mpv/libmpeg2/slice.c

1798 lines
49 KiB
C

/*
* slice.c
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
*
* This file is part of mpeg2dec, a free MPEG-2 video stream decoder.
*
* mpeg2dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpeg2dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <string.h>
#include <inttypes.h>
#include "mpeg2_internal.h"
#include "attributes.h"
extern mc_functions_t mc_functions;
extern void (* idct_block_copy) (int16_t * block, uint8_t * dest, int stride);
extern void (* idct_block_add) (int16_t * block, uint8_t * dest, int stride);
static int16_t DCTblock[64] ATTR_ALIGN(16);
#include "vlc.h"
static int non_linear_quantizer_scale [] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 10, 12, 14, 16, 18, 20, 22,
24, 28, 32, 36, 40, 44, 48, 52,
56, 64, 72, 80, 88, 96, 104, 112
};
static inline int get_macroblock_modes (slice_t * slice, int picture_structure,
int picture_coding_type,
int frame_pred_frame_dct)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int macroblock_modes;
MBtab * tab;
switch (picture_coding_type) {
case I_TYPE:
tab = MB_I + UBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if ((! frame_pred_frame_dct) && (picture_structure == FRAME_PICTURE)) {
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
case P_TYPE:
tab = MB_P + UBITS (bit_buf, 5);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if (picture_structure != FRAME_PICTURE) {
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) {
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
return macroblock_modes;
} else if (frame_pred_frame_dct) {
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD)
macroblock_modes |= MC_FRAME;
return macroblock_modes;
} else {
if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) {
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) {
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
}
case B_TYPE:
tab = MB_B + UBITS (bit_buf, 6);
DUMPBITS (bit_buf, bits, tab->len);
macroblock_modes = tab->modes;
if (picture_structure != FRAME_PICTURE) {
if (! (macroblock_modes & MACROBLOCK_INTRA)) {
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
}
return macroblock_modes;
} else if (frame_pred_frame_dct) {
//if (! (macroblock_modes & MACROBLOCK_INTRA))
macroblock_modes |= MC_FRAME;
return macroblock_modes;
} else {
if (macroblock_modes & MACROBLOCK_INTRA)
goto intra;
macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE;
DUMPBITS (bit_buf, bits, 2);
if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) {
intra:
macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED;
DUMPBITS (bit_buf, bits, 1);
}
return macroblock_modes;
}
case D_TYPE:
DUMPBITS (bit_buf, bits, 1);
return MACROBLOCK_INTRA;
default:
return 0;
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int get_quantizer_scale (slice_t * slice, int q_scale_type)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int quantizer_scale_code;
quantizer_scale_code = UBITS (bit_buf, 5);
DUMPBITS (bit_buf, bits, 5);
if (q_scale_type)
return non_linear_quantizer_scale [quantizer_scale_code];
else
return quantizer_scale_code << 1;
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int get_motion_delta (slice_t * slice, int f_code)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int delta;
int sign;
MVtab * tab;
if (bit_buf & 0x80000000) {
DUMPBITS (bit_buf, bits, 1);
return 0;
} else if (bit_buf >= 0x0c000000) {
tab = MV_4 + UBITS (bit_buf, 4);
delta = (tab->delta << f_code) + 1;
bits += tab->len + f_code + 1;
bit_buf <<= tab->len;
sign = SBITS (bit_buf, 1);
bit_buf <<= 1;
if (f_code)
delta += UBITS (bit_buf, f_code);
bit_buf <<= f_code;
return (delta ^ sign) - sign;
} else {
tab = MV_10 + UBITS (bit_buf, 10);
