mirror of
https://github.com/mpv-player/mpv
synced 2025-01-28 02:23:06 +00:00
d7f6cb23de
Substract the delay caused by filter buffering when calculating currently playing audio position. This matters for af_scaletempo which buffers significant and varying amounts of data. For other current filters the effect is normally insignificant. Instead of the old time-based filter delay field (which was ignored) this version stores the per-filter delay in units of bytes input read without corresponding output. This allows the current scaletempo behavior where other filters before and after it can see the same nominal samplerate even though the real duration of the data varies; in this case the other filters can not know the delay they're causing in terms of real time. git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@24928 b3059339-0415-0410-9bf9-f77b7e298cf2
560 lines
17 KiB
C
560 lines
17 KiB
C
/*
|
|
* scaletempo audio filter
|
|
* Copyright (c) 2007 Robert Juliano
|
|
*
|
|
* This file is part of MPlayer.
|
|
*
|
|
* MPlayer is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MPlayer is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with MPlayer; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* scale tempo while maintaining pitch
|
|
* (WSOLA technique with cross correlation)
|
|
* inspired by SoundTouch library by Olli Parviainen
|
|
*
|
|
* basic algorithm
|
|
* - produce 'stride' output samples per loop
|
|
* - consume stride*scale input samples per loop
|
|
*
|
|
* to produce smoother transitions between strides, blend next overlap
|
|
* samples from last stride with correlated samples of current input
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
#include "af.h"
|
|
#include "libavutil/common.h"
|
|
#include "subopt-helper.h"
|
|
#include "help_mp.h"
|
|
|
|
// Data for specific instances of this filter
|
|
typedef struct af_scaletempo_s
|
|
{
|
|
// stride
|
|
float scale;
|
|
float speed;
|
|
float frames_stride_scaled;
|
|
float frames_stride_error;
|
|
int bytes_per_frame;
|
|
int bytes_stride;
|
|
float bytes_stride_scaled;
|
|
int bytes_queue;
|
|
int bytes_queued;
|
|
int bytes_to_slide;
|
|
int8_t* buf_queue;
|
|
// overlap
|
|
int samples_overlap;
|
|
int samples_standing;
|
|
int bytes_overlap;
|
|
int bytes_standing;
|
|
int8_t* buf_overlap;
|
|
int8_t* table_blend;
|
|
void (*output_overlap)(struct af_scaletempo_s* s, int8_t* out_buf, int bytes_off);
|
|
// best overlap
|
|
int frames_search;
|
|
int num_channels;
|
|
int8_t* buf_pre_corr;
|
|
int8_t* table_window;
|
|
int (*best_overlap_offset)(struct af_scaletempo_s* s);
|
|
short shift_corr;
|
|
// command line
|
|
float scale_nominal;
|
|
float ms_stride;
|
|
float percent_overlap;
|
|
float ms_search;
|
|
