HWCAP_SB - speculation barrier instruction available added in linux
commit bd4fb6d270bc423a9a4098108784f7f9254c4e6d
HWCAP_PACA, HWCAP_PACG - pointer authentication instructions available
(address and generic) added in linux commit
7503197562567b57ec14feb3a9d5400ebc56812f
aarch64 pointer authentication code related prctl that allows
reinitializing the key for the thread, added in linux commit
ba830885656414101b2f8ca88786524d4bb5e8c1
NT_MIPS_MSA for ptrace access to mips simd arch reg set, added in linux
commit 3cd640832894b85b5929d5bda74505452c800421
NT_ARM_PAC_MASK for ptrace access to pointer auth code mask, added in
commit ec6e822d1a22d0eef1d1fa260dff751dba9a4258
C-SKY support was added to binutils 2.32 in commit
b8891f8d622a31306062065813fc278d8a94fe21
the elf.h change was added to glibc 2.29 in commit
4975f0c3d0131fdf697be0b1631c265e5fd39088
NT_MIPS_FP_MODE is new in linux commit
1ae22a0e35636efceab83728ba30b013df761592
NT_MIPS_DSP is new in linux commit
44109c60176ae73924a42a6bef64ef151aba9095
new fields for RFC 4898 tcp stats in linux
tcpi_bytes_sent added in commit ba113c3aa79a7f941ac162d05a3620bdc985c58d
tcpi_bytes_retrans added in commit fb31c9b9f6c85b1bad569ecedbde78d9e37cd87b
tcpi_dsack_dups added in commit 7e10b6554ff2ce7f86d5d3eec3af5db8db482caa
tcpi_reord_seen added in commit 7ec65372ca534217b53fd208500cf7aac223a383
The new fields change the size of a public struct and thus an ABI break,
but this is how the getsockopt TCP_INFO api is designed: the tcp_info
type must only be used with a length parameter in extern interfaces.
inotify_add_watch flag to prevent modifying existing watch descriptors,
when used on an already watched inode it fails with EEXIST.
added in linux commit 4d97f7d53da7dc830dbf416a3d2a6778d267ae68
The original logic considered each byte until it either found a 0
value or a value >= 192. This means if a string segment contained any
byte >= 192 it was interepretted as a compressed segment marker even
if it wasn't in a position where it should be interpretted as such.
The fix is to adjust dn_skipname to increment by each segments size
rather than look at each character. This avoids misinterpretting
string segment characters by not considering those bytes.
On s390x, POSIX_FADV_DONTNEED and POSIX_FADV_NOREUSE have different
values than on all other architectures that Linux supports.
Handle this difference by wrapping their definitions in
include/fcntl.h in #ifdef, so that arch/s390x/bits/fcntl.h can
override them.
as noted in Austin Group issue #1236, the XSI shading for TSVTX is
misplaced in the html version of the standard; it was only supposed to
be on the description text. the intent was that the definition always
be visible, which is reflected in the pdf version of the standard.
this reverts commits d93c0740d8 and
729fef0a93.
C11 removed the requirement that FILE be a complete type, which was
deemed erroneous, as part of the changes introduced by N1439 regarding
completeness of types (see footnote 6 for specific mention of FILE).
however the current version of POSIX is still based on C99 and
incorporates the old requirement that FILE be a complete type.
expose an arbitrary, useless complete type definition because the
actual object used to represent FILE streams cannot be public/ABI.
thanks to commit 13d1afa46f, we now have
a framework for suppressing the public complete-type definition of FILE
when stdio.h is included internally, so that a different internal
definition can be provided. this is perfectly well-defined, since the
same struct tag can refer to different types in different translation
units. it would be a problem if the implementation were accessing the
application's FILE objects or vice versa, but either would be
undefined behavior.
this affected the error path where dlopen successfully found and
loaded the requested dso and all its dependencies, but failed to
resolve one or more relocations, causing the operation to fail after
storage for the ctor queue was allocated.
commit 188759bbee wrongly put the free
for the ctor_queue array in the error path inside a loop over each
loaded dso that needed to be backed-out, rather than just doing it
once. in addition, the exit path also observed the ctor_queue pointer
still being nonzero, and would attempt to call ctors on the backed-out
dsos unless the double-free crashed the process first.
historically, and likely accidentally, sigaltstack was specified to
fail with EINVAL if any flag bit other than SS_DISABLE was set. the
resolution of Austin Group issue 1187 fixes this so that the
requirement is only to fail for SS_ONSTACK (which cannot be set) or
"invalid" flags.
