math: new exp2f and expf

from https://github.com/ARM-software/optimized-routines,
commit 04884bd04eac4b251da4026900010ea7d8850edc

In expf TOINT_INTRINSICS is kept, but is unused, it would require support
for __builtin_round and __builtin_lround as single instruction.

code size change: +94 bytes.
benchmark on x86_64 before, after, speedup:

-Os:
  expf rthruput:   9.19 ns/call  8.11 ns/call 1.13x
   expf latency:  34.19 ns/call 18.77 ns/call 1.82x
 exp2f rthruput:   5.59 ns/call  6.52 ns/call 0.86x
  exp2f latency:  17.93 ns/call 16.70 ns/call 1.07x
-O3:
  expf rthruput:   9.12 ns/call  4.92 ns/call 1.85x
   expf latency:  34.44 ns/call 18.99 ns/call 1.81x
 exp2f rthruput:   5.58 ns/call  4.49 ns/call 1.24x
  exp2f latency:  17.95 ns/call 16.94 ns/call 1.06x
This commit is contained in:
Szabolcs Nagy 2017-10-22 18:06:00 +00:00 committed by Rich Felker
parent 098868b338
commit 3f94c648ef
5 changed files with 195 additions and 181 deletions

View File

@ -64,6 +64,22 @@ union ldshape {
/* Support signaling NaNs. */
#define WANT_SNAN 0
#ifndef TOINT_INTRINSICS
#define TOINT_INTRINSICS 0
#endif
#if TOINT_INTRINSICS
/* Round x to nearest int in all rounding modes, ties have to be rounded
consistently with converttoint so the results match. If the result
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
static double_t roundtoint(double_t);
/* Convert x to nearest int in all rounding modes, ties have to be rounded
consistently with roundtoint. If the result is not representible in an
int32_t then the semantics is unspecified. */
static int32_t converttoint(double_t);
#endif
/* Helps static branch prediction so hot path can be better optimized. */
#ifdef __GNUC__
#define predict_true(x) __builtin_expect(!!(x), 1)

View File

@ -1,126 +1,69 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c */
/*-
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
/*
* Single-precision 2^x function.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#define TBLSIZE 16
static const float
redux = 0x1.8p23f / TBLSIZE,
P1 = 0x1.62e430p-1f,
P2 = 0x1.ebfbe0p-3f,
P3 = 0x1.c6b348p-5f,
P4 = 0x1.3b2c9cp-7f;
static const double exp2ft[TBLSIZE] = {
0x1.6a09e667f3bcdp-1,
0x1.7a11473eb0187p-1,
0x1.8ace5422aa0dbp-1,
0x1.9c49182a3f090p-1,
0x1.ae89f995ad3adp-1,
0x1.c199bdd85529cp-1,
0x1.d5818dcfba487p-1,
0x1.ea4afa2a490dap-1,
0x1.0000000000000p+0,
0x1.0b5586cf9890fp+0,
0x1.172b83c7d517bp+0,
0x1.2387a6e756238p+0,
0x1.306fe0a31b715p+0,
0x1.3dea64c123422p+0,
0x1.4bfdad5362a27p+0,
0x1.5ab07dd485429p+0,
};
#include "exp2f_data.h"
/*
* exp2f(x): compute the base 2 exponential of x
*
* Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
*
* Method: (equally-spaced tables)
*
* Reduce x:
* x = k + y, for integer k and |y| <= 1/2.
* Thus we have exp2f(x) = 2**k * exp2(y).
*
* Reduce y:
* y = i/TBLSIZE + z for integer i near y * TBLSIZE.
* Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
* with |z| <= 2**-(TBLSIZE+1).
*
* We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
* degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
* Using double precision for everything except the reduction makes
* roundoff error insignificant and simplifies the scaling step.
*
* This method is due to Tang, but I do not use his suggested parameters:
*
* Tang, P. Table-driven Implementation of the Exponential Function
* in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
*/
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.)
Wrong count: 168353 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define T __exp2f_data.tab
#define C __exp2f_data.poly
#define SHIFT __exp2f_data.shift_scaled
static inline uint32_t top12(float x)
{
return asuint(x) >> 20;
}
float exp2f(float x)
{
double_t t, r, z;
union {float f; uint32_t i;} u = {x};
union {double f; uint64_t i;} uk;
uint32_t ix, i0, k;
uint32_t abstop;
uint64_t ki, t;
double_t kd, xd, z, r, r2, y, s;
/* Filter out exceptional cases. */
ix = u.i & 0x7fffffff;
if (ix > 0x42fc0000) { /* |x| > 126 */
if (ix > 0x7f800000) /* NaN */
return x;
if (u.i >= 0x43000000 && u.i < 0x80000000) { /* x >= 128 */
x *= 0x1p127f;
return x;
}
if (u.i >= 0x80000000) { /* x < -126 */
if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
FORCE_EVAL(-0x1p-149f/x);
if (u.i >= 0xc3160000) /* x <= -150 */
return 0;
}
} else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */
return 1.0f + x;
xd = (double_t)x;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop >= top12(128.0f))) {
/* |x| >= 128 or x is nan. */
if (asuint(x) == asuint(-INFINITY))
return 0.0f;
if (abstop >= top12(INFINITY))
return x + x;
if (x > 0.0f)
return __math_oflowf(0);
if (x <= -150.0f)
return __math_uflowf(0);
}
/* Reduce x, computing z, i0, and k. */
u.f = x + redux;
i0 = u.i;
i0 += TBLSIZE / 2;
k = i0 / TBLSIZE;
uk.i = (uint64_t)(0x3ff + k)<<52;
i0 &= TBLSIZE - 1;
u.f -= redux;
z = x - u.f;
/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
r = exp2ft[i0];
t = r * z;
r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);
/* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */
kd = eval_as_double(xd + SHIFT);
ki = asuint64(kd);
kd -= SHIFT; /* k/N for int k. */
r = xd - kd;
/* Scale by 2**k */
return r * uk.f;
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble(t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return eval_as_float(y);
}