short speed_tempo;
|
|
short speed_pitch;
|
|
} af_scaletempo_t;
|
|
|
|
static int fill_queue(struct af_instance_s* af, af_data_t* data, int offset)
|
|
{
|
|
af_scaletempo_t* s = af->setup;
|
|
int bytes_in = data->len - offset;
|
|
int offset_unchanged = offset;
|
|
|
|
if (s->bytes_to_slide > 0) {
|
|
if (s->bytes_to_slide < s->bytes_queued) {
|
|
int bytes_move = s->bytes_queued - s->bytes_to_slide;
|
|
memmove(s->buf_queue,
|
|
s->buf_queue + s->bytes_to_slide,
|
|
bytes_move);
|
|
s->bytes_to_slide = 0;
|
|
s->bytes_queued = bytes_move;
|
|
} else {
|
|
int bytes_skip;
|
|
s->bytes_to_slide -= s->bytes_queued;
|
|
bytes_skip = FFMIN(s->bytes_to_slide, bytes_in);
|
|
s->bytes_queued = 0;
|
|
s->bytes_to_slide -= bytes_skip;
|
|
offset += bytes_skip;
|
|
bytes_in -= bytes_skip;
|
|
}
|
|
}
|
|
|
|
if (bytes_in > 0) {
|
|
int bytes_copy = FFMIN(s->bytes_queue - s->bytes_queued, bytes_in);
|
|
memcpy(s->buf_queue + s->bytes_queued,
|
|
(int8_t*)data->audio + offset,
|
|
bytes_copy);
|
|
s->bytes_queued += bytes_copy;
|
|
offset += bytes_copy;
|
|
}
|
|
|
|
return offset - offset_unchanged;
|
|
}
|
|
|
|
static int best_overlap_offset_float(af_scaletempo_t* s)
|
|
{
|
|
float *pw, *po, *ppc, *search_start;
|
|
float best_corr = INT_MIN;
|
|
int best_off = 0;
|
|
int i, off;
|
|
|
|
pw = (float*)s->table_window;
|
|
po = (float*)s->buf_overlap + s->num_channels;
|
|
ppc = (float*)s->buf_pre_corr;
|
|
for (i=s->num_channels; i<s->samples_overlap; i++) {
|
|
*ppc++ = *pw++ * *po++;
|
|
}
|
|
|
|
search_start = (float*)s->buf_queue + s->num_channels;
|
|
for (off=0; off<s->frames_search; off++) {
|
|
float corr = 0;
|
|
float* ps = search_start;
|
|
ppc = (float*)s->buf_pre_corr;
|
|
for (i=s->num_channels; i<s->samples_overlap; i++) {
|
|
corr += *ppc++ * *ps++;
|
|
}
|
|
if (corr > best_corr) {
|
|
best_corr = corr;
|
|
best_off = off;
|
|
}
|
|
search_start += s->num_channels;
|
|
}
|
|
|
|
return best_off * 4 * s->num_channels;
|
|
}
|
|
|
|
static int best_overlap_offset_s16(af_scaletempo_t* s)
|
|
{
|
|
int32_t *pw, *ppc;
|
|
int16_t *po, *search_start;
|
|
int32_t best_corr = INT_MIN;
|
|
int best_off = 0;
|
|
int i, off;
|
|
|
|
pw = (int32_t*)s->table_window;
|
|
po = (int16_t*)s->buf_overlap + s->num_channels;
|
|
ppc = (int32_t*)s->buf_pre_corr;
|
|
for (i=s->num_channels; i<s->samples_overlap; i++) {
|
|
*ppc++ = ( *pw++ * *po++ ) >> 15;
|
|
}
|
|
|
|
search_start = (int16_t*)s->buf_queue + s->num_channels;
|
|
for (off=0; off<s->frames_search; off++) {
|
|
int32_t corr = 0;
|
|
int16_t* ps = search_start;
|
|
ppc = (int32_t*)s->buf_pre_corr;
|
|
for (i=s->num_channels; i<s->samples_overlap; i++) {
|
|
corr += ( *ppc++ * *ps++ ) >> s->shift_corr;
|
|
}
|
|
if (corr > best_corr) {
|
|
best_corr = corr;
