mirror of
git://git.musl-libc.org/musl
synced 2025-01-25 16:13:35 +00:00
math: new log
from https://github.com/ARM-software/optimized-routines, commit 04884bd04eac4b251da4026900010ea7d8850edc Assume __FP_FAST_FMA implies __builtin_fma is inlined as a single instruction. code size change: +4588 bytes (+2540 bytes with fma). benchmark on x86_64 before, after, speedup: -Os: log rthruput: 12.61 ns/call 7.95 ns/call 1.59x log latency: 41.64 ns/call 23.38 ns/call 1.78x -O3: log rthruput: 12.51 ns/call 7.75 ns/call 1.61x log latency: 41.82 ns/call 23.55 ns/call 1.78x
This commit is contained in:
parent
d28cd0ad42
commit
236cd056e8
202
src/math/log.c
202
src/math/log.c
@ -1,118 +1,112 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Double-precision log(x) function.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* log(x)
|
||||
* Return the logarithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Remez algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "log_data.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
#define T __log_data.tab
|
||||
#define T2 __log_data.tab2
|
||||
#define B __log_data.poly1
|
||||
#define A __log_data.poly
|
||||
#define Ln2hi __log_data.ln2hi
|
||||
#define Ln2lo __log_data.ln2lo
|
||||
#define N (1 << LOG_TABLE_BITS)
|
||||
#define OFF 0x3fe6000000000000
|
||||
|
||||
/* Top 16 bits of a double. */
|
||||
static inline uint32_t top16(double x)
|
||||
{
|
||||
return asuint64(x) >> 48;
|
||||
}
|
||||
|
||||
double log(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t hfsq,f,s,z,R,w,t1,t2,dk;
|
||||
uint32_t hx;
|
||||
int k;
|
||||
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
|
||||
uint64_t ix, iz, tmp;
|
||||
uint32_t top;
|
||||
int k, i;
|
||||
|
||||
hx = u.i>>32;
|
||||
k = 0;
|
||||
if (hx < 0x00100000 || hx>>31) {
|
||||
if (u.i<<1 == 0)
|
||||
return -1/(x*x); /* log(+-0)=-inf */
|
||||
if (hx>>31)
|
||||
return (x-x)/0.0; /* log(-#) = NaN */
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= 0x1p54;
|
||||
u.f = x;
|
||||
hx = u.i>>32;
|
||||
} else if (hx >= 0x7ff00000) {
|
||||
return x;
|
||||
} else if (hx == 0x3ff00000 && u.i<<32 == 0)
|
||||
return 0;
|
||||
ix = asuint64(x);
|
||||
top = top16(x);
|
||||
#define LO asuint64(1.0 - 0x1p-4)
|
||||
#define HI asuint64(1.0 + 0x1.09p-4)
|
||||
if (predict_false(ix - LO < HI - LO)) {
|
||||
/* Handle close to 1.0 inputs separately. */
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
|
||||
return 0;
|
||||
r = x - 1.0;
|
||||
r2 = r * r;
|
||||
r3 = r * r2;
|
||||
y = r3 *
|
||||
(B[1] + r * B[2] + r2 * B[3] +
|
||||
r3 * (B[4] + r * B[5] + r2 * B[6] +
|
||||
r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
|
||||
/* Worst-case error is around 0.507 ULP. */
|
||||
w = r * 0x1p27;
|
||||
double_t rhi = r + w - w;
|
||||
double_t rlo = r - rhi;
|
||||
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
|
||||
hi = r + w;
|
||||
lo = r - hi + w;
|
||||
lo += B[0] * rlo * (rhi + r);
|
||||
y += lo;
|
||||
y += hi;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
|
||||
/* x < 0x1p-1022 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzero(1);
|
||||
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
|
||||
return x;
|
||||
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
|
||||
return __math_invalid(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint64(x * 0x1p52);
|
||||