Linux fails on the kernel side for invalid flags, but historically
accepts SS_ONSTACK as a no-op, so it needs to be rejected in userspace
still.
with this change, the Linux-specific SS_AUTODISARM, provided since
commit 9680e1d03a but unusable due to
rejection at runtime, is now usable.
together with the previous two commits, this completes restoration of
the property that dynamic-linked apps with no external deps and no tls
have no failure paths before entry.
neither has or can have any dependencies, but since commit
4035556907, gratuitous zero-length deps
arrays were being allocated for them. use a dummy array instead.
traditionally, we've provided a guarantee that dynamic-linked
applications with no external dependencies (nothing but libc) and no
thread-local storage have no failure paths before the entry point.
normally, thanks to reclaim_gaps, such a malloc will not require a
syscall anyway, but if segment alignment is unlucky, it might. use a
builtin array for this common special case.
in the case where malloc is being replaced, it's not valid to call
malloc between final relocations and main app's crt1 entry point; on
fdpic archs the main app's entry point will not yet have performed the
self-fixups necessary to call its code.
to fix, reorder queue_ctors before final relocations. an alternative
solution would be doing the allocation from __libc_start_init, after
the entry point but before any ctors run. this is less desirable,
since it would leave a call to malloc that might be provided by the
application happening at startup when doing so can be easily avoided.
previously, going way back, there was simply no synchronization here.
a call to exit concurrent with ctor execution from dlopen could cause
a dtor to execute concurrently with its corresponding ctor, or could
cause dtors for newly-constructed libraries to be skipped.
introduce a shutting_down state that blocks further ctor execution,
producing the quiescence the dtor execution loop needs to ensure any
kind of consistency, and that blocks further calls to dlopen so that a
call into dlopen from a dtor cannot deadlock.
better approaches to some of this may be possible, but the changes
here at least make things safe.
previously, shared library constructors at program start and dlopen
time were executed in reverse load order. some libraries, however,
rely on a depth-first dependency order, which most other dynamic
linker implementations provide. this is a much more reasonable, less
arbitrary order, and it turns out to have much better properties with
regard to how slow-running ctors affect multi-threaded programs, and
how recursive dlopen behaves.
this commit builds on previous work tracking direct dependencies of
each dso (commit 4035556907), and
performs a topological sort on the dependency graph at load time while
the main ldso lock is held and before success is committed, producing
a queue of constructors needed by the newly-loaded dso (or main
application). in the case of circular dependencies, the dependency
chain is simply broken at points where it becomes circular.
when the ctor queue is run, the init_fini_lock is held only for
iteration purposes; it's released during execution of each ctor, so
that arbitrarily-long-running application code no longer runs with a
lock held in the caller. this prevents a dlopen with slow ctors in one
thread from arbitrarily delaying other threads that call dlopen.
fully-independent ctors can run concurrently; when multiple threads
call dlopen with a shared dependency, one will end up executing the
ctor while the other waits on a condvar for it to finish.
another corner case improved by these changes is recursive dlopen
(call from a ctor). previously, recursive calls to dlopen could cause
a ctor for a library to be executed before the ctor for its
dependency, even when there was no relation between the calling
library and the library it was loading, simply due to the naive
reverse-load-order traversal. now, we can guarantee that recursive
dlopen in non-circular-dependency usage preserves the desired ctor
execution order properties, and that even in circular usage, at worst
the libraries whose ctors call dlopen will fail to have completed
construction when ctors that depend on them run.
init_fini_lock is changed to a normal, non-recursive mutex, since it
is no longer held while calling back into application code.
this makes calling dlsym on the main app more consistent with the
global symbol table (load order), and is a prerequisite for
dependency-order ctor execution to work correctly with LD_PRELOAD.