delta = (tab->delta << f_code) + 1;
bits += tab->len + 1;
bit_buf <<= tab->len;
sign = SBITS (bit_buf, 1);
bit_buf <<= 1;
if (f_code) {
NEEDBITS (bit_buf, bits, bit_ptr);
delta += UBITS (bit_buf, f_code);
DUMPBITS (bit_buf, bits, f_code);
}
return (delta ^ sign) - sign;
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int bound_motion_vector (int vector, int f_code)
{
#if 1
int limit;
limit = 16 << f_code;
if (vector >= limit)
return vector - 2*limit;
else if (vector < -limit)
return vector + 2*limit;
else return vector;
#else
return (vector << (27 - f_code)) >> (27 - f_code);
#endif
}
static inline int get_dmv (slice_t * slice)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
DMVtab * tab;
tab = DMV_2 + UBITS (bit_buf, 2);
DUMPBITS (bit_buf, bits, tab->len);
return tab->dmv;
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int get_coded_block_pattern (slice_t * slice)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
CBPtab * tab;
NEEDBITS (bit_buf, bits, bit_ptr);
if (bit_buf >= 0x20000000) {
tab = CBP_7 - 16 + UBITS (bit_buf, 7);
DUMPBITS (bit_buf, bits, tab->len);
return tab->cbp;
} else {
tab = CBP_9 + UBITS (bit_buf, 9);
DUMPBITS (bit_buf, bits, tab->len);
return tab->cbp;
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int get_luma_dc_dct_diff (slice_t * slice)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
DCtab * tab;
int size;
int dc_diff;
if (bit_buf < 0xf8000000) {
tab = DC_lum_5 + UBITS (bit_buf, 5);
size = tab->size;
if (size) {
bits += tab->len + size;
bit_buf <<= tab->len;
dc_diff =
UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
bit_buf <<= size;
return dc_diff;
} else {
DUMPBITS (bit_buf, bits, 3);
return 0;
}
} else {
tab = DC_long - 0x1e0 + UBITS (bit_buf, 9);
size = tab->size;
DUMPBITS (bit_buf, bits, tab->len);
NEEDBITS (bit_buf, bits, bit_ptr);
dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
DUMPBITS (bit_buf, bits, size);
return dc_diff;
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline int get_chroma_dc_dct_diff (slice_t * slice)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
DCtab * tab;
int size;
int dc_diff;
if (bit_buf < 0xf8000000) {
tab = DC_chrom_5 + UBITS (bit_buf, 5);
size = tab->size;
if (size) {
bits += tab->len + size;
bit_buf <<= tab->len;
dc_diff =
UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
bit_buf <<= size;
return dc_diff;
} else {
DUMPBITS (bit_buf, bits, 2);
return 0;
}
} else {
tab = DC_long - 0x3e0 + UBITS (bit_buf, 10);
size = tab->size;
DUMPBITS (bit_buf, bits, tab->len + 1);
NEEDBITS (bit_buf, bits, bit_ptr);
dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size);
DUMPBITS (bit_buf, bits, size);
return dc_diff;
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
#define SATURATE(val) \
do { \
if (val > 2047) \
val = 2047; \
else if (val < -2048) \
val = -2048; \
} while (0)
static void get_intra_block_B14 (picture_t * picture, slice_t * slice,
int16_t * dest)
{
int i;
int j;
int val;
uint8_t * scan = picture->scan;
uint8_t * quant_matrix = picture->intra_quantizer_matrix;
int quantizer_scale = slice->quantizer_scale;
int mismatch;
DCTtab * tab;
uint32_t bit_buf;
int bits;
uint8_t * bit_ptr;
i = 0;
mismatch = ~dest[0];
bit_buf = slice->bitstream_buf;
bits = slice->bitstream_bits;
bit_ptr = slice->bitstream_ptr;
NEEDBITS (bit_buf, bits, bit_ptr);
while (1) {
if (bit_buf >= 0x28000000) {
tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5);
i += tab->run;
if (i >= 64)
break; // end of block
normal_code:
j = scan[i];
bit_buf <<= tab->len;
bits += tab->len + 1;
val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4;
// if (bitstream_get (1)) val = -val;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SATURATE (val);