ix -= 52ULL << 52;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += (int)(hx>>20) - 0x3ff;
|
||||
hx = (hx&0x000fffff) + 0x3fe6a09e;
|
||||
u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
|
||||
x = u.f;
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
|
||||
k = (int64_t)tmp >> 52; /* arithmetic shift */
|
||||
iz = ix - (tmp & 0xfffULL << 52);
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = asdouble(iz);
|
||||
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5*f*f;
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
R = t2 + t1;
|
||||
dk = k;
|
||||
return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
|
||||
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
|
||||
/* r ~= z/c - 1, |r| < 1/(2*N). */
|
||||
#if __FP_FAST_FMA
|
||||
/* rounding error: 0x1p-55/N. */
|
||||
r = __builtin_fma(z, invc, -1.0);
|
||||
#else
|
||||
/* rounding error: 0x1p-55/N + 0x1p-66. */
|
||||
r = (z - T2[i].chi - T2[i].clo) * invc;
|
||||
#endif
|
||||
kd = (double_t)k;
|
||||
|
||||
/* hi + lo = r + log(c) + k*Ln2. */
|
||||
w = kd * Ln2hi + logc;
|
||||
hi = w + r;
|
||||
lo = w - hi + r + kd * Ln2lo;
|
||||
|
||||
/* log(x) = lo + (log1p(r) - r) + hi. */
|
||||
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
|
||||
/* Worst case error if |y| > 0x1p-5:
|
||||
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
|
||||
Worst case error if |y| > 0x1p-4:
|
||||
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
|
||||
y = lo + r2 * A[0] +
|
||||
r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
|
328
src/math/log_data.c
Normal file
328
src/math/log_data.c
Normal file
@ -0,0 +1,328 @@
|
||||
/*
|
||||
* Data for log.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "log_data.h"
|
||||
|
||||
#define N (1 << LOG_TABLE_BITS)
|
||||
|
||||
const struct log_data __log_data = {
|
||||
.ln2hi = 0x1.62e42fefa3800p-1,
|
||||
.ln2lo = 0x1.ef35793c76730p-45,
|
||||
.poly1 = {
|
||||
// relative error: 0x1.c04d76cp-63
|
||||
// in -0x1p-4 0x1.09p-4 (|log(1+x)| > 0x1p-4 outside the interval)
|
||||
-0x1p-1,
|
||||
0x1.5555555555577p-2,
|
||||
-0x1.ffffffffffdcbp-3,
|
||||
0x1.999999995dd0cp-3,
|
||||
-0x1.55555556745a7p-3,
|
||||
0x1.24924a344de3p-3,
|
||||
-0x1.fffffa4423d65p-4,
|
||||
0x1.c7184282ad6cap-4,
|
||||
-0x1.999eb43b068ffp-4,
|
||||
0x1.78182f7afd085p-4,
|
||||
-0x1.5521375d145cdp-4,
|
||||
},
|
||||
.poly = {
|
||||
// relative error: 0x1.926199e8p-56
|
||||
// abs error: 0x1.882ff33p-65
|
||||
// in -0x1.fp-9 0x1.fp-9
|
||||
-0x1.0000000000001p-1,
|
||||
0x1.555555551305bp-2,
|
||||
-0x1.fffffffeb459p-3,
|
||||
0x1.999b324f10111p-3,
|
||||
-0x1.55575e506c89fp-3,
|
||||
},
|
||||
/* Algorithm:
|
||||
|
||||
x = 2^k z
|
||||
log(x) = k ln2 + log(c) + log(z/c)
|
||||
log(z/c) = poly(z/c - 1)
|
||||
|
||||
where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls
|
||||
into the ith one, then table entries are computed as
|
||||
|
||||
tab[i].invc = 1/c
|
||||
tab[i].logc = (double)log(c)
|
||||
tab2[i].chi = (double)c
|
||||
tab2[i].clo = (double)(c - (double)c)
|
||||
|
||||
where c is near the center of the subinterval and is chosen by trying +-2^29
|
||||
floating point invc candidates around 1/center and selecting one for which
|
||||
|
||||
1) the rounding error in 0x1.8p9 + logc is 0,
|
||||
2) the rounding error in z - chi - clo is < 0x1p-66 and
|
||||
3) the rounding error in (double)log(c) is minimized (< 0x1p-66).
