mirror of
git://git.musl-libc.org/musl
synced 2025-01-11 00:59:46 +00:00
math: new exp2f and expf
from https://github.com/ARM-software/optimized-routines, commit 04884bd04eac4b251da4026900010ea7d8850edc In expf TOINT_INTRINSICS is kept, but is unused, it would require support for __builtin_round and __builtin_lround as single instruction. code size change: +94 bytes. benchmark on x86_64 before, after, speedup: -Os: expf rthruput: 9.19 ns/call 8.11 ns/call 1.13x expf latency: 34.19 ns/call 18.77 ns/call 1.82x exp2f rthruput: 5.59 ns/call 6.52 ns/call 0.86x exp2f latency: 17.93 ns/call 16.70 ns/call 1.07x -O3: expf rthruput: 9.12 ns/call 4.92 ns/call 1.85x expf latency: 34.44 ns/call 18.99 ns/call 1.81x exp2f rthruput: 5.58 ns/call 4.49 ns/call 1.24x exp2f latency: 17.95 ns/call 16.94 ns/call 1.06x
This commit is contained in:
parent
098868b338
commit
3f94c648ef
@ -64,6 +64,22 @@ union ldshape {
|
||||
/* Support signaling NaNs. */
|
||||
#define WANT_SNAN 0
|
||||
|
||||
#ifndef TOINT_INTRINSICS
|
||||
#define TOINT_INTRINSICS 0
|
||||
#endif
|
||||
|
||||
#if TOINT_INTRINSICS
|
||||
/* Round x to nearest int in all rounding modes, ties have to be rounded
|
||||
consistently with converttoint so the results match. If the result
|
||||
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
|
||||
static double_t roundtoint(double_t);
|
||||
|
||||
/* Convert x to nearest int in all rounding modes, ties have to be rounded
|
||||
consistently with roundtoint. If the result is not representible in an
|
||||
int32_t then the semantics is unspecified. */
|
||||
static int32_t converttoint(double_t);
|
||||
#endif
|
||||
|
||||
/* Helps static branch prediction so hot path can be better optimized. */
|
||||
#ifdef __GNUC__
|
||||
#define predict_true(x) __builtin_expect(!!(x), 1)
|
||||
|
169
src/math/exp2f.c
169
src/math/exp2f.c
@ -1,126 +1,69 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c */
|
||||
/*-
|
||||
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
/*
|
||||
* Single-precision 2^x function.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
#define TBLSIZE 16
|
||||
|
||||
static const float
|
||||
redux = 0x1.8p23f / TBLSIZE,
|
||||
P1 = 0x1.62e430p-1f,
|
||||
P2 = 0x1.ebfbe0p-3f,
|
||||
P3 = 0x1.c6b348p-5f,
|
||||
P4 = 0x1.3b2c9cp-7f;
|
||||
|
||||
static const double exp2ft[TBLSIZE] = {
|
||||
0x1.6a09e667f3bcdp-1,
|
||||
0x1.7a11473eb0187p-1,
|
||||
0x1.8ace5422aa0dbp-1,
|
||||
0x1.9c49182a3f090p-1,
|
||||
0x1.ae89f995ad3adp-1,
|
||||
0x1.c199bdd85529cp-1,
|
||||
0x1.d5818dcfba487p-1,
|
||||
0x1.ea4afa2a490dap-1,
|
||||
0x1.0000000000000p+0,
|
||||
0x1.0b5586cf9890fp+0,
|
||||
0x1.172b83c7d517bp+0,
|
||||
0x1.2387a6e756238p+0,
|
||||
0x1.306fe0a31b715p+0,
|
||||
0x1.3dea64c123422p+0,
|
||||
0x1.4bfdad5362a27p+0,
|
||||
0x1.5ab07dd485429p+0,
|
||||
};
|
||||
#include "exp2f_data.h"
|
||||
|
||||
/*
|
||||
* exp2f(x): compute the base 2 exponential of x
|
||||
*
|
||||
* Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
|
||||
*
|
||||
* Method: (equally-spaced tables)
|
||||
*
|
||||
* Reduce x:
|
||||
* x = k + y, for integer k and |y| <= 1/2.
|
||||
* Thus we have exp2f(x) = 2**k * exp2(y).
|
||||
*
|
||||
* Reduce y:
|
||||
* y = i/TBLSIZE + z for integer i near y * TBLSIZE.
|
||||
* Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
|
||||
* with |z| <= 2**-(TBLSIZE+1).
|
||||
*
|
||||
* We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
|
||||
* degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
|
||||
* Using double precision for everything except the reduction makes
|
||||
* roundoff error insignificant and simplifies the scaling step.
