1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-27 10:03:32 +00:00
mpv/libaf/af_equalizer.c
uau d7f6cb23de A/V sync: take audio filter buffers into account
Substract the delay caused by filter buffering when calculating
currently playing audio position. This matters for af_scaletempo which
buffers significant and varying amounts of data. For other current
filters the effect is normally insignificant.

Instead of the old time-based filter delay field (which was ignored)
this version stores the per-filter delay in units of bytes input read
without corresponding output. This allows the current scaletempo
behavior where other filters before and after it can see the same
nominal samplerate even though the real duration of the data varies;
in this case the other filters can not know the delay they're causing
in terms of real time.


git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@24928 b3059339-0415-0410-9bf9-f77b7e298cf2
2007-11-01 06:52:50 +00:00

249 lines
6.3 KiB
C

/*=============================================================================
//
// This software has been released under the terms of the GNU General Public
// license. See http://www.gnu.org/copyleft/gpl.html for details.
//
// Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
//
//=============================================================================
*/
/* Equalizer filter, implementation of a 10 band time domain graphic
equalizer using IIR filters. The IIR filters are implemented using a
Direct Form II approach, but has been modified (b1 == 0 always) to
save computation.
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h>
#include "af.h"
#define L 2 // Storage for filter taps
#define KM 10 // Max number of bands
#define Q 1.2247449 /* Q value for band-pass filters 1.2247=(3/2)^(1/2)
gives 4dB suppression @ Fc*2 and Fc/2 */
/* Center frequencies for band-pass filters
The different frequency bands are:
nr. center frequency
0 31.25 Hz
1 62.50 Hz
2 125.0 Hz
3 250.0 Hz
4 500.0 Hz
5 1.000 kHz
6 2.000 kHz
7 4.000 kHz
8 8.000 kHz
9 16.00 kHz
*/
#define CF {31.25,62.5,125,250,500,1000,2000,4000,8000,16000}
// Maximum and minimum gain for the bands
#define G_MAX +12.0
#define G_MIN -12.0
// Data for specific instances of this filter
typedef struct af_equalizer_s
{
float a[KM][L]; // A weights
float b[KM][L]; // B weights
float wq[AF_NCH][KM][L]; // Circular buffer for W data
float g[AF_NCH][KM]; // Gain factor for each channel and band
int K; // Number of used eq bands
int channels; // Number of channels
float gain_factor; // applied at output to avoid clipping
} af_equalizer_t;
// 2nd order Band-pass Filter design
static void bp2(float* a, float* b, float fc, float q){
double th= 2.0 * M_PI * fc;
double C = (1.0 - tan(th*q/2.0))/(1.0 + tan(th*q/2.0));
a[0] = (1.0 + C) * cos(th);
a[1] = -1 * C;
b[0] = (1.0 - C)/2.0;
b[1] = -1.0050;
}
// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
af_equalizer_t* s = (af_equalizer_t*)af->setup;
switch(cmd){
case AF_CONTROL_REINIT:{
int k =0, i =0;
float F[KM] = CF;
s->gain_factor=0.0;
// Sanity check
if(!arg) return AF_ERROR;
af->data->rate = ((af_data_t*)arg)->rate;
af->data->nch = ((af_data_t*)arg)->nch;
af->data->format = AF_FORMAT_FLOAT_NE;
af->data->bps = 4;
// Calculate number of active filters
s->K=KM;
while(F[s->K-1] > (float)af->data->rate/2.2)
s->K--;
if(s->K != KM)
af_msg(AF_MSG_INFO,"[equalizer] Limiting the number of filters to"
" %i due to low sample rate.\n",s->K);
// Generate filter taps
for(k=0;k<s->K;k++)
bp2(s->a[k],s->b[k],F[k]/((float)af->data->rate),Q);
// Calculate how much this plugin adds to the overall time delay
af->delay = 2 * af->data->nch * af->data->bps;
// Calculate gain factor to prevent clipping at output
for(k=0;k<AF_NCH;k++)
{
for(i=0;i<KM;i++)
{
if(s->gain_factor < s->g[k][i]) s->gain_factor=s->g[k][i];
}
}
s->gain_factor=log10(s->gain_factor + 1.0) * 20.0;
if(s->gain_factor > 0.0)
{
s->gain_factor=0.1+(s->gain_factor/12.0);
}else{
s->gain_factor=1;
}
return af_test_output(af,arg);
}
case AF_CONTROL_COMMAND_LINE:{
float g[10]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
int i,j;
sscanf((char*)arg,"%f:%f:%f:%f:%f:%f:%f:%f:%f:%f", &g[0], &g[1],
&g[2], &g[3], &g[4], &g[5], &g[6], &g[7], &g[8] ,&g[9]);
for(i=0;i<AF_NCH;i++){
for(j=0;j<KM;j++){
((af_equalizer_t*)af->setup)->g[i][j] =
pow(10.0,clamp(g[j],G_MIN,G_MAX)/20.0)-1.0;
}
}
return AF_OK;
}
case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_SET:{
float* gain = ((af_control_ext_t*)arg)->arg;
int ch = ((af_control_ext_t*)arg)->ch;
int k;
if(ch >= AF_NCH || ch < 0)
return AF_ERROR;
for(k = 0 ; k<KM ; k++)
s->g[ch][k] = pow(10.0,clamp(gain[k],G_MIN,G_MAX)/20.0)-1.0;
return AF_OK;
}
case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_GET:{
float* gain = ((af_control_ext_t*)arg)->arg;
int ch = ((af_control_ext_t*)arg)->ch;
int k;
if(ch >= AF_NCH || ch < 0)
return AF_ERROR;
for(k = 0 ; k<KM ; k++)
gain[k] = log10(s->g[ch][k]+1.0) * 20.0;
return AF_OK;
}
}
return AF_UNKNOWN;
}
// Deallocate memory
static void uninit(struct af_instance_s* af)
{
if(af->data)
free(af->data);
if(af->setup)
free(af->setup);
}
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
af_data_t* c = data; // Current working data
af_equalizer_t* s = (af_equalizer_t*)af->setup; // Setup
uint32_t ci = af->data->nch; // Index for channels
uint32_t nch = af->data->nch; // Number of channels
while(ci--){
float* g = s->g[ci]; // Gain factor
float* in = ((float*)c->audio)+ci;
float* out = ((float*)c->audio)+ci;
float* end = in + c->len/4; // Block loop end
while(in < end){
register int k = 0; // Frequency band index
register float yt = *in; // Current input sample
in+=nch;
// Run the filters
for(;k<s->K;k++){
// Pointer to circular buffer wq
register float* wq = s->wq[ci][k];
// Calculate output from AR part of current filter
register float w=yt*s->b[k][0] + wq[0]*s->a[k][0] + wq[1]*s->a[k][1];
// Calculate output form MA part of current filter
yt+=(w + wq[1]*s->b[k][1])*g[k];
// Update circular buffer
wq[1] = wq[0];
wq[0] = w;
}
// Calculate output
*out=yt*s->gain_factor;
out+=nch;
}
}
return c;
}
// Allocate memory and set function pointers
static int af_open(af_instance_t* af){
af->control=control;
af->uninit=uninit;
af->play=play;
af->mul=1;
af->data=calloc(1,sizeof(af_data_t));
af->setup=calloc(1,sizeof(af_equalizer_t));
if(af->data == NULL || af->setup == NULL)
return AF_ERROR;
return AF_OK;
}
// Description of this filter
af_info_t af_info_equalizer = {
"Equalizer audio filter",
"equalizer",
"Anders",
"",
AF_FLAGS_NOT_REENTRANT,
af_open
};