|
||||
|
||||
Note: 1) ensures that k*ln2hi + logc can be computed without rounding error,
|
||||
2) ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to
|
||||
a single rounding error when there is no fast fma for z*invc - 1, 3) ensures
|
||||
that logc + poly(z/c - 1) has small error, however near x == 1 when
|
||||
|log(x)| < 0x1p-4, this is not enough so that is special cased. */
|
||||
.tab = {
|
||||
{0x1.734f0c3e0de9fp+0, -0x1.7cc7f79e69000p-2},
|
||||
{0x1.713786a2ce91fp+0, -0x1.76feec20d0000p-2},
|
||||
{0x1.6f26008fab5a0p+0, -0x1.713e31351e000p-2},
|
||||
{0x1.6d1a61f138c7dp+0, -0x1.6b85b38287800p-2},
|
||||
{0x1.6b1490bc5b4d1p+0, -0x1.65d5590807800p-2},
|
||||
{0x1.69147332f0cbap+0, -0x1.602d076180000p-2},
|
||||
{0x1.6719f18224223p+0, -0x1.5a8ca86909000p-2},
|
||||
{0x1.6524f99a51ed9p+0, -0x1.54f4356035000p-2},
|
||||
{0x1.63356aa8f24c4p+0, -0x1.4f637c36b4000p-2},
|
||||
{0x1.614b36b9ddc14p+0, -0x1.49da7fda85000p-2},
|
||||
{0x1.5f66452c65c4cp+0, -0x1.445923989a800p-2},
|
||||
{0x1.5d867b5912c4fp+0, -0x1.3edf439b0b800p-2},
|
||||
{0x1.5babccb5b90dep+0, -0x1.396ce448f7000p-2},
|
||||
{0x1.59d61f2d91a78p+0, -0x1.3401e17bda000p-2},
|
||||
{0x1.5805612465687p+0, -0x1.2e9e2ef468000p-2},
|
||||
{0x1.56397cee76bd3p+0, -0x1.2941b3830e000p-2},
|
||||
{0x1.54725e2a77f93p+0, -0x1.23ec58cda8800p-2},
|
||||
{0x1.52aff42064583p+0, -0x1.1e9e129279000p-2},
|
||||
{0x1.50f22dbb2bddfp+0, -0x1.1956d2b48f800p-2},
|
||||
{0x1.4f38f4734ded7p+0, -0x1.141679ab9f800p-2},
|
||||
{0x1.4d843cfde2840p+0, -0x1.0edd094ef9800p-2},
|
||||
{0x1.4bd3ec078a3c8p+0, -0x1.09aa518db1000p-2},
|
||||
{0x1.4a27fc3e0258ap+0, -0x1.047e65263b800p-2},
|
||||
{0x1.4880524d48434p+0, -0x1.feb224586f000p-3},
|
||||
{0x1.46dce1b192d0bp+0, -0x1.f474a7517b000p-3},
|
||||
{0x1.453d9d3391854p+0, -0x1.ea4443d103000p-3},
|
||||
{0x1.43a2744b4845ap+0, -0x1.e020d44e9b000p-3},
|
||||
{0x1.420b54115f8fbp+0, -0x1.d60a22977f000p-3},
|
||||
{0x1.40782da3ef4b1p+0, -0x1.cc00104959000p-3},
|
||||
{0x1.3ee8f5d57fe8fp+0, -0x1.c202956891000p-3},
|
||||
{0x1.3d5d9a00b4ce9p+0, -0x1.b81178d811000p-3},
|
||||
{0x1.3bd60c010c12bp+0, -0x1.ae2c9ccd3d000p-3},
|
||||
{0x1.3a5242b75dab8p+0, -0x1.a45402e129000p-3},
|
||||
{0x1.38d22cd9fd002p+0, -0x1.9a877681df000p-3},
|
||||
{0x1.3755bc5847a1cp+0, -0x1.90c6d69483000p-3},
|
||||
{0x1.35dce49ad36e2p+0, -0x1.87120a645c000p-3},
|
||||
{0x1.34679984dd440p+0, -0x1.7d68fb4143000p-3},
|
||||
{0x1.32f5cceffcb24p+0, -0x1.73cb83c627000p-3},
|
||||
{0x1.3187775a10d49p+0, -0x1.6a39a9b376000p-3},
|
||||