commit 4035556907 introduced runtime
realloc of an array that may have been allocated before symbols were
resolved outside of libc, which is invalid if the allocator has been
replaced. track this condition and manually copy if needed.
dlsym with an explicit handle is specified to use "dependency order",
a breadth-first search rooted at the argument. this has always been
implemented by iterating a flattened dependency list built at dlopen
time. however, the logic for building this list was completely wrong
except in trivial cases; it simply used the list of libraries loaded
since a given library, and their direct dependencies, as that
library's dependencies, which could result in misordering, wrongful
omission of deep dependencies from the search, and wrongful inclusion
of unrelated libraries in the search.
further, libraries did not have any recorded list of resolved
dependencies until they were explicitly dlopened, meaning that
DT_NEEDED entries had to be resolved again whenever a library
participated as a dependency of more than one dlopened library.
with this overhaul, the resolved direct dependency list of each
library is always recorded when it is first loaded, and can be
extended to a full flattened breadth-first search list if dlopen is
called on the library. the extension is performed using the direct
dependency list as a queue and appending copies of the direct
dependency list of each dependency in the queue, excluding duplicates,
until the end of the queue is reached. the direct deps remain
available for future use as the initial subarray of the full deps
array.
first-load logic in dlopen is updated to match these changes, and
clarified.
code introduced in commit 9d44b6460a
wrongly attempted to read past the end of the currently-installed dtv
to determine if a dso provides new, not-already-installed tls. this
logic was probably leftover from an earlier draft of the code that
wrongly installed the new dtv before populating it.
it would work if we instead queried the new, not-yet-installed dtv,
but instead, replace the incorrect check with a simple range check
against old_cnt. this also catches modules that have no tls at all
with a single condition.
code introduced in commit 9d44b6460a
wrongly assumed the dso list tail was the right place to find new dtv
storage. however, this is only true if the last-loaded dependency has
tls. the correct place to get it is the dso corresponding to the tls
module list tail. introduce a container_of macro to get it, and use
it.
ultimately, dynamic tls allocation should be refactored so that this
is not an issue. there is no reason to be allocating new dtv space at
each load_library; instead it could happen after all new libraries
have been loaded but before they are committed. such changes may be
made later, but this commit fixes the present regression.
the motivation for this change is twofold. first, it gets the fallback
logic out of the dynamic linker, improving code readability and
organization. second, it provides application code that wants to use
the membarrier syscall, which depends on preregistration of intent
before the process becomes multithreaded unless unbounded latency is
acceptable, with a symbol that, when linked, ensures that this
registration happens.
this is a prerequisite for factoring the membarrier fallback code into
a function that can be called from a context with the thread list
already locked or independently.
commit 9d44b6460a inadvertently
contained leftover logic from a previous approach to the fallback
signaling loop. it had no adverse effect, since j was always nonzero
if the loop body was reachable, but it makes no sense to be there with
the current approach to avoid signaling self.
addressing &out[k].sa was arguably undefined, despite &out[k] being
defined the slot one past the end of an array, since the member access
.sa is intervening between the [] operator and the & operator.
the backindex stored by getaddrinfo to allow freeaddrinfo to perform
partial-free wrongly used the address result index, rather than the
output slot index, and thus was only valid when they were equal
(nservs==1).
patch based on report with proposed fix by Markus Wichmann.
previously, dynamic loading of new libraries with thread-local storage
allocated the storage needed for all existing threads at load-time,
precluding late failure that can't be handled, but left installation
in existing threads to take place lazily on first access. this imposed
an additional memory access and branch on every dynamic tls access,
and imposed a requirement, which was not actually met, that the
dynamic tlsdesc asm functions preserve all call-clobbered registers
before calling C code to to install new dynamic tls on first access.
the x86[_64] versions of this code wrongly omitted saving and
restoring of fpu/vector registers, assuming the compiler would not
generate anything using them in the called C code. the arm and aarch64
versions saved known existing registers, but failed to be future-proof
against expansion of the register file.
