16(native.Uint16(datum.Value)) case nl.IFLA_IPOIB_MODE: ipoib.Mode = IPoIBMode(native.Uint16(datum.Value)) case nl.IFLA_IPOIB_UMCAST: ipoib.Umcast = uint16(native.Uint16(datum.Value)) } } } func parseCanData(link Link, data []syscall.NetlinkRouteAttr) { can := link.(*Can) for _, datum := range data { switch datum.Attr.Type { case nl.IFLA_CAN_BITTIMING: can.BitRate = native.Uint32(datum.Value) can.SamplePoint = native.Uint32(datum.Value[4:]) can.TimeQuanta = native.Uint32(datum.Value[8:]) can.PropagationSegment = native.Uint32(datum.Value[12:]) can.PhaseSegment1 = native.Uint32(datum.Value[16:]) can.PhaseSegment2 = native.Uint32(datum.Value[20:]) can.SyncJumpWidth = native.Uint32(datum.Value[24:]) can.BitRatePreScaler = native.Uint32(datum.Value[28:]) case nl.IFLA_CAN_BITTIMING_CONST: can.Name = string(datum.Value[:16]) can.TimeSegment1Min = native.Uint32(datum.Value[16:]) can.TimeSegment1Max = native.Uint32(datum.Value[20:]) can.TimeSegment2Min = native.Uint32(datum.Value[24:]) can.TimeSegment2Max = native.Uint32(datum.Value[28:]) can.SyncJumpWidthMax = native.Uint32(datum.Value[32:]) can.BitRatePreScalerMin = native.Uint32(datum.Value[36:]) can.BitRatePreScalerMax = native.Uint32(datum.Value[40:]) can.BitRatePreScalerInc = native.Uint32(datum.Value[44:]) case nl.IFLA_CAN_CLOCK: can.ClockFrequency = native.Uint32(datum.Value) case nl.IFLA_CAN_STATE: can.State = native.Uint32(datum.Value) case nl.IFLA_CAN_CTRLMODE: can.Mask = native.Uint32(datum.Value) can.Flags = native.Uint32(datum.Value[4:]) case nl.IFLA_CAN_BERR_COUNTER: can.TxError = native.Uint16(datum.Value) can.RxError = native.Uint16(datum.Value[2:]) case nl.IFLA_CAN_RESTART_MS: can.RestartMs = native.Uint32(datum.Value) case nl.IFLA_CAN_DATA_BITTIMING_CONST: case nl.IFLA_CAN_RESTART: case nl.IFLA_CAN_DATA_BITTIMING: case nl.IFLA_CAN_TERMINATION: case nl.IFLA_CAN_TERMINATION_CONST: case nl.IFLA_CAN_BITRATE_CONST: case nl.IFLA_CAN_DATA_BITRATE_CONST: case nl.IFLA_CAN_BITRATE_MAX: } } } func addIPoIBAttrs(ipoib *IPoIB, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_IPOIB_PKEY, nl.Uint16Attr(uint16(ipoib.Pkey))) data.AddRtAttr(nl.IFLA_IPOIB_MODE, nl.Uint16Attr(uint16(ipoib.Mode))) data.AddRtAttr(nl.IFLA_IPOIB_UMCAST, nl.Uint16Attr(uint16(ipoib.Umcast))) } func addBareUDPAttrs(bareudp *BareUDP, linkInfo *nl.RtAttr) { data := linkInfo.AddRtAttr(nl.IFLA_INFO_DATA, nil) data.AddRtAttr(nl.IFLA_BAREUDP_PORT, nl.Uint16Attr(nl.Swap16(bareudp.Port))) data.AddRtAttr(nl.IFLA_BAREUDP_ETHERTYPE, nl.Uint16Attr(nl.Swap16(bareudp.EtherType))) if bareudp.SrcPortMin != 0 { data.AddRtAttr(nl.IFLA_BAREUDP_SRCPORT_MIN, nl.Uint16Attr(bareudp.SrcPortMin)) } if bareudp.MultiProto { data.AddRtAttr(nl.IFLA_BAREUDP_MULTIPROTO_MODE, []byte{}) } } func parseBareUDPData(link Link, data []syscall.NetlinkRouteAttr) { bareudp := link.(*BareUDP) for _, attr := range data { switch attr.Attr.Type { case nl.IFLA_BAREUDP_PORT: bareudp.Port = binary.BigEndian.Uint16(attr.Value) case nl.IFLA_BAREUDP_ETHERTYPE: bareudp.EtherType = binary.BigEndian.Uint16(attr.Value) case nl.IFLA_BAREUDP_SRCPORT_MIN: bareudp.SrcPortMin = native.Uint16(attr.Value) case nl.IFLA_BAREUDP_MULTIPROTO_MODE: bareudp.MultiProto = true } } }