mirror of git://git.musl-libc.org/musl
math: new powf
from https://github.com/ARM-software/optimized-routines, commit 04884bd04eac4b251da4026900010ea7d8850edc POWF_SCALE != 1.0 case only matters if TOINT_INTRINSICS is set, which is currently not supported for any target. SNaN is not supported, it would require an issignalingf implementation. code size change: -816 bytes. benchmark on x86_64 before, after, speedup: -Os: powf rthruput: 95.14 ns/call 20.04 ns/call 4.75x powf latency: 137.00 ns/call 34.98 ns/call 3.92x -O3: powf rthruput: 92.48 ns/call 13.67 ns/call 6.77x powf latency: 131.11 ns/call 35.15 ns/call 3.73x
This commit is contained in:
parent
3f94c648ef
commit
d28cd0ad42
|
@ -64,6 +64,12 @@ union ldshape {
|
|||
/* Support signaling NaNs. */
|
||||
#define WANT_SNAN 0
|
||||
|
||||
#if WANT_SNAN
|
||||
#error SNaN is unsupported
|
||||
#else
|
||||
#define issignalingf_inline(x) 0
|
||||
#endif
|
||||
|
||||
#ifndef TOINT_INTRINSICS
|
||||
#define TOINT_INTRINSICS 0
|
||||
#endif
|
||||
|
|
412
src/math/powf.c
412
src/math/powf.c
|
@ -1,259 +1,185 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
#include "powf_data.h"
|
||||
|
||||
static const float
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
|
||||
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
|
||||
two24 = 16777216.0, /* 0x4b800000 */
|
||||
huge = 1.0e30,
|
||||
tiny = 1.0e-30,
|
||||
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||||
L1 = 6.0000002384e-01, /* 0x3f19999a */
|
||||
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
|
||||
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
|
||||
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
|
||||
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
|
||||
L6 = 2.0697501302e-01, /* 0x3e53f142 */
|
||||
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
|
||||
P2 = -2.7777778450e-03, /* 0xbb360b61 */
|
||||
P3 = 6.6137559770e-05, /* 0x388ab355 */
|
||||
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
|
||||
P5 = 4.1381369442e-08, /* 0x3331bb4c */
|
||||
lg2 = 6.9314718246e-01, /* 0x3f317218 */
|
||||
lg2_h = 6.93145752e-01, /* 0x3f317200 */
|
||||
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
|
||||
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
|
||||
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
|
||||
cp_h = 9.6191406250e-01, /* 0x3f764000 =12b cp */
|
||||
cp_l = -1.1736857402e-04, /* 0xb8f623c6 =tail of cp_h */
|
||||
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
|
||||
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
|
||||
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
|
||||
/*
|
||||
POWF_LOG2_POLY_ORDER = 5
|
||||
EXP2F_TABLE_BITS = 5
|
||||
|
||||
ULP error: 0.82 (~ 0.5 + relerr*2^24)
|
||||
relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
|
||||
relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
|
||||
relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
|
||||
*/
|
||||
|
||||
#define N (1 << POWF_LOG2_TABLE_BITS)
|
||||
#define T __powf_log2_data.tab
|
||||
#define A __powf_log2_data.poly
|
||||
#define OFF 0x3f330000
|
||||
|
||||
/* Subnormal input is normalized so ix has negative biased exponent.