now that we track live threads in a list, it's possible to install the
new dynamic tls for each thread at dlopen time. for the most part,
synchronization is not needed, because if a thread has not
synchronized with completion of the dlopen, there is no way it can
meaningfully request access to a slot past the end of the old dtv,
which remains valid for accessing slots which already existed.
however, it is necessary to ensure that, if a thread sees its new dtv
pointer, it sees correct pointers in each of the slots that existed
prior to the dlopen. my understanding is that, on most real-world
coherency architectures including all the ones we presently support, a
built-in consume order guarantees this; however, don't rely on that.
instead, the SYS_membarrier syscall is used to ensure that all threads
see the stores to the slots of their new dtv prior to the installation
of the new dtv. if it is not supported, the same is implemented in
userspace via signals, using the same mechanism as __synccall.
the __tls_get_addr function, variants, and dynamic tlsdesc asm
functions are all updated to remove the fallback paths for claiming
new dynamic tls, and are now all branch-free.
access to clear the entry in each thread's tsd array for the key being
deleted was not synchronized with __pthread_tsd_run_dtors. I probably
made this mistake from a mistaken belief that the thread list lock was
held during the latter, which of course is not possible since it
executes application code in a still-live-thread context.
while we're at it, expand the interval during which signals are
blocked to cover taking the write lock on key_lock, so that a signal
at an inopportune time doesn't block forward progress of readers.
commit 84d061d5a3 inadvertently
introduced namespace violations by using the pthread-namespace rwlock
functions in pthread_key_create, which is in turn used for C11 tss.
fix that and possible future uses of rwlocks elsewhere.
with the availability of the thread list, there is no need to mark tsd
key slots dirty and clean them up only when a free slot can't be
found. instead, directly iterate threads and clear any value
associated with the key being deleted.
no synchronization is necessary for the clearing, since there is no
way the slot can be accessed without having synchronized with the
creation of a new key occupying the same slot, which is already
sequenced after and synchronized with the deletion of the old key.
the __synccall mechanism provides stop-the-world synchronous execution
of a callback in all threads of the process. it is used to implement
multi-threaded setuid/setgid operations, since Linux lacks them at the
kernel level, and for some other less-critical purposes.
this change eliminates dependency on /proc/self/task to determine the
set of live threads, which in addition to being an unwanted dependency
and a potential point of resource-exhaustion failure, turned out to be
inaccurate. test cases provided by Alexey Izbyshev showed that it
could fail to reflect newly created threads. due to how the
presignaling phase worked, this usually yielded a deadlock if hit, but
in the worst case it could also result in threads being silently
missed (allowed to continue running without executing the callback).
the hard problem here is unlinking threads from a list when they exit
without creating a window of inconsistency where the kernel task for a
thread still exists and is still executing instructions in userspace,
but is not reflected in the list. the magic solution here is getting
rid of per-thread exit futex addresses (set_tid_address), and instead
using the exit futex to unlock the global thread list.
since pthread_join can no longer see the thread enter a detach_state
of EXITED (which depended on the exit futex address pointing to the
detach_state), it must now observe the unlocking of the thread list
lock before it can unmap the joined thread and return. it doesn't
actually have to take the lock. for this, a __tl_sync primitive is
offered, with a signature that will allow it to be enhanced for quick
return even under contention on the lock, if needed. for now, the
exiting thread always performs a futex wake on its detach_state. a
future change could optimize this out except when there is already a
joiner waiting.
initial/dynamic variants of detached state no longer need to be
tracked separately, since the futex address is always set to the
global list lock, not a thread-local address that could become invalid
on detached thread exit. all detached threads, however, must perform a
second sigprocmask syscall to block implementation-internal signals,
since locking the thread list with them already blocked is not
permissible.
the arch-independent C version of __unmapself no longer needs to take
a lock or setup its own futex address to release the lock, since it
must necessarily be called with the thread list lock already held,
guaranteeing exclusive access to the temporary stack.
changes to libc.threads_minus_1 no longer need to be atomic, since
they are guarded by the thread list lock. it is largely vestigial at
this point, and can be replaced with a cheaper boolean indicating
whether the process is multithreaded at some point in the future.