35
src/math/exp2f_data.c Normal file
View File

@ -0,0 +1,35 @@
/*
* Shared data between expf, exp2f and powf.
*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include "exp2f_data.h"
#define N (1 << EXP2F_TABLE_BITS)
const struct exp2f_data __exp2f_data = {
/* tab[i] = uint(2^(i/N)) - (i << 52-BITS)
used for computing 2^(k/N) for an int |k| < 150 N as
double(tab[k%N] + (k << 52-BITS)) */
.tab = {
0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,
0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,
0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,
0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,
0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,
0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,
},
.shift_scaled = 0x1.8p+52 / N,
.poly = {
0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1,
},
.shift = 0x1.8p+52,
.invln2_scaled = 0x1.71547652b82fep+0 * N,
.poly_scaled = {
0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N,
},
};

23
src/math/exp2f_data.h Normal file
View File

@ -0,0 +1,23 @@
/*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#ifndef _EXP2F_DATA_H
#define _EXP2F_DATA_H
#include <features.h>
#include <stdint.h>
/* Shared between expf, exp2f and powf. */
#define EXP2F_TABLE_BITS 5
#define EXP2F_POLY_ORDER 3
extern hidden const struct exp2f_data {
uint64_t tab[1 << EXP2F_TABLE_BITS];
double shift_scaled;
double poly[EXP2F_POLY_ORDER];
double shift;
double invln2_scaled;
double poly_scaled[EXP2F_POLY_ORDER];
} __exp2f_data;
#endif

View File

@ -1,83 +1,80 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Single-precision e^x function.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "exp2f_data.h"
static const float
half[2] = {0.5,-0.5},
ln2hi = 6.9314575195e-1f, /* 0x3f317200 */
ln2lo = 1.4286067653e-6f, /* 0x35bfbe8e */
invln2 = 1.4426950216e+0f, /* 0x3fb8aa3b */
/*
* Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
* |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
*/
P1 = 1.6666625440e-1f, /* 0xaaaa8f.0p-26 */
P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
Wrong count: 170635 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define InvLn2N __exp2f_data.invln2_scaled
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled
static inline uint32_t top12(float x)
{
return asuint(x) >> 20;
}
float expf(float x)
{
float_t hi, lo, c, xx, y;
int k, sign;
uint32_t hx;
uint32_t abstop;
uint64_t ki, t;
double_t kd, xd, z, r, r2, y, s;
GET_FLOAT_WORD(hx, x);
sign = hx >> 31; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* special cases */
if (hx >= 0x42aeac50) { /* if |x| >= -87.33655f or NaN */
if (hx > 0x7f800000) /* NaN */
return x;
if (hx >= 0x42b17218 && !sign) { /* x >= 88.722839f */
/* overflow */
x *= 0x1p127f;
return x;
}
if (sign) {
/* underflow */
FORCE_EVAL(-0x1p-149f/x);
if (hx >= 0x42cff1b5) /* x <= -103.972084f */
return 0;
}
xd = (double_t)x;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop >= top12(88.0f))) {
/* |x| >= 88 or x is nan. */
if (asuint(x) == asuint(-INFINITY))
return 0.0f;
if (abstop >= top12(INFINITY))
return x + x;
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
return __math_oflowf(0);
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
return __math_uflowf(0);
}
/* argument reduction */
if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */
k = invln2*x + half[sign];
else
k = 1 - sign - sign;
hi = x - k*ln2hi; /* k*ln2hi is exact here */
lo = k*ln2lo;
x = hi - lo;
} else if (hx > 0x39000000) { /* |x| > 2**-14 */
k = 0;
hi = x;
lo = 0;
} else {
/* raise inexact */
FORCE_EVAL(0x1p127f + x);
return 1 + x;
}
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
z = InvLn2N * xd;
/* x is now in primary range */
xx = x*x;
c = x - xx*(P1+xx*P2);
y = 1 + (x*c/(2-c) - lo + hi);
if (k == 0)
return y;
return scalbnf(y, k);
/* Round and convert z to int, the result is in [-150*N, 128*N] and
ideally ties-to-even rule is used, otherwise the magnitude of r
can be bigger which gives larger approximation error. */
#if TOINT_INTRINSICS
kd = roundtoint(z);
ki = converttoint(z);
#else
# define SHIFT __exp2f_data.shift
kd = eval_as_double(z + SHIFT);
ki = asuint64(kd);
kd -= SHIFT;
#endif
r = z - kd;
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble(t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return eval_as_float(y);
}