|
|
best_off = off;
|
|
}
|
|
search_start += s->num_channels;
|
|
}
|
|
|
|
return best_off * 2 * s->num_channels;
|
|
}
|
|
|
|
static void output_overlap_float(af_scaletempo_t* s, int8_t* buf_out,
|
|
int bytes_off)
|
|
{
|
|
float* pout = (float*)buf_out;
|
|
float* pb = (float*)s->table_blend;
|
|
float* po = (float*)s->buf_overlap;
|
|
float* pin = (float*)(s->buf_queue + bytes_off);
|
|
int i;
|
|
for (i=0; i<s->samples_overlap; i++) {
|
|
*pout++ = *po - *pb++ * ( *po - *pin++ ); po++;
|
|
}
|
|
}
|
|
static void output_overlap_s16(af_scaletempo_t* s, int8_t* buf_out,
|
|
int bytes_off)
|
|
{
|
|
int16_t* pout = (int16_t*)buf_out;
|
|
int32_t* pb = (int32_t*)s->table_blend;
|
|
int16_t* po = (int16_t*)s->buf_overlap;
|
|
int16_t* pin = (int16_t*)(s->buf_queue + bytes_off);
|
|
int i;
|
|
for (i=0; i<s->samples_overlap; i++) {
|
|
*pout++ = *po - ( ( *pb++ * ( *po - *pin++ ) ) >> 16 ); po++;
|
|
}
|
|
}
|
|
|
|
// Filter data through filter
|
|
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
|
|
{
|
|
af_scaletempo_t* s = af->setup;
|
|
int offset_in;
|
|
int max_bytes_out;
|
|
int8_t* pout;
|
|
|
|
if (s->scale == 1.0) {
|
|
return data;
|
|
}
|
|
|
|
// RESIZE_LOCAL_BUFFER - can't use macro
|
|
max_bytes_out = ((int)(data->len / s->bytes_stride_scaled) + 1) * s->bytes_stride;
|
|
if (max_bytes_out > af->data->len) {
|
|
af_msg(AF_MSG_VERBOSE, "[libaf] Reallocating memory in module %s, "
|
|
"old len = %i, new len = %i\n",af->info->name,af->data->len,max_bytes_out);
|
|
af->data->audio = realloc(af->data->audio, max_bytes_out);
|
|
if (!af->data->audio) {
|
|
af_msg(AF_MSG_FATAL, "[libaf] Could not allocate memory\n");
|
|
return NULL;
|
|
}
|
|
af->data->len = max_bytes_out;
|
|
}
|
|
|
|
offset_in = fill_queue(af, data, 0);
|
|
pout = af->data->audio;
|
|
while (s->bytes_queued >= s->bytes_queue) {
|
|
int ti;
|
|
float tf;
|
|
int bytes_off = 0;
|
|
|
|
// output stride
|
|
if (s->output_overlap) {
|
|
if (s->best_overlap_offset)
|
|
bytes_off = s->best_overlap_offset(s);
|
|
s->output_overlap(s, pout, bytes_off);
|
|
}
|
|
memcpy(pout + s->bytes_overlap,
|
|
s->buf_queue + bytes_off + s->bytes_overlap,
|
|
s->bytes_standing);
|
|
pout += s->bytes_stride;
|
|
|
|
// input stride
|
|
memcpy(s->buf_overlap,
|
|
s->buf_queue + bytes_off + s->bytes_stride,
|
|
s->bytes_overlap);
|
|
tf = s->frames_stride_scaled + s->frames_stride_error;
|
|
ti = (int)tf;
|
|
s->frames_stride_error = tf - ti;
|
|
s->bytes_to_slide = ti * s->bytes_per_frame;
|
|
|
|
offset_in += fill_queue(af, data, offset_in);
|
|
}
|
|
|
|
// This filter can have a negative delay when scale > 1:
|
|
// output corresponding to some length of input can be decided and written
|
|
// after receiving only a part of that input.