|
||||
*
|
||||
* This method is due to Tang, but I do not use his suggested parameters:
|
||||
*
|
||||
* Tang, P. Table-driven Implementation of the Exponential Function
|
||||
* in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
|
||||
*/
|
||||
EXP2F_TABLE_BITS = 5
|
||||
EXP2F_POLY_ORDER = 3
|
||||
|
||||
ULP error: 0.502 (nearest rounding.)
|
||||
Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.)
|
||||
Wrong count: 168353 (all nearest rounding wrong results with fma.)
|
||||
Non-nearest ULP error: 1 (rounded ULP error)
|
||||
*/
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define T __exp2f_data.tab
|
||||
#define C __exp2f_data.poly
|
||||
#define SHIFT __exp2f_data.shift_scaled
|
||||
|
||||
static inline uint32_t top12(float x)
|
||||
{
|
||||
return asuint(x) >> 20;
|
||||
}
|
||||
|
||||
float exp2f(float x)
|
||||
{
|
||||
double_t t, r, z;
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
union {double f; uint64_t i;} uk;
|
||||
uint32_t ix, i0, k;
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
ix = u.i & 0x7fffffff;
|
||||
if (ix > 0x42fc0000) { /* |x| > 126 */
|
||||
if (ix > 0x7f800000) /* NaN */
|
||||
return x;
|
||||
if (u.i >= 0x43000000 && u.i < 0x80000000) { /* x >= 128 */
|
||||
x *= 0x1p127f;
|
||||
return x;
|
||||
}
|
||||
if (u.i >= 0x80000000) { /* x < -126 */
|
||||
if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
|
||||
FORCE_EVAL(-0x1p-149f/x);
|
||||
if (u.i >= 0xc3160000) /* x <= -150 */
|
||||
return 0;
|
||||
}
|
||||
} else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */
|
||||
return 1.0f + x;
|
||||
xd = (double_t)x;
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop >= top12(128.0f))) {
|
||||
/* |x| >= 128 or x is nan. */
|
||||
if (asuint(x) == asuint(-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return x + x;
|
||||
if (x > 0.0f)
|
||||
return __math_oflowf(0);
|
||||
if (x <= -150.0f)
|
||||
return __math_uflowf(0);
|
||||
}
|
||||
|
||||
/* Reduce x, computing z, i0, and k. */
|
||||
u.f = x + redux;
|
||||
i0 = u.i;
|
||||
i0 += TBLSIZE / 2;
|
||||
k = i0 / TBLSIZE;
|
||||
uk.i = (uint64_t)(0x3ff + k)<<52;
|
||||
i0 &= TBLSIZE - 1;
|
||||
u.f -= redux;
|
||||
z = x - u.f;
|
||||
/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
|
||||
r = exp2ft[i0];
|
||||
t = r * z;
|
||||
r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);
|
||||
/* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */
|
||||
kd = eval_as_double(xd + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT; /* k/N for int k. */
|
||||
r = xd - kd;
|
||||
|
||||
/* Scale by 2**k */
|
||||
return r * uk.f;
|
||||
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
||||
|
35
src/math/exp2f_data.c
Normal file
35
src/math/exp2f_data.c
Normal file
@ -0,0 +1,35 @@
|
||||
/*
|
||||
* Shared data between expf, exp2f and powf.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "exp2f_data.h"
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
|
||||
const struct exp2f_data __exp2f_data = {
|
||||
/* tab[i] = uint(2^(i/N)) - (i << 52-BITS)
|
||||
used for computing 2^(k/N) for an int |k| < 150 N as
|
||||
double(tab[k%N] + (k << 52-BITS)) */
|
||||
.tab = {
|
||||
0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,
|
||||
0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,
|
||||
0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
|
||||
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,
|
||||
0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,
|
||||
0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
|
||||
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,
|
||||
0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,
|
||||
},
|
||||
.shift_scaled = 0x1.8p+52 / N,
|
||||
.poly = {
|
||||
0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1,
|
||||
},
|
||||
.shift = 0x1.8p+52,
|
||||
.invln2_scaled = 0x1.71547652b82fep+0 * N,
|
||||
.poly_scaled = {
|
||||
0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N,
|
||||
},
|
||||
};
|
23
src/math/exp2f_data.h
Normal file
23
src/math/exp2f_data.h
Normal file
@ -0,0 +1,23 @@
|
||||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _EXP2F_DATA_H
|
||||
#define _EXP2F_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* Shared between expf, exp2f and powf. */
|
||||
#define EXP2F_TABLE_BITS 5
|
||||
#define EXP2F_POLY_ORDER 3
|
||||
extern hidden const struct exp2f_data {
|
||||
uint64_t tab[1 << EXP2F_TABLE_BITS];
|
||||
double shift_scaled;
|
||||
double poly[EXP2F_POLY_ORDER];
|
||||
double shift;
|
||||
double invln2_scaled;
|
||||
double poly_scaled[EXP2F_POLY_ORDER];
|
||||
} __exp2f_data;
|
||||
|
||||
#endif
|
133
src/math/expf.c
133
src/math/expf.c
@ -1,83 +1,80 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Single-precision e^x function.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
|
||||
static const float
|
||||
half[2] = {0.5,-0.5},
|
||||
ln2hi = 6.9314575195e-1f, /* 0x3f317200 */
|
||||
ln2lo = 1.4286067653e-6f, /* 0x35bfbe8e */
|
||||
invln2 = 1.4426950216e+0f, /* 0x3fb8aa3b */
|
||||
/*
|
||||
* Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
|
||||
* |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
|
||||
*/
|
||||
P1 = 1.6666625440e-1f, /* 0xaaaa8f.0p-26 */
|
||||
P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */
|
||||
EXP2F_TABLE_BITS = 5
|
||||
EXP2F_POLY_ORDER = 3
|
||||
|
||||
ULP error: 0.502 (nearest rounding.)