dest[j] = val;
mismatch ^= val;
bit_buf <<= 1;
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x04000000) {
tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8);
i += tab->run;
if (i < 64)
goto normal_code;
// escape code
i += UBITS (bit_buf << 6, 6) - 64;
if (i >= 64)
break; // illegal, but check needed to avoid buffer overflow
j = scan[i];
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
val = (SBITS (bit_buf, 12) *
quantizer_scale * quant_matrix[j]) / 16;
SATURATE (val);
dest[j] = val;
mismatch ^= val;
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x02000000) {
tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00800000) {
tab = DCT_13 - 16 + UBITS (bit_buf, 13);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00200000) {
tab = DCT_15 - 16 + UBITS (bit_buf, 15);
i += tab->run;
if (i < 64)
goto normal_code;
} else {
tab = DCT_16 + UBITS (bit_buf, 16);
bit_buf <<= 16;
GETWORD (bit_buf, bits + 16, bit_ptr);
i += tab->run;
if (i < 64)
goto normal_code;
}
break; // illegal, but check needed to avoid buffer overflow
}
dest[63] ^= mismatch & 1;
DUMPBITS (bit_buf, bits, 2); // dump end of block code
slice->bitstream_buf = bit_buf;
slice->bitstream_bits = bits;
slice->bitstream_ptr = bit_ptr;
}
static void get_intra_block_B15 (picture_t * picture, slice_t * slice,
int16_t * dest)
{
int i;
int j;
int val;
uint8_t * scan = picture->scan;
uint8_t * quant_matrix = picture->intra_quantizer_matrix;
int quantizer_scale = slice->quantizer_scale;
int mismatch;
DCTtab * tab;
uint32_t bit_buf;
int bits;
uint8_t * bit_ptr;
i = 0;
mismatch = ~dest[0];
bit_buf = slice->bitstream_buf;
bits = slice->bitstream_bits;
bit_ptr = slice->bitstream_ptr;
NEEDBITS (bit_buf, bits, bit_ptr);
while (1) {
if (bit_buf >= 0x04000000) {
tab = DCT_B15_8 - 4 + UBITS (bit_buf, 8);
i += tab->run;
if (i < 64) {
normal_code:
j = scan[i];
bit_buf <<= tab->len;
bits += tab->len + 1;
val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4;
// if (bitstream_get (1)) val = -val;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SATURATE (val);
dest[j] = val;
mismatch ^= val;
bit_buf <<= 1;
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else {
// end of block. I commented out this code because if we
// dont exit here we will still exit at the later test :)
//if (i >= 128) break; // end of block
// escape code
i += UBITS (bit_buf << 6, 6) - 64;
if (i >= 64)
break; // illegal, but check against buffer overflow
j = scan[i];
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
val = (SBITS (bit_buf, 12) *
quantizer_scale * quant_matrix[j]) / 16;
SATURATE (val);
dest[j] = val;
mismatch ^= val;
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
}
} else if (bit_buf >= 0x02000000) {
tab = DCT_B15_10 - 8 + UBITS (bit_buf, 10);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00800000) {
tab = DCT_13 - 16 + UBITS (bit_buf, 13);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00200000) {
tab = DCT_15 - 16 + UBITS (bit_buf, 15);
i += tab->run;
if (i < 64)
goto normal_code;
} else {
tab = DCT_16 + UBITS (bit_buf, 16);
bit_buf <<= 16;
GETWORD (bit_buf, bits + 16, bit_ptr);
i += tab->run;
if (i < 64)
goto normal_code;
}
break; // illegal, but check needed to avoid buffer overflow
}
dest[63] ^= mismatch & 1;
DUMPBITS (bit_buf, bits, 4); // dump end of block code
slice->bitstream_buf = bit_buf;
slice->bitstream_bits = bits;
slice->bitstream_ptr = bit_ptr;
}
static void get_non_intra_block (picture_t * picture, slice_t * slice,
int16_t * dest)
{
int i;
int j;
int val;
uint8_t * scan = picture->scan;
uint8_t * quant_matrix = picture->non_intra_quantizer_matrix;
int quantizer_scale = slice->quantizer_scale;