|
||||
Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */
|
||||
static inline double_t log2_inline(uint32_t ix)
|
||||
{
|
||||
double_t z, r, r2, r4, p, q, y, y0, invc, logc;
|
||||
uint32_t iz, top, tmp;
|
||||
int k, i;
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
|
||||
top = tmp & 0xff800000;
|
||||
iz = ix - top;
|
||||
k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t)asfloat(iz);
|
||||
|
||||
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t)k;
|
||||
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
||||
r2 = r * r;
|
||||
y = A[0] * r + A[1];
|
||||
p = A[2] * r + A[3];
|
||||
r4 = r2 * r2;
|
||||
q = A[4] * r + y0;
|
||||
q = p * r2 + q;
|
||||
y = y * r4 + q;
|
||||
return y;
|
||||
}
|
||||
|
||||
#undef N
|
||||
#undef T
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define T __exp2f_data.tab
|
||||
#define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
|
||||
|
||||
/* The output of log2 and thus the input of exp2 is either scaled by N
|
||||
(in case of fast toint intrinsics) or not. The unscaled xd must be
|
||||
in [-1021,1023], sign_bias sets the sign of the result. */
|
||||
static inline float exp2_inline(double_t xd, uint32_t sign_bias)
|
||||
{
|
||||
uint64_t ki, ski, t;
|
||||
double_t kd, z, r, r2, y, s;
|
||||
|
||||
#if TOINT_INTRINSICS
|
||||
#define C __exp2f_data.poly_scaled
|
||||
/* N*x = k + r with r in [-1/2, 1/2] */
|
||||
kd = roundtoint(xd); /* k */
|
||||
ki = converttoint(xd);
|
||||
#else
|
||||
#define C __exp2f_data.poly
|
||||
#define SHIFT __exp2f_data.shift_scaled
|
||||
/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
|
||||
kd = eval_as_double(xd + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT; /* k/N */
|
||||
#endif
|
||||
r = xd - kd;
|
||||
|
||||
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
ski = ki + sign_bias;
|
||||
t += ski << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
||||
|
||||
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
|
||||
the bit representation of a non-zero finite floating-point value. */
|
||||
static inline int checkint(uint32_t iy)
|
||||
{
|
||||
int e = iy >> 23 & 0xff;
|
||||
if (e < 0x7f)
|
||||
return 0;
|
||||
if (e > 0x7f + 23)
|
||||
return 2;
|
||||
if (iy & ((1 << (0x7f + 23 - e)) - 1))
|
||||
return 0;
|
||||
if (iy & (1 << (0x7f + 23 - e)))
|
||||
return 1;
|
||||
return 2;
|
||||
}
|
||||
|
||||
static inline int zeroinfnan(uint32_t ix)
|
||||
{
|
||||
return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
|
||||
}
|
||||
|
||||
float powf(float x, float y)
|
||||
{
|
||||
float z,ax,z_h,z_l,p_h,p_l;
|
||||
float y1,t1,t2,r,s,sn,t,u,v,w;
|
||||
int32_t i,j,k,yisint,n;
|
||||
int32_t hx,hy,ix,iy,is;
|
||||
uint32_t sign_bias = 0;
|
||||
uint32_t ix, iy;
|
||||
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
GET_FLOAT_WORD(hy, y);
|
||||
ix = hx & 0x7fffffff;
|
||||
iy = hy & 0x7fffffff;
|
||||
|
||||
/* x**0 = 1, even if x is NaN */
|
||||
if (iy == 0)
|
||||
return 1.0f;
|
||||
/* 1**y = 1, even if y is NaN */
|
||||
if (hx == 0x3f800000)
|
||||
return 1.0f;
|
||||
/* NaN if either arg is NaN */
|
||||
if (ix > 0x7f800000 || iy > 0x7f800000)
|
||||
return x + y;
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if (hx < 0) {
|
||||
if (iy >= 0x4b800000)
|
||||
yisint = 2; /* even integer y */