|
||||
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
|
||||
Wrong count: 170635 (all nearest rounding wrong results with fma.)
|
||||
Non-nearest ULP error: 1 (rounded ULP error)
|
||||
*/
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define InvLn2N __exp2f_data.invln2_scaled
|
||||
#define T __exp2f_data.tab
|
||||
#define C __exp2f_data.poly_scaled
|
||||
|
||||
static inline uint32_t top12(float x)
|
||||
{
|
||||
return asuint(x) >> 20;
|
||||
}
|
||||
|
||||
float expf(float x)
|
||||
{
|
||||
float_t hi, lo, c, xx, y;
|
||||
int k, sign;
|
||||
uint32_t hx;
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
sign = hx >> 31; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* special cases */
|
||||
if (hx >= 0x42aeac50) { /* if |x| >= -87.33655f or NaN */
|
||||
if (hx > 0x7f800000) /* NaN */
|
||||
return x;
|
||||
if (hx >= 0x42b17218 && !sign) { /* x >= 88.722839f */
|
||||
/* overflow */
|
||||
x *= 0x1p127f;
|
||||
return x;
|
||||
}
|
||||
if (sign) {
|
||||
/* underflow */
|
||||
FORCE_EVAL(-0x1p-149f/x);
|
||||
if (hx >= 0x42cff1b5) /* x <= -103.972084f */
|
||||
return 0;
|
||||
}
|
||||
xd = (double_t)x;
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop >= top12(88.0f))) {
|
||||
/* |x| >= 88 or x is nan. */
|
||||
if (asuint(x) == asuint(-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return x + x;
|
||||
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
|
||||
return __math_oflowf(0);
|
||||
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
|
||||
return __math_uflowf(0);
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
|
||||
if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */
|
||||
k = invln2*x + half[sign];
|
||||
else
|
||||
k = 1 - sign - sign;
|
||||
hi = x - k*ln2hi; /* k*ln2hi is exact here */
|
||||
lo = k*ln2lo;
|
||||
x = hi - lo;
|
||||
} else if (hx > 0x39000000) { /* |x| > 2**-14 */
|
||||
k = 0;
|
||||
hi = x;
|
||||
lo = 0;
|
||||
} else {
|
||||
/* raise inexact */
|
||||
FORCE_EVAL(0x1p127f + x);
|
||||
return 1 + x;
|
||||
}
|
||||
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
|
||||
z = InvLn2N * xd;
|
||||
|
||||
/* x is now in primary range */
|
||||
xx = x*x;
|
||||
c = x - xx*(P1+xx*P2);
|
||||
y = 1 + (x*c/(2-c) - lo + hi);
|
||||
if (k == 0)
|
||||
return y;
|
||||
return scalbnf(y, k);
|
||||
/* Round and convert z to int, the result is in [-150*N, 128*N] and
|
||||
ideally ties-to-even rule is used, otherwise the magnitude of r
|
||||
can be bigger which gives larger approximation error. */
|
||||
#if TOINT_INTRINSICS
|
||||
kd = roundtoint(z);
|
||||
ki = converttoint(z);
|
||||
#else
|
||||
# define SHIFT __exp2f_data.shift
|
||||
kd = eval_as_double(z + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT;
|
||||
#endif
|
||||
r = z - kd;
|
||||
|
||||
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user