{0x1.301c8373e3990p+0, -0x1.60b3154b7a000p-3},
|
||||
{0x1.2eb4ebb95f841p+0, -0x1.5737d76243000p-3},
|
||||
{0x1.2d50a0219a9d1p+0, -0x1.4dc7b8fc23000p-3},
|
||||
{0x1.2bef9a8b7fd2ap+0, -0x1.4462c51d20000p-3},
|
||||
{0x1.2a91c7a0c1babp+0, -0x1.3b08abc830000p-3},
|
||||
{0x1.293726014b530p+0, -0x1.31b996b490000p-3},
|
||||
{0x1.27dfa5757a1f5p+0, -0x1.2875490a44000p-3},
|
||||
{0x1.268b39b1d3bbfp+0, -0x1.1f3b9f879a000p-3},
|
||||
{0x1.2539d838ff5bdp+0, -0x1.160c8252ca000p-3},
|
||||
{0x1.23eb7aac9083bp+0, -0x1.0ce7f57f72000p-3},
|
||||
{0x1.22a012ba940b6p+0, -0x1.03cdc49fea000p-3},
|
||||
{0x1.2157996cc4132p+0, -0x1.f57bdbc4b8000p-4},
|
||||
{0x1.201201dd2fc9bp+0, -0x1.e370896404000p-4},
|
||||
{0x1.1ecf4494d480bp+0, -0x1.d17983ef94000p-4},
|
||||
{0x1.1d8f5528f6569p+0, -0x1.bf9674ed8a000p-4},
|
||||
{0x1.1c52311577e7cp+0, -0x1.adc79202f6000p-4},
|
||||
{0x1.1b17c74cb26e9p+0, -0x1.9c0c3e7288000p-4},
|
||||
{0x1.19e010c2c1ab6p+0, -0x1.8a646b372c000p-4},
|
||||
{0x1.18ab07bb670bdp+0, -0x1.78d01b3ac0000p-4},
|
||||
{0x1.1778a25efbcb6p+0, -0x1.674f145380000p-4},
|
||||
{0x1.1648d354c31dap+0, -0x1.55e0e6d878000p-4},
|
||||
{0x1.151b990275fddp+0, -0x1.4485cdea1e000p-4},
|
||||
{0x1.13f0ea432d24cp+0, -0x1.333d94d6aa000p-4},
|
||||
{0x1.12c8b7210f9dap+0, -0x1.22079f8c56000p-4},
|
||||
{0x1.11a3028ecb531p+0, -0x1.10e4698622000p-4},
|
||||
{0x1.107fbda8434afp+0, -0x1.ffa6c6ad20000p-5},
|
||||
{0x1.0f5ee0f4e6bb3p+0, -0x1.dda8d4a774000p-5},
|
||||
{0x1.0e4065d2a9fcep+0, -0x1.bbcece4850000p-5},
|
||||
{0x1.0d244632ca521p+0, -0x1.9a1894012c000p-5},
|
||||
{0x1.0c0a77ce2981ap+0, -0x1.788583302c000p-5},
|
||||
{0x1.0af2f83c636d1p+0, -0x1.5715e67d68000p-5},
|
||||
{0x1.09ddb98a01339p+0, -0x1.35c8a49658000p-5},
|
||||
{0x1.08cabaf52e7dfp+0, -0x1.149e364154000p-5},
|
||||
{0x1.07b9f2f4e28fbp+0, -0x1.e72c082eb8000p-6},
|
||||
{0x1.06ab58c358f19p+0, -0x1.a55f152528000p-6},
|
||||
{0x1.059eea5ecf92cp+0, -0x1.63d62cf818000p-6},
|
||||
{0x1.04949cdd12c90p+0, -0x1.228fb8caa0000p-6},
|
||||
{0x1.038c6c6f0ada9p+0, -0x1.c317b20f90000p-7},
|
||||
{0x1.02865137932a9p+0, -0x1.419355daa0000p-7},
|
||||
{0x1.0182427ea7348p+0, -0x1.81203c2ec0000p-8},
|
||||
{0x1.008040614b195p+0, -0x1.0040979240000p-9},
|
||||
{0x1.fe01ff726fa1ap-1, 0x1.feff384900000p-9},
|
||||
{0x1.fa11cc261ea74p-1, 0x1.7dc41353d0000p-7},
|
||||
{0x1.f6310b081992ep-1, 0x1.3cea3c4c28000p-6},
|
||||
{0x1.f25f63ceeadcdp-1, 0x1.b9fc114890000p-6},
|
||||
{0x1.ee9c8039113e7p-1, 0x1.1b0d8ce110000p-5},
|
||||
{0x1.eae8078cbb1abp-1, 0x1.58a5bd001c000p-5},