|
||||
else if (iy >= 0x3f800000) {
|
||||
k = (iy>>23) - 0x7f; /* exponent */
|
||||
j = iy>>(23-k);
|
||||
if ((j<<(23-k)) == iy)
|
||||
yisint = 2 - (j & 1);
|
||||
ix = asuint(x);
|
||||
iy = asuint(y);
|
||||
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
|
||||
zeroinfnan(iy))) {
|
||||
/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
|
||||
if (predict_false(zeroinfnan(iy))) {
|
||||
if (2 * iy == 0)
|
||||
return issignalingf_inline(x) ? x + y : 1.0f;
|
||||
if (ix == 0x3f800000)
|
||||
return issignalingf_inline(y) ? x + y : 1.0f;
|
||||
if (2 * ix > 2u * 0x7f800000 ||
|
||||
2 * iy > 2u * 0x7f800000)
|
||||
return x + y;
|
||||
if (2 * ix == 2 * 0x3f800000)
|
||||
return 1.0f;
|
||||
if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
|
||||
return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
|
||||
return y * y;
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if (iy == 0x7f800000) { /* y is +-inf */
|
||||
if (ix == 0x3f800000) /* (-1)**+-inf is 1 */
|
||||
return 1.0f;
|
||||
else if (ix > 0x3f800000) /* (|x|>1)**+-inf = inf,0 */
|
||||
return hy >= 0 ? y : 0.0f;
|
||||
else /* (|x|<1)**+-inf = 0,inf */
|
||||
return hy >= 0 ? 0.0f: -y;
|
||||
}
|
||||
if (iy == 0x3f800000) /* y is +-1 */
|
||||
return hy >= 0 ? x : 1.0f/x;
|
||||
if (hy == 0x40000000) /* y is 2 */
|
||||
return x*x;
|
||||
if (hy == 0x3f000000) { /* y is 0.5 */
|
||||
if (hx >= 0) /* x >= +0 */
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
ax = fabsf(x);
|
||||
/* special value of x */
|
||||
if (ix == 0x7f800000 || ix == 0 || ix == 0x3f800000) { /* x is +-0,+-inf,+-1 */
|
||||
z = ax;
|
||||
if (hy < 0) /* z = (1/|x|) */
|
||||
z = 1.0f/z;
|
||||
if (hx < 0) {
|
||||
if (((ix-0x3f800000)|yisint) == 0) {
|
||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
||||
} else if (yisint == 1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
if (predict_false(zeroinfnan(ix))) {
|
||||
float_t x2 = x * x;
|
||||
if (ix & 0x80000000 && checkint(iy) == 1)
|
||||
x2 = -x2;
|
||||
/* Without the barrier some versions of clang hoist the 1/x2 and
|
||||
thus division by zero exception can be signaled spuriously. */
|
||||
return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
|
||||
}
|
||||
/* x and y are non-zero finite. */
|
||||
if (ix & 0x80000000) {
|
||||
/* Finite x < 0. */
|
||||
int yint = checkint(iy);
|
||||
if (yint == 0)
|
||||
return __math_invalidf(x);
|
||||
if (yint == 1)
|
||||
sign_bias = SIGN_BIAS;
|
||||
ix &= 0x7fffffff;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
sn = 1.0f; /* sign of result */
|
||||
if (hx < 0) {
|
||||
if (yisint == 0) /* (x<0)**(non-int) is NaN */
|
||||
return (x-x)/(x-x);
|
||||
if (yisint == 1) /* (x<0)**(odd int) */
|
||||
sn = -1.0f;
|
||||
}
|
||||
|
||||
/* |y| is huge */
|
||||
if (iy > 0x4d000000) { /* if |y| > 2**27 */
|
||||
/* over/underflow if x is not close to one */
|
||||
if (ix < 0x3f7ffff8)
|
||||
return hy < 0 ? sn*huge*huge : sn*tiny*tiny;
|
||||
if (ix > 0x3f800007)
|
||||
return hy > 0 ? sn*huge*huge : sn*tiny*tiny;
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = ax - 1; /* t has 20 trailing zeros */
|
||||
w = (t*t)*(0.5f - t*(0.333333333333f - t*0.25f));
|
||||
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
|
||||
v = t*ivln2_l - w*ivln2;
|
||||
t1 = u + v;