|
|
af->delay = s->bytes_queued - s->bytes_to_slide;
|
|
|
|
data->audio = af->data->audio;
|
|
data->len = pout - (int8_t *)af->data->audio;
|
|
return data;
|
|
}
|
|
|
|
// Initialization and runtime control
|
|
static int control(struct af_instance_s* af, int cmd, void* arg)
|
|
{
|
|
af_scaletempo_t* s = af->setup;
|
|
switch(cmd){
|
|
case AF_CONTROL_REINIT:{
|
|
af_data_t* data = (af_data_t*)arg;
|
|
float srate = data->rate / 1000;
|
|
int nch = data->nch;
|
|
int bps;
|
|
int use_int = 0;
|
|
int frames_stride, frames_overlap;
|
|
int i, j;
|
|
|
|
af_msg(AF_MSG_VERBOSE,
|
|
"[scaletempo] %.3f speed * %.3f scale_nominal = %.3f\n",
|
|
s->speed, s->scale_nominal, s->scale);
|
|
|
|
if (s->scale == 1.0) {
|
|
if (s->speed_tempo && s->speed_pitch)
|
|
return AF_DETACH;
|
|
memcpy(af->data, data, sizeof(af_data_t));
|
|
return af_test_output(af, data);
|
|
}
|
|
|
|
af->data->rate = data->rate;
|
|
af->data->nch = data->nch;
|
|
if ( data->format == AF_FORMAT_S16_LE
|
|
|| data->format == AF_FORMAT_S16_BE ) {
|
|
use_int = 1;
|
|
af->data->format = AF_FORMAT_S16_NE;
|
|
af->data->bps = bps = 2;
|
|
} else {
|
|
af->data->format = AF_FORMAT_FLOAT_NE;
|
|
af->data->bps = bps = 4;
|
|
}
|
|
|
|
frames_stride = srate * s->ms_stride;
|
|
s->bytes_stride = frames_stride * bps * nch;
|
|
s->bytes_stride_scaled = s->scale * s->bytes_stride;
|
|
s->frames_stride_scaled = s->scale * frames_stride;
|
|
s->frames_stride_error = 0;
|
|
af->mul = (double)s->bytes_stride / s->bytes_stride_scaled;
|
|
|
|
frames_overlap = frames_stride * s->percent_overlap;
|
|
if (frames_overlap <= 0) {
|
|
s->bytes_standing = s->bytes_stride;
|
|
s->samples_standing = s->bytes_standing / bps;
|
|
s->output_overlap = NULL;
|
|
} else {
|
|
s->samples_overlap = frames_overlap * nch;
|
|
s->bytes_overlap = frames_overlap * nch * bps;
|
|
s->bytes_standing = s->bytes_stride - s->bytes_overlap;
|
|
s->samples_standing = s->bytes_standing / bps;
|
|
s->buf_overlap = realloc(s->buf_overlap, s->bytes_overlap);
|
|
s->table_blend = realloc(s->table_blend, s->bytes_overlap * 4);
|
|
if(!s->buf_overlap || !s->table_blend) {
|
|
af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
|
|
return AF_ERROR;
|
|
}
|
|
bzero(s->buf_overlap, s->bytes_overlap);
|
|
if (use_int) {
|
|
int32_t* pb = (int32_t*)s->table_blend;
|
|
int64_t blend = 0;
|
|
for (i=0; i<frames_overlap; i++) {
|
|
int32_t v = blend / frames_overlap;
|
|
for (j=0; j<nch; j++) {
|
|
*pb++ = v;
|
|
}
|
|
blend += 65536; // 2^16
|
|
}
|
|
s->output_overlap = output_overlap_s16;
|
|
} else {
|
|
float* pb = (float*)s->table_blend;
|
|
for (i=0; i<frames_overlap; i++) {
|
|
float v = i / (float)frames_overlap;
|
|
for (j=0; j<nch; j++) {
|
|
*pb++ = v;
|
|
}
|
|
}
|
|
s->output_overlap = output_overlap_float;
|
|
}
|
|
}
|
|
|
|
s->frames_search = (frames_overlap > 1) ? srate * s->ms_search : 0;
|
|
if (s->frames_search <= 0) {
|
|
s->best_overlap_offset = NULL;
|
|
} else {
|
|
if (use_int) {
|