|
||||
{0x1.e741aa29d0c9bp-1, 0x1.95c8340d88000p-5},
|
||||
{0x1.e3a91830a99b5p-1, 0x1.d276aef578000p-5},
|
||||
{0x1.e01e009609a56p-1, 0x1.07598e598c000p-4},
|
||||
{0x1.dca01e577bb98p-1, 0x1.253f5e30d2000p-4},
|
||||
{0x1.d92f20b7c9103p-1, 0x1.42edd8b380000p-4},
|
||||
{0x1.d5cac66fb5ccep-1, 0x1.606598757c000p-4},
|
||||
{0x1.d272caa5ede9dp-1, 0x1.7da76356a0000p-4},
|
||||
{0x1.cf26e3e6b2ccdp-1, 0x1.9ab434e1c6000p-4},
|
||||
{0x1.cbe6da2a77902p-1, 0x1.b78c7bb0d6000p-4},
|
||||
{0x1.c8b266d37086dp-1, 0x1.d431332e72000p-4},
|
||||
{0x1.c5894bd5d5804p-1, 0x1.f0a3171de6000p-4},
|
||||
{0x1.c26b533bb9f8cp-1, 0x1.067152b914000p-3},
|
||||
{0x1.bf583eeece73fp-1, 0x1.147858292b000p-3},
|
||||
{0x1.bc4fd75db96c1p-1, 0x1.2266ecdca3000p-3},
|
||||
{0x1.b951e0c864a28p-1, 0x1.303d7a6c55000p-3},
|
||||
{0x1.b65e2c5ef3e2cp-1, 0x1.3dfc33c331000p-3},
|
||||
{0x1.b374867c9888bp-1, 0x1.4ba366b7a8000p-3},
|
||||
{0x1.b094b211d304ap-1, 0x1.5933928d1f000p-3},
|
||||
{0x1.adbe885f2ef7ep-1, 0x1.66acd2418f000p-3},
|
||||
{0x1.aaf1d31603da2p-1, 0x1.740f8ec669000p-3},
|
||||
{0x1.a82e63fd358a7p-1, 0x1.815c0f51af000p-3},
|
||||
{0x1.a5740ef09738bp-1, 0x1.8e92954f68000p-3},
|
||||
{0x1.a2c2a90ab4b27p-1, 0x1.9bb3602f84000p-3},
|
||||
{0x1.a01a01393f2d1p-1, 0x1.a8bed1c2c0000p-3},
|
||||
{0x1.9d79f24db3c1bp-1, 0x1.b5b515c01d000p-3},
|
||||
{0x1.9ae2505c7b190p-1, 0x1.c2967ccbcc000p-3},
|
||||
{0x1.9852ef297ce2fp-1, 0x1.cf635d5486000p-3},
|
||||
{0x1.95cbaeea44b75p-1, 0x1.dc1bd3446c000p-3},
|
||||
{0x1.934c69de74838p-1, 0x1.e8c01b8cfe000p-3},
|
||||
{0x1.90d4f2f6752e6p-1, 0x1.f5509c0179000p-3},
|
||||
{0x1.8e6528effd79dp-1, 0x1.00e6c121fb800p-2},
|
||||
{0x1.8bfce9fcc007cp-1, 0x1.071b80e93d000p-2},
|
||||
{0x1.899c0dabec30ep-1, 0x1.0d46b9e867000p-2},
|
||||
{0x1.87427aa2317fbp-1, 0x1.13687334bd000p-2},
|
||||
{0x1.84f00acb39a08p-1, 0x1.1980d67234800p-2},
|
||||
{0x1.82a49e8653e55p-1, 0x1.1f8ffe0cc8000p-2},
|
||||
{0x1.8060195f40260p-1, 0x1.2595fd7636800p-2},
|
||||
{0x1.7e22563e0a329p-1, 0x1.2b9300914a800p-2},
|
||||
{0x1.7beb377dcb5adp-1, 0x1.3187210436000p-2},
|
||||
{0x1.79baa679725c2p-1, 0x1.377266dec1800p-2},
|
||||
{0x1.77907f2170657p-1, 0x1.3d54ffbaf3000p-2},
|
||||
{0x1.756cadbd6130cp-1, 0x1.432eee32fe000p-2},
|
||||
},
|
||||
#if !__FP_FAST_FMA
|
||||
.tab2 = {
|
||||
{0x1.61000014fb66bp-1, 0x1.e026c91425b3cp-56},
|
||||
{0x1.63000034db495p-1, 0x1.dbfea48005d41p-55},
|
||||
{0x1.650000d94d478p-1, 0x1.e7fa786d6a5b7p-55},
|
||||
{0x1.67000074e6fadp-1, 0x1.1fcea6b54254cp-57},
|
||||