int mismatch;
DCTtab * tab;
uint32_t bit_buf;
int bits;
uint8_t * bit_ptr;
i = -1;
mismatch = 1;
bit_buf = slice->bitstream_buf;
bits = slice->bitstream_bits;
bit_ptr = slice->bitstream_ptr;
NEEDBITS (bit_buf, bits, bit_ptr);
if (bit_buf >= 0x28000000) {
tab = DCT_B14DC_5 - 5 + UBITS (bit_buf, 5);
goto entry_1;
} else
goto entry_2;
while (1) {
if (bit_buf >= 0x28000000) {
tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5);
entry_1:
i += tab->run;
if (i >= 64)
break; // end of block
normal_code:
j = scan[i];
bit_buf <<= tab->len;
bits += tab->len + 1;
val = ((2*tab->level+1) * quantizer_scale * quant_matrix[j]) >> 5;
// if (bitstream_get (1)) val = -val;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SATURATE (val);
dest[j] = val;
mismatch ^= val;
bit_buf <<= 1;
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
}
entry_2:
if (bit_buf >= 0x04000000) {
tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8);
i += tab->run;
if (i < 64)
goto normal_code;
// escape code
i += UBITS (bit_buf << 6, 6) - 64;
if (i >= 64)
break; // illegal, but check needed to avoid buffer overflow
j = scan[i];
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
val = 2 * (SBITS (bit_buf, 12) + SBITS (bit_buf, 1)) + 1;
val = (val * quantizer_scale * quant_matrix[j]) / 32;
SATURATE (val);
dest[j] = val;
mismatch ^= val;
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x02000000) {
tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00800000) {
tab = DCT_13 - 16 + UBITS (bit_buf, 13);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00200000) {
tab = DCT_15 - 16 + UBITS (bit_buf, 15);
i += tab->run;
if (i < 64)
goto normal_code;
} else {
tab = DCT_16 + UBITS (bit_buf, 16);
bit_buf <<= 16;
GETWORD (bit_buf, bits + 16, bit_ptr);
i += tab->run;
if (i < 64)
goto normal_code;
}
break; // illegal, but check needed to avoid buffer overflow
}
dest[63] ^= mismatch & 1;
DUMPBITS (bit_buf, bits, 2); // dump end of block code
slice->bitstream_buf = bit_buf;
slice->bitstream_bits = bits;
slice->bitstream_ptr = bit_ptr;
}
static void get_mpeg1_intra_block (picture_t * picture, slice_t * slice,
int16_t * dest)
{
int i;
int j;
int val;
uint8_t * scan = picture->scan;
uint8_t * quant_matrix = picture->intra_quantizer_matrix;
int quantizer_scale = slice->quantizer_scale;
DCTtab * tab;
uint32_t bit_buf;
int bits;
uint8_t * bit_ptr;
i = 0;
bit_buf = slice->bitstream_buf;
bits = slice->bitstream_bits;
bit_ptr = slice->bitstream_ptr;
NEEDBITS (bit_buf, bits, bit_ptr);
while (1) {
if (bit_buf >= 0x28000000) {
tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5);
i += tab->run;
if (i >= 64)
break; // end of block
normal_code:
j = scan[i];
bit_buf <<= tab->len;
bits += tab->len + 1;
val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4;
// oddification
val = (val - 1) | 1;
// if (bitstream_get (1)) val = -val;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SATURATE (val);
dest[j] = val;
bit_buf <<= 1;
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x04000000) {
tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8);
i += tab->run;
if (i < 64)
goto normal_code;
// escape code
i += UBITS (bit_buf << 6, 6) - 64;
if (i >= 64)
break; // illegal, but check needed to avoid buffer overflow
j = scan[i];
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
val = SBITS (bit_buf, 8);
if (! (val & 0x7f)) {
DUMPBITS (bit_buf, bits, 8);
val = UBITS (bit_buf, 8) + 2 * val;
}
val = (val * quantizer_scale * quant_matrix[j]) / 16;
// oddification
val = (val + ~SBITS (val, 1)) | 1;
SATURATE (val);
dest[j] = val;
DUMPBITS (bit_buf, bits, 8);
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x02000000) {
tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00800000) {