|
int64_t t = frames_overlap;
|
|
int32_t n = 8589934588LL / (t * t); // 4 * (2^31 - 1) / t^2
|
|
int32_t* pw;
|
|
s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap * 2);
|
|
s->table_window = realloc(s->table_window, s->bytes_overlap * 2 - nch * bps * 2);
|
|
if(!s->buf_pre_corr && !s->table_window) {
|
|
af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
|
|
return AF_ERROR;
|
|
}
|
|
pw = (int32_t*)s->table_window;
|
|
for (i=1; i<frames_overlap; i++) {
|
|
int32_t v = ( i * (t - i) * n ) >> 15;
|
|
for (j=0; j<nch; j++) {
|
|
*pw++ = v;
|
|
}
|
|
}
|
|
s->shift_corr = av_log2( 2*(s->samples_overlap - nch) - 1 );
|
|
s->best_overlap_offset = best_overlap_offset_s16;
|
|
} else {
|
|
float* pw;
|
|
s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap);
|
|
s->table_window = realloc(s->table_window, s->bytes_overlap - nch * bps);
|
|
if(!s->buf_pre_corr || !s->table_window) {
|
|
af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
|
|
return AF_ERROR;
|
|
}
|
|
pw = (float*)s->table_window;
|
|
for (i=1; i<frames_overlap; i++) {
|
|
float v = i * (frames_overlap - i);
|
|
for (j=0; j<nch; j++) {
|
|
*pw++ = v;
|
|
}
|
|
}
|
|
s->best_overlap_offset = best_overlap_offset_float;
|
|
}
|
|
}
|
|
|
|
s->bytes_per_frame = bps * nch;
|
|
s->num_channels = nch;
|
|
|
|
s->bytes_queue
|
|
= (s->frames_search + frames_stride + frames_overlap) * bps * nch;
|
|
s->buf_queue = realloc(s->buf_queue, s->bytes_queue);
|
|
if(!s->buf_queue) {
|
|
af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
|
|
return AF_ERROR;
|
|
}
|
|
|
|
af_msg (AF_MSG_DEBUG0, "[scaletempo] "
|
|
"%.2f stride_in, %i stride_out, %i standing, "
|
|
"%i overlap, %i search, %i queue, %s mode\n",
|
|
s->frames_stride_scaled,
|
|
(int)(s->bytes_stride / nch / bps),
|
|
(int)(s->bytes_standing / nch / bps),
|
|
(int)(s->bytes_overlap / nch / bps),
|
|
s->frames_search,
|
|
(int)(s->bytes_queue / nch / bps),
|
|
(use_int?"s16":"float"));
|
|
|
|
return af_test_output(af, (af_data_t*)arg);
|
|
}
|
|
case AF_CONTROL_PLAYBACK_SPEED | AF_CONTROL_SET:{
|
|
if (s->speed_tempo) {
|
|
if (s->speed_pitch) {
|
|
break;
|
|
}
|
|
s->speed = *(float*)arg;
|
|
s->scale = s->speed * s->scale_nominal;
|
|
} else {
|
|
if (s->speed_pitch) {
|
|
s->speed = 1 / *(float*)arg;
|
|
s->scale = s->speed * s->scale_nominal;
|
|
break;
|
|
}
|
|
}
|
|
return AF_OK;
|
|
}
|
|
case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_SET:{
|
|
s->scale = *(float*)arg;
|
|
s->scale = s->speed * s->scale_nominal;
|
|
return AF_OK;
|
|
}
|
|
case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_GET:
|
|
*(float*)arg = s->scale;
|
|
return AF_OK;
|
|
case AF_CONTROL_COMMAND_LINE:{
|
|
strarg_t speed = {};
|
|
opt_t subopts[] = {
|
|
{"scale", OPT_ARG_FLOAT, &s->scale_nominal, NULL},
|
|
{"stride", OPT_ARG_FLOAT, &s->ms_stride, NULL},
|
|
{"overlap", OPT_ARG_FLOAT, &s->percent_overlap, NULL},
|
|
{"search", OPT_ARG_FLOAT, &s->ms_search, NULL},
|
|
{"speed", OPT_ARG_STR, &speed, NULL},