{0x1.68ffffedf0faep-1, -0x1.c7e274c590efdp-56},
|
||||
{0x1.6b0000763c5bcp-1, -0x1.ac16848dcda01p-55},
|
||||
{0x1.6d0001e5cc1f6p-1, 0x1.33f1c9d499311p-55},
|
||||
{0x1.6efffeb05f63ep-1, -0x1.e80041ae22d53p-56},
|
||||
{0x1.710000e86978p-1, 0x1.bff6671097952p-56},
|
||||
{0x1.72ffffc67e912p-1, 0x1.c00e226bd8724p-55},
|
||||
{0x1.74fffdf81116ap-1, -0x1.e02916ef101d2p-57},
|
||||
{0x1.770000f679c9p-1, -0x1.7fc71cd549c74p-57},
|
||||
{0x1.78ffffa7ec835p-1, 0x1.1bec19ef50483p-55},
|
||||
{0x1.7affffe20c2e6p-1, -0x1.07e1729cc6465p-56},
|
||||
{0x1.7cfffed3fc9p-1, -0x1.08072087b8b1cp-55},
|
||||
{0x1.7efffe9261a76p-1, 0x1.dc0286d9df9aep-55},
|
||||
{0x1.81000049ca3e8p-1, 0x1.97fd251e54c33p-55},
|
||||
{0x1.8300017932c8fp-1, -0x1.afee9b630f381p-55},
|
||||
{0x1.850000633739cp-1, 0x1.9bfbf6b6535bcp-55},
|
||||
{0x1.87000204289c6p-1, -0x1.bbf65f3117b75p-55},
|
||||
{0x1.88fffebf57904p-1, -0x1.9006ea23dcb57p-55},
|
||||
{0x1.8b00022bc04dfp-1, -0x1.d00df38e04b0ap-56},
|
||||
{0x1.8cfffe50c1b8ap-1, -0x1.8007146ff9f05p-55},
|
||||
{0x1.8effffc918e43p-1, 0x1.3817bd07a7038p-55},
|
||||
{0x1.910001efa5fc7p-1, 0x1.93e9176dfb403p-55},
|
||||
{0x1.9300013467bb9p-1, 0x1.f804e4b980276p-56},
|
||||
{0x1.94fffe6ee076fp-1, -0x1.f7ef0d9ff622ep-55},
|
||||
{0x1.96fffde3c12d1p-1, -0x1.082aa962638bap-56},
|
||||
{0x1.98ffff4458a0dp-1, -0x1.7801b9164a8efp-55},
|
||||
{0x1.9afffdd982e3ep-1, -0x1.740e08a5a9337p-55},
|
||||
{0x1.9cfffed49fb66p-1, 0x1.fce08c19bep-60},
|
||||
{0x1.9f00020f19c51p-1, -0x1.a3faa27885b0ap-55},
|
||||
{0x1.a10001145b006p-1, 0x1.4ff489958da56p-56},
|
||||
{0x1.a300007bbf6fap-1, 0x1.cbeab8a2b6d18p-55},
|
||||
{0x1.a500010971d79p-1, 0x1.8fecadd78793p-55},
|
||||
{0x1.a70001df52e48p-1, -0x1.f41763dd8abdbp-55},
|
||||
{0x1.a90001c593352p-1, -0x1.ebf0284c27612p-55},
|
||||
{0x1.ab0002a4f3e4bp-1, -0x1.9fd043cff3f5fp-57},
|
||||
{0x1.acfffd7ae1ed1p-1, -0x1.23ee7129070b4p-55},
|
||||
{0x1.aefffee510478p-1, 0x1.a063ee00edea3p-57},
|
||||
{0x1.b0fffdb650d5bp-1, 0x1.a06c8381f0ab9p-58},
|
||||
{0x1.b2ffffeaaca57p-1, -0x1.9011e74233c1dp-56},
|
||||
{0x1.b4fffd995badcp-1, -0x1.9ff1068862a9fp-56},
|
||||
{0x1.b7000249e659cp-1, 0x1.aff45d0864f3ep-55},
|
||||
{0x1.b8ffff987164p-1, 0x1.cfe7796c2c3f9p-56},
|
||||
{0x1.bafffd204cb4fp-1, -0x1.3ff27eef22bc4p-57},
|
||||
{0x1.bcfffd2415c45p-1, -0x1.cffb7ee3bea21p-57},
|
||||
{0x1.beffff86309dfp-1, -0x1.14103972e0b5cp-55},
|
||||
{0x1.c0fffe1b57653p-1, 0x1.bc16494b76a19p-55},
|
||||
{0x1.c2ffff1fa57e3p-1, -0x1.4feef8d30c6edp-57},
|
||||
{0x1.c4fffdcbfe424p-1, -0x1.43f68bcec4775p-55},