|
||||
GET_FLOAT_WORD(is, t1);
|
||||
SET_FLOAT_WORD(t1, is & 0xfffff000);
|
||||
t2 = v - (t1-u);
|
||||
} else {
|
||||
float s2,s_h,s_l,t_h,t_l;
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if (ix < 0x00800000) {
|
||||
ax *= two24;
|
||||
n -= 24;
|
||||
GET_FLOAT_WORD(ix, ax);
|
||||
/* Normalize subnormal x so exponent becomes negative. */
|
||||
ix = asuint(x * 0x1p23f);
|
||||
ix &= 0x7fffffff;
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
n += ((ix)>>23) - 0x7f;
|
||||
j = ix & 0x007fffff;
|
||||
/* determine interval */
|
||||
ix = j | 0x3f800000; /* normalize ix */
|
||||
if (j <= 0x1cc471) /* |x|<sqrt(3/2) */
|
||||
k = 0;
|
||||
else if (j < 0x5db3d7) /* |x|<sqrt(3) */
|
||||
k = 1;
|
||||
else {
|
||||
k = 0;
|
||||
n += 1;
|
||||
ix -= 0x00800000;
|
||||
}
|
||||
SET_FLOAT_WORD(ax, ix);
|
||||
|
||||
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = 1.0f/(ax+bp[k]);
|
||||
s = u*v;
|
||||
s_h = s;
|
||||
GET_FLOAT_WORD(is, s_h);
|
||||
SET_FLOAT_WORD(s_h, is & 0xfffff000);
|
||||
/* t_h=ax+bp[k] High */
|
||||
is = ((ix>>1) & 0xfffff000) | 0x20000000;
|
||||
SET_FLOAT_WORD(t_h, is + 0x00400000 + (k<<21));
|
||||
t_l = ax - (t_h - bp[k]);
|
||||
s_l = v*((u - s_h*t_h) - s_h*t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = s*s;
|
||||
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
||||
r += s_l*(s_h+s);
|
||||
s2 = s_h*s_h;
|
||||
t_h = 3.0f + s2 + r;
|
||||
GET_FLOAT_WORD(is, t_h);
|
||||
SET_FLOAT_WORD(t_h, is & 0xfffff000);
|
||||
t_l = r - ((t_h - 3.0f) - s2);
|
||||
/* u+v = s*(1+...) */
|
||||
u = s_h*t_h;
|
||||
v = s_l*t_h + t_l*s;
|
||||
/* 2/(3log2)*(s+...) */
|
||||
p_h = u + v;
|
||||
GET_FLOAT_WORD(is, p_h);
|
||||
SET_FLOAT_WORD(p_h, is & 0xfffff000);
|
||||
p_l = v - (p_h - u);
|
||||
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l*p_h + p_l*cp+dp_l[k];
|
||||
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (float)n;
|
||||
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
||||
GET_FLOAT_WORD(is, t1);
|
||||
SET_FLOAT_WORD(t1, is & 0xfffff000);
|
||||
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
||||
}
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
GET_FLOAT_WORD(is, y);
|
||||
SET_FLOAT_WORD(y1, is & 0xfffff000);
|
||||
p_l = (y-y1)*t1 + y*t2;
|
||||
p_h = y1*t1;
|
||||
z = p_l + p_h;
|
||||
GET_FLOAT_WORD(j, z);
|
||||
if (j > 0x43000000) /* if z > 128 */
|
||||
return sn*huge*huge; /* overflow */
|
||||
else if (j == 0x43000000) { /* if z == 128 */
|
||||
if (p_l + ovt > z - p_h)
|
||||
return sn*huge*huge; /* overflow */
|
||||
} else if ((j&0x7fffffff) > 0x43160000) /* z < -150 */ // FIXME: check should be (uint32_t)j > 0xc3160000
|
||||
return sn*tiny*tiny; /* underflow */
|
||||
else if (j == 0xc3160000) { /* z == -150 */
|
||||
if (p_l <= z-p_h)
|
||||
return sn*tiny*tiny; /* underflow */
|
||||
double_t logx = log2_inline(ix);
|
||||
double_t ylogx = y * logx; /* cannot overflow, y is single prec. */
|
||||
if (predict_false((asuint64(ylogx) >> 47 & 0xffff) >=
|
||||
asuint64(126.0 * POWF_SCALE) >> 47)) {
|
||||
/* |y*log(x)| >= 126. */
|
||||
if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
|
||||
return __math_oflowf(sign_bias);
|
||||
if (ylogx <= -150.0 * POWF_SCALE)
|
||||
return __math_uflowf(sign_bias);
|
||||
}
|
||||
/*
|
||||
* compute 2**(p_h+p_l)