tab = DCT_13 - 16 + UBITS (bit_buf, 13);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00200000) {
tab = DCT_15 - 16 + UBITS (bit_buf, 15);
i += tab->run;
if (i < 64)
goto normal_code;
} else {
tab = DCT_16 + UBITS (bit_buf, 16);
bit_buf <<= 16;
GETWORD (bit_buf, bits + 16, bit_ptr);
i += tab->run;
if (i < 64)
goto normal_code;
}
break; // illegal, but check needed to avoid buffer overflow
}
DUMPBITS (bit_buf, bits, 2); // dump end of block code
slice->bitstream_buf = bit_buf;
slice->bitstream_bits = bits;
slice->bitstream_ptr = bit_ptr;
}
static void get_mpeg1_non_intra_block (picture_t * picture, slice_t * slice,
int16_t * dest)
{
int i;
int j;
int val;
uint8_t * scan = picture->scan;
uint8_t * quant_matrix = picture->non_intra_quantizer_matrix;
int quantizer_scale = slice->quantizer_scale;
DCTtab * tab;
uint32_t bit_buf;
int bits;
uint8_t * bit_ptr;
i = -1;
bit_buf = slice->bitstream_buf;
bits = slice->bitstream_bits;
bit_ptr = slice->bitstream_ptr;
NEEDBITS (bit_buf, bits, bit_ptr);
if (bit_buf >= 0x28000000) {
tab = DCT_B14DC_5 - 5 + UBITS (bit_buf, 5);
goto entry_1;
} else
goto entry_2;
while (1) {
if (bit_buf >= 0x28000000) {
tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5);
entry_1:
i += tab->run;
if (i >= 64)
break; // end of block
normal_code:
j = scan[i];
bit_buf <<= tab->len;
bits += tab->len + 1;
val = ((2*tab->level+1) * quantizer_scale * quant_matrix[j]) >> 5;
// oddification
val = (val - 1) | 1;
// if (bitstream_get (1)) val = -val;
val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1);
SATURATE (val);
dest[j] = val;
bit_buf <<= 1;
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
}
entry_2:
if (bit_buf >= 0x04000000) {
tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8);
i += tab->run;
if (i < 64)
goto normal_code;
// escape code
i += UBITS (bit_buf << 6, 6) - 64;
if (i >= 64)
break; // illegal, but check needed to avoid buffer overflow
j = scan[i];
DUMPBITS (bit_buf, bits, 12);
NEEDBITS (bit_buf, bits, bit_ptr);
val = SBITS (bit_buf, 8);
if (! (val & 0x7f)) {
DUMPBITS (bit_buf, bits, 8);
val = UBITS (bit_buf, 8) + 2 * val;
}
val = 2 * (val + SBITS (val, 1)) + 1;
val = (val * quantizer_scale * quant_matrix[j]) / 32;
// oddification
val = (val + ~SBITS (val, 1)) | 1;
SATURATE (val);
dest[j] = val;
DUMPBITS (bit_buf, bits, 8);
NEEDBITS (bit_buf, bits, bit_ptr);
continue;
} else if (bit_buf >= 0x02000000) {
tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00800000) {
tab = DCT_13 - 16 + UBITS (bit_buf, 13);
i += tab->run;
if (i < 64)
goto normal_code;
} else if (bit_buf >= 0x00200000) {
tab = DCT_15 - 16 + UBITS (bit_buf, 15);
i += tab->run;
if (i < 64)
goto normal_code;
} else {
tab = DCT_16 + UBITS (bit_buf, 16);
bit_buf <<= 16;
GETWORD (bit_buf, bits + 16, bit_ptr);
i += tab->run;
if (i < 64)
goto normal_code;
}
break; // illegal, but check needed to avoid buffer overflow
}
DUMPBITS (bit_buf, bits, 2); // dump end of block code
slice->bitstream_buf = bit_buf;
slice->bitstream_bits = bits;
slice->bitstream_ptr = bit_ptr;
}
static inline int get_macroblock_address_increment (slice_t * slice)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
MBAtab * tab;
int mba;
mba = 0;
while (1) {
if (bit_buf >= 0x10000000) {
tab = MBA_5 - 2 + UBITS (bit_buf, 5);
DUMPBITS (bit_buf, bits, tab->len);
return mba + tab->mba;
} else if (bit_buf >= 0x03000000) {
tab = MBA_11 - 24 + UBITS (bit_buf, 11);
DUMPBITS (bit_buf, bits, tab->len);
return mba + tab->mba;
} else switch (UBITS (bit_buf, 11)) {
case 8: // macroblock_escape
mba += 33;
// no break here on purpose
case 15: // macroblock_stuffing (MPEG1 only)
DUMPBITS (bit_buf, bits, 11);
NEEDBITS (bit_buf, bits, bit_ptr);