|
||||
{0x1.c6fffed54b9f7p-1, 0x1.47ea3f053e0ecp-55},
|
||||
{0x1.c8fffeb998fd5p-1, 0x1.383068df992f1p-56},
|
||||
{0x1.cb0002125219ap-1, -0x1.8fd8e64180e04p-57},
|
||||
{0x1.ccfffdd94469cp-1, 0x1.e7ebe1cc7ea72p-55},
|
||||
{0x1.cefffeafdc476p-1, 0x1.ebe39ad9f88fep-55},
|
||||
{0x1.d1000169af82bp-1, 0x1.57d91a8b95a71p-56},
|
||||
{0x1.d30000d0ff71dp-1, 0x1.9c1906970c7dap-55},
|
||||
{0x1.d4fffea790fc4p-1, -0x1.80e37c558fe0cp-58},
|
||||
{0x1.d70002edc87e5p-1, -0x1.f80d64dc10f44p-56},
|
||||
{0x1.d900021dc82aap-1, -0x1.47c8f94fd5c5cp-56},
|
||||
{0x1.dafffd86b0283p-1, 0x1.c7f1dc521617ep-55},
|
||||
{0x1.dd000296c4739p-1, 0x1.8019eb2ffb153p-55},
|
||||
{0x1.defffe54490f5p-1, 0x1.e00d2c652cc89p-57},
|
||||
{0x1.e0fffcdabf694p-1, -0x1.f8340202d69d2p-56},
|
||||
{0x1.e2fffdb52c8ddp-1, 0x1.b00c1ca1b0864p-56},
|
||||
{0x1.e4ffff24216efp-1, 0x1.2ffa8b094ab51p-56},
|
||||
{0x1.e6fffe88a5e11p-1, -0x1.7f673b1efbe59p-58},
|
||||
{0x1.e9000119eff0dp-1, -0x1.4808d5e0bc801p-55},
|
||||
{0x1.eafffdfa51744p-1, 0x1.80006d54320b5p-56},
|
||||
{0x1.ed0001a127fa1p-1, -0x1.002f860565c92p-58},
|
||||
{0x1.ef00007babcc4p-1, -0x1.540445d35e611p-55},
|
||||
{0x1.f0ffff57a8d02p-1, -0x1.ffb3139ef9105p-59},
|
||||
{0x1.f30001ee58ac7p-1, 0x1.a81acf2731155p-55},
|
||||
{0x1.f4ffff5823494p-1, 0x1.a3f41d4d7c743p-55},
|
||||
{0x1.f6ffffca94c6bp-1, -0x1.202f41c987875p-57},
|
||||
{0x1.f8fffe1f9c441p-1, 0x1.77dd1f477e74bp-56},
|
||||
{0x1.fafffd2e0e37ep-1, -0x1.f01199a7ca331p-57},
|
||||
{0x1.fd0001c77e49ep-1, 0x1.181ee4bceacb1p-56},
|
||||
{0x1.feffff7e0c331p-1, -0x1.e05370170875ap-57},
|
||||
{0x1.00ffff465606ep+0, -0x1.a7ead491c0adap-55},
|
||||
{0x1.02ffff3867a58p+0, -0x1.77f69c3fcb2ep-54},
|
||||
{0x1.04ffffdfc0d17p+0, 0x1.7bffe34cb945bp-54},
|
||||
{0x1.0700003cd4d82p+0, 0x1.20083c0e456cbp-55},
|
||||
{0x1.08ffff9f2cbe8p+0, -0x1.dffdfbe37751ap-57},
|
||||
{0x1.0b000010cda65p+0, -0x1.13f7faee626ebp-54},
|
||||
{0x1.0d00001a4d338p+0, 0x1.07dfa79489ff7p-55},
|
||||
{0x1.0effffadafdfdp+0, -0x1.7040570d66bcp-56},
|
||||
{0x1.110000bbafd96p+0, 0x1.e80d4846d0b62p-55},
|
||||
{0x1.12ffffae5f45dp+0, 0x1.dbffa64fd36efp-54},
|
||||
{0x1.150000dd59ad9p+0, 0x1.a0077701250aep-54},
|
||||
{0x1.170000f21559ap+0, 0x1.dfdf9e2e3deeep-55},
|
||||
{0x1.18ffffc275426p+0, 0x1.10030dc3b7273p-54},
|
||||
{0x1.1b000123d3c59p+0, 0x1.97f7980030188p-54},
|
||||
{0x1.1cffff8299eb7p+0, -0x1.5f932ab9f8c67p-57},
|
||||
{0x1.1effff48ad4p+0, 0x1.37fbf9da75bebp-54},
|
||||
{0x1.210000c8b86a4p+0, 0x1.f806b91fd5b22p-54},