|
|
{NULL},
|
|
};
|
|
if (subopt_parse(arg, subopts) != 0) {
|
|
return AF_ERROR;
|
|
}
|
|
if (s->scale_nominal <= 0) {
|
|
af_msg(AF_MSG_ERROR, "[scaletempo] "
|
|
MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
|
|
": scale > 0\n");
|
|
return AF_ERROR;
|
|
}
|
|
if (s->ms_stride <= 0) {
|
|
af_msg(AF_MSG_ERROR, "[scaletempo] "
|
|
MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
|
|
": stride > 0\n");
|
|
return AF_ERROR;
|
|
}
|
|
if (s->percent_overlap < 0 || s->percent_overlap > 1) {
|
|
af_msg(AF_MSG_ERROR, "[scaletempo] "
|
|
MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
|
|
": 0 <= overlap <= 1\n");
|
|
return AF_ERROR;
|
|
}
|
|
if (s->ms_search < 0) {
|
|
af_msg(AF_MSG_ERROR, "[scaletempo] "
|
|
MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
|
|
": search >= 0\n");
|
|
return AF_ERROR;
|
|
}
|
|
if (speed.len > 0) {
|
|
if (strcmp(speed.str, "pitch") == 0) {
|
|
s->speed_tempo = 0;
|
|
s->speed_pitch = 1;
|
|
} else if (strcmp(speed.str, "tempo") == 0) {
|
|
s->speed_tempo = 1;
|
|
s->speed_pitch = 0;
|
|
} else if (strcmp(speed.str, "none") == 0) {
|
|
s->speed_tempo = 0;
|
|
s->speed_pitch = 0;
|
|
} else if (strcmp(speed.str, "both") == 0) {
|
|
s->speed_tempo = 1;
|
|
s->speed_pitch = 1;
|
|
} else {
|
|
af_msg(AF_MSG_ERROR, "[scaletempo] "
|
|
MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
|
|
": speed=[pitch|tempo|none|both]\n");
|
|
return AF_ERROR;
|
|
}
|
|
}
|
|
s->scale = s->speed * s->scale_nominal;
|
|
af_msg(AF_MSG_DEBUG0, "[scaletempo] %6.3f scale, %6.2f stride, %6.2f overlap, %6.2f search, speed = %s\n", s->scale_nominal, s->ms_stride, s->percent_overlap, s->ms_search, (s->speed_tempo?(s->speed_pitch?"tempo and speed":"tempo"):(s->speed_pitch?"pitch":"none")));
|
|
return AF_OK;
|
|
}
|
|
}
|
|
return AF_UNKNOWN;
|
|
}
|
|
|
|
// Deallocate memory
|
|
static void uninit(struct af_instance_s* af)
|
|
{
|
|
af_scaletempo_t* s = af->setup;
|
|
free(af->data->audio);
|
|
free(af->data);
|
|
free(s->buf_queue);
|
|
free(s->buf_overlap);
|
|
free(s->buf_pre_corr);
|
|
free(s->table_blend);
|
|
free(s->table_window);
|
|
free(af->setup);
|
|
}
|
|
|
|
// Allocate memory and set function pointers
|
|
static int af_open(af_instance_t* af){
|
|
af_scaletempo_t* s;
|
|
|
|
af->control = control;
|
|
af->uninit = uninit;
|
|
af->play = play;
|
|
af->mul = 1;
|
|
af->data = calloc(1,sizeof(af_data_t));
|
|
af->setup = calloc(1,sizeof(af_scaletempo_t));
|
|
if(af->data == NULL || af->setup == NULL)
|
|
return AF_ERROR;
|
|
|
|
s = af->setup;
|
|
s->scale = s->speed = s->scale_nominal = 1.0;
|
|
s->speed_tempo = 1;
|
|
s->speed_pitch = 0;
|
|
s->ms_stride = 60;
|
|
s->percent_overlap = .20;
|
|
s->ms_search = 14;
|
|
|
|
return AF_OK;
|
|
}
|
|
|
|
// Description of this filter
|
|
af_info_t af_info_scaletempo = {
|
|
"Scale audio tempo while maintaining pitch",
|
|
"scaletempo",
|
|
"Robert Juliano",
|
|
"",
|
|
AF_FLAGS_REENTRANT,
|
|
af_open
|
|
};
|