break;
default: // end of slice, or error
return 0;
}
}
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline void slice_intra_DCT (picture_t * picture, slice_t * slice,
int cc, uint8_t * dest, int stride)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
NEEDBITS (bit_buf, bits, bit_ptr);
//Get the intra DC coefficient and inverse quantize it
if (cc == 0)
slice->dc_dct_pred[0] += get_luma_dc_dct_diff (slice);
else
slice->dc_dct_pred[cc] += get_chroma_dc_dct_diff (slice);
DCTblock[0] = slice->dc_dct_pred[cc] << (3 - picture->intra_dc_precision);
if (picture->mpeg1) {
if (picture->picture_coding_type != D_TYPE)
get_mpeg1_intra_block (picture, slice, DCTblock);
} else if (picture->intra_vlc_format)
get_intra_block_B15 (picture, slice, DCTblock);
else
get_intra_block_B14 (picture, slice, DCTblock);
idct_block_copy (DCTblock, dest, stride);
memset (DCTblock, 0, sizeof (DCTblock));
#undef bit_buf
#undef bits
#undef bit_ptr
}
static inline void slice_non_intra_DCT (picture_t * picture, slice_t * slice,
uint8_t * dest, int stride)
{
if (picture->mpeg1)
get_mpeg1_non_intra_block (picture, slice, DCTblock);
else
get_non_intra_block (picture, slice, DCTblock);
idct_block_add (DCTblock, dest, stride);
memset (DCTblock, 0, sizeof (DCTblock));
}
static inline void motion_block (void (** table) (uint8_t *, uint8_t *,
int32_t, int32_t),
int x_pred, int y_pred,
uint8_t * dest[3], int dest_offset,
uint8_t * src[3], int src_offset,
int stride, int height, int second_half)
{
int xy_half;
uint8_t * src1;
uint8_t * src2;
xy_half = ((y_pred & 1) << 1) | (x_pred & 1);
src1 = src[0] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride +
second_half * (stride << 3);
table[xy_half] (dest[0] + dest_offset + second_half * (stride << 3),
src1, stride, height);
x_pred /= 2;
y_pred /= 2;
xy_half = ((y_pred & 1) << 1) | (x_pred & 1);
stride >>= 1;
height >>= 1;
src_offset >>= 1; src_offset += second_half * (stride << 2);
dest_offset >>= 1; dest_offset += second_half * (stride << 2);
src1 = src[1] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride;
src2 = src[2] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride;
table[4+xy_half] (dest[1] + dest_offset, src1, stride, height);
table[4+xy_half] (dest[2] + dest_offset, src2, stride, height);
}
static void motion_mp1 (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[0]);
motion_y = bound_motion_vector (motion_y, motion->f_code[0]);
motion->pmv[0][1] = motion_y;
if (motion->f_code[1]) {
motion_x <<= 1;
motion_y <<= 1;
}
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[0], offset, width, 16, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static void motion_mp1_reuse (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
int motion_x, motion_y;
motion_x = motion->pmv[0][0];
motion_y = motion->pmv[0][1];
if (motion->f_code[1]) {
motion_x <<= 1;
motion_y <<= 1;
}
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[0], offset, width, 16, 0);
}
static void motion_fr_frame (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = motion_y;
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[0], offset, width, 16, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static void motion_fr_field (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
int field_select;
NEEDBITS (bit_buf, bits, bit_ptr);
field_select = SBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, 1);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = (motion->pmv[0][1] >> 1) + get_motion_delta (slice,
motion->f_code[1]);
//motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[0][1] = motion_y << 1;
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[0], offset + (field_select & width),
width * 2, 8, 0);
NEEDBITS (bit_buf, bits, bit_ptr);
field_select = SBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, 1);
motion_x = motion->pmv[1][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = (motion->pmv[1][1] >> 1) + get_motion_delta (slice,
motion->f_code[1]);
//motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion_y << 1;
motion_block (table, motion_x, motion_y, dest, offset + width,
motion->ref[0], offset + (field_select & width),
width * 2, 8, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static int motion_dmv_top_field_first;
static void motion_fr_dmv (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
int dmv_x, dmv_y;
int m;
int other_x, other_y;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
dmv_x = get_dmv (slice);
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = (motion->pmv[0][1] >> 1) + get_motion_delta (slice,
motion->f_code[1]);
//motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = motion_y << 1;
NEEDBITS (bit_buf, bits, bit_ptr);
dmv_y = get_dmv (slice);
motion_block (mc_functions.put, motion_x, motion_y, dest, offset,
motion->ref[0], offset, width * 2, 8, 0);
m = motion_dmv_top_field_first ? 1 : 3;
other_x = ((motion_x * m + (motion_x > 0)) >> 1) + dmv_x;
other_y = ((motion_y * m + (motion_y > 0)) >> 1) + dmv_y - 1;
motion_block (mc_functions.avg, other_x, other_y, dest, offset,
motion->ref[0], offset + width, width * 2, 8, 0);
motion_block (mc_functions.put, motion_x, motion_y, dest, offset + width,
motion->ref[0], offset + width, width * 2, 8, 0);
m = motion_dmv_top_field_first ? 3 : 1;
other_x = ((motion_x * m + (motion_x > 0)) >> 1) + dmv_x;
other_y = ((motion_y * m + (motion_y > 0)) >> 1) + dmv_y + 1;
motion_block (mc_functions.avg, other_x, other_y, dest, offset + width,
motion->ref[0], offset, width * 2, 8, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
// like motion_frame, but reuse previous motion vectors
static void motion_fr_reuse (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
motion_block (table, motion->pmv[0][0], motion->pmv[0][1], dest, offset,
motion->ref[0], offset, width, 16, 0);
}
// like motion_frame, but use null motion vectors
static void motion_fr_zero (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
motion_block (table, 0, 0, dest, offset,
motion->ref[0], offset, width, 16, 0);
}
// like motion_frame, but parsing without actual motion compensation
static void motion_fr_conceal (slice_t * slice, motion_t * motion)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int tmp;
NEEDBITS (bit_buf, bits, bit_ptr);
tmp = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
tmp = bound_motion_vector (tmp, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = tmp;
NEEDBITS (bit_buf, bits, bit_ptr);
tmp = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
tmp = bound_motion_vector (tmp, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = tmp;
DUMPBITS (bit_buf, bits, 1); // remove marker_bit
#undef bit_buf
#undef bits
#undef bit_ptr
}
static void motion_fi_field (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
int field_select;
NEEDBITS (bit_buf, bits, bit_ptr);
field_select = UBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, 1);
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = motion_y;
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[field_select], offset, width, 16, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static void motion_fi_16x8 (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
int field_select;
NEEDBITS (bit_buf, bits, bit_ptr);
field_select = UBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, 1);
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[0][1] = motion_y;
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[field_select], offset, width, 8, 0);
NEEDBITS (bit_buf, bits, bit_ptr);
field_select = UBITS (bit_buf, 1);
DUMPBITS (bit_buf, bits, 1);
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[1][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[1][1] + get_motion_delta (slice, motion->f_code[1]);
motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion_y;
motion_block (table, motion_x, motion_y, dest, offset,
motion->ref[field_select], offset, width, 8, 1);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static int current_field = 0;
static void motion_fi_dmv (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int motion_x, motion_y;
int dmv_x, dmv_y;
NEEDBITS (bit_buf, bits, bit_ptr);
motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
motion_x = bound_motion_vector (motion_x, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = motion_x;
NEEDBITS (bit_buf, bits, bit_ptr);
dmv_x = get_dmv (slice);
NEEDBITS (bit_buf, bits, bit_ptr);
motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
motion_y = bound_motion_vector (motion_y, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = motion_y;
NEEDBITS (bit_buf, bits, bit_ptr);
dmv_y = get_dmv (slice);
motion_block (mc_functions.put, motion_x, motion_y, dest, offset,
motion->ref[current_field], offset, width, 16, 0);
motion_x = ((motion_x + (motion_x > 0)) >> 1) + dmv_x;
motion_y = ((motion_y + (motion_y > 0)) >> 1) + dmv_y +
2 * current_field - 1;
motion_block (mc_functions.avg, motion_x, motion_y, dest, offset,
motion->ref[!current_field], offset, width, 16, 0);
#undef bit_buf
#undef bits
#undef bit_ptr
}
static void motion_fi_reuse (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
motion_block (table, motion->pmv[0][0], motion->pmv[0][1], dest, offset,
motion->ref[current_field], offset, width, 16, 0);
}
static void motion_fi_zero (slice_t * slice, motion_t * motion,
uint8_t * dest[3], int offset, int width,
void (** table) (uint8_t *, uint8_t *, int, int))
{
motion_block (table, 0, 0, dest, offset,
motion->ref[current_field], offset, width, 16, 0);
}
static void motion_fi_conceal (slice_t * slice, motion_t * motion)
{
#define bit_buf (slice->bitstream_buf)
#define bits (slice->bitstream_bits)
#define bit_ptr (slice->bitstream_ptr)
int tmp;
NEEDBITS (bit_buf, bits, bit_ptr);
DUMPBITS (bit_buf, bits, 1); // remove field_select
NEEDBITS (bit_buf, bits, bit_ptr);
tmp = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]);
tmp = bound_motion_vector (tmp, motion->f_code[0]);
motion->pmv[1][0] = motion->pmv[0][0] = tmp;
NEEDBITS (bit_buf, bits, bit_ptr);
tmp = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]);
tmp = bound_motion_vector (tmp, motion->f_code[1]);
motion->pmv[1][1] = motion->pmv[0][1] = tmp;
DUMPBITS (bit_buf, bits, 1); // remove marker_bit
#undef bit_buf
#undef bits
#undef bit_ptr
}
#define MOTION(routine,direction,slice,dest,offset,stride) \
do { \
if ((direction) & MACROBLOCK_MOTION_FORWARD) \
routine (&slice, &((slice).f_motion), dest, offset, stride, \
mc_functions.put); \
if ((direction) & MACROBLOCK_MOTION_BACKWARD) \
routine (&slice, &((slice).b_motion), dest, offset, stride, \
((direction) & MACROBLOCK_MOTION_FORWARD ? \
mc_functions.avg : mc_functions.put)); \
} while (0)
#define CHECK_DISPLAY \
do { \
if (offset == width) { \
slice.f_motion.ref[0][0] += 16 * offset; \
slice.f_motion.ref[0][1] += 4 * offset; \
slice.f_motion.ref[0][2] += 4 * offset; \
slice.b_motion.ref[0][0] += 16 * offset; \
slice.b_motion.ref[0][1] += 4 * offset; \
slice.b_motion.ref[0][2] += 4 * offset; \
dest[0] += 16 * offset; \
dest[1] += 4 * offset; \
dest[2] += 4 * offset; \
offset = 0; ++ypos; \