|
||||
{0x1.2300003854303p+0, 0x1.3ffc2eb9fbf33p-54},
|
||||
{0x1.24fffffbcf684p+0, 0x1.601e77e2e2e72p-56},
|
||||
{0x1.26ffff52921d9p+0, 0x1.ffcbb767f0c61p-56},
|
||||
{0x1.2900014933a3cp+0, -0x1.202ca3c02412bp-56},
|
||||
{0x1.2b00014556313p+0, -0x1.2808233f21f02p-54},
|
||||
{0x1.2cfffebfe523bp+0, -0x1.8ff7e384fdcf2p-55},
|
||||
{0x1.2f0000bb8ad96p+0, -0x1.5ff51503041c5p-55},
|
||||
{0x1.30ffffb7ae2afp+0, -0x1.10071885e289dp-55},
|
||||
{0x1.32ffffeac5f7fp+0, -0x1.1ff5d3fb7b715p-54},
|
||||
{0x1.350000ca66756p+0, 0x1.57f82228b82bdp-54},
|
||||
{0x1.3700011fbf721p+0, 0x1.000bac40dd5ccp-55},
|
||||
{0x1.38ffff9592fb9p+0, -0x1.43f9d2db2a751p-54},
|
||||
{0x1.3b00004ddd242p+0, 0x1.57f6b707638e1p-55},
|
||||
{0x1.3cffff5b2c957p+0, 0x1.a023a10bf1231p-56},
|
||||
{0x1.3efffeab0b418p+0, 0x1.87f6d66b152bp-54},
|
||||
{0x1.410001532aff4p+0, 0x1.7f8375f198524p-57},
|
||||
{0x1.4300017478b29p+0, 0x1.301e672dc5143p-55},
|
||||
{0x1.44fffe795b463p+0, 0x1.9ff69b8b2895ap-55},
|
||||
{0x1.46fffe80475ep+0, -0x1.5c0b19bc2f254p-54},
|
||||
{0x1.48fffef6fc1e7p+0, 0x1.b4009f23a2a72p-54},
|
||||
{0x1.4afffe5bea704p+0, -0x1.4ffb7bf0d7d45p-54},
|
||||
{0x1.4d000171027dep+0, -0x1.9c06471dc6a3dp-54},
|
||||
{0x1.4f0000ff03ee2p+0, 0x1.77f890b85531cp-54},
|
||||
{0x1.5100012dc4bd1p+0, 0x1.004657166a436p-57},
|
||||
{0x1.530001605277ap+0, -0x1.6bfcece233209p-54},
|
||||
{0x1.54fffecdb704cp+0, -0x1.902720505a1d7p-55},
|
||||
{0x1.56fffef5f54a9p+0, 0x1.bbfe60ec96412p-54},
|
||||
{0x1.5900017e61012p+0, 0x1.87ec581afef9p-55},
|
||||
{0x1.5b00003c93e92p+0, -0x1.f41080abf0ccp-54},
|
||||
{0x1.5d0001d4919bcp+0, -0x1.8812afb254729p-54},
|
||||
{0x1.5efffe7b87a89p+0, -0x1.47eb780ed6904p-54},
|
||||
},
|
||||
#endif
|
||||
};
|
28
src/math/log_data.h
Normal file
28
src/math/log_data.h
Normal file
@ -0,0 +1,28 @@
|
||||
/*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _LOG_DATA_H
|
||||
#define _LOG_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
|
||||
#define LOG_TABLE_BITS 7
|
||||
#define LOG_POLY_ORDER 6
|
||||
#define LOG_POLY1_ORDER 12
|
||||
extern hidden const struct log_data {
|
||||
double ln2hi;
|
||||
double ln2lo;
|
||||
double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
|
||||
double poly1[LOG_POLY1_ORDER - 1];
|
||||
struct {
|
||||
double invc, logc;
|
||||
} tab[1 << LOG_TABLE_BITS];
|
||||
#if !__FP_FAST_FMA
|
||||
struct {
|
||||
double chi, clo;
|
||||
} tab2[1 << LOG_TABLE_BITS];
|
||||
#endif
|
||||
} __log_data;
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user