|
||||
*/
|
||||
i = j & 0x7fffffff;
|
||||
k = (i>>23) - 0x7f;
|
||||
n = 0;
|
||||
if (i > 0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = j + (0x00800000>>(k+1));
|
||||
k = ((n&0x7fffffff)>>23) - 0x7f; /* new k for n */
|
||||
SET_FLOAT_WORD(t, n & ~(0x007fffff>>k));
|
||||
n = ((n&0x007fffff)|0x00800000)>>(23-k);
|
||||
if (j < 0)
|
||||
n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l + p_h;
|
||||
GET_FLOAT_WORD(is, t);
|
||||
SET_FLOAT_WORD(t, is & 0xffff8000);
|
||||
u = t*lg2_h;
|
||||
v = (p_l-(t-p_h))*lg2 + t*lg2_l;
|
||||
z = u + v;
|
||||
w = v - (z - u);
|
||||
t = z*z;
|
||||
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
r = (z*t1)/(t1-2.0f) - (w+z*w);
|
||||
z = 1.0f - (r - z);
|
||||
GET_FLOAT_WORD(j, z);
|
||||
j += n<<23;
|
||||
if ((j>>23) <= 0) /* subnormal output */
|
||||
z = scalbnf(z, n);
|
||||
else
|
||||
SET_FLOAT_WORD(z, j);
|
||||
return sn*z;
|
||||
return exp2_inline(ylogx, sign_bias);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
/*
|
||||
* Data definition for powf.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "powf_data.h"
|
||||
|
||||
const struct powf_log2_data __powf_log2_data = {
|
||||
.tab = {
|
||||
{ 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2 * POWF_SCALE },
|
||||
{ 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2 * POWF_SCALE },
|
||||
{ 0x1.49539f0f010bp+0, -0x1.7418b0a1fb77bp-2 * POWF_SCALE },
|
||||
{ 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2 * POWF_SCALE },
|
||||
{ 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2 * POWF_SCALE },
|
||||
{ 0x1.25e227b0b8eap+0, -0x1.97c1d1b3b7afp-3 * POWF_SCALE },
|
||||
{ 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3 * POWF_SCALE },
|
||||
{ 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4 * POWF_SCALE },
|
||||
{ 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5 * POWF_SCALE },
|
||||
{ 0x1p+0, 0x0p+0 * POWF_SCALE },
|
||||
{ 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4 * POWF_SCALE },
|
||||
{ 0x1.ca4b31f026aap-1, 0x1.476a9543891bap-3 * POWF_SCALE },
|
||||
{ 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3 * POWF_SCALE },
|
||||
{ 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2 * POWF_SCALE },
|
||||
{ 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2 * POWF_SCALE },
|
||||
{ 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 * POWF_SCALE },
|
||||
},
|
||||
.poly = {
|
||||
0x1.27616c9496e0bp-2 * POWF_SCALE, -0x1.71969a075c67ap-2 * POWF_SCALE,
|
||||
0x1.ec70a6ca7baddp-2 * POWF_SCALE, -0x1.7154748bef6c8p-1 * POWF_SCALE,
|
||||
0x1.71547652ab82bp0 * POWF_SCALE,
|
||||
}
|
||||
};
|
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _POWF_DATA_H
|
||||
#define _POWF_DATA_H
|
||||
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
|
||||
#define POWF_LOG2_TABLE_BITS 4
|
||||
#define POWF_LOG2_POLY_ORDER 5
|
||||
#if TOINT_INTRINSICS
|
||||
#define POWF_SCALE_BITS EXP2F_TABLE_BITS
|
||||
#else
|
||||
#define POWF_SCALE_BITS 0
|
||||
#endif
|
||||
#define POWF_SCALE ((double)(1 << POWF_SCALE_BITS))
|
||||
extern hidden const struct powf_log2_data {
|
||||
struct {
|
||||
double invc, logc;
|
||||
} tab[1 << POWF_LOG2_TABLE_BITS];
|
||||
double poly[POWF_LOG2_POLY_ORDER];
|
||||
} __powf_log2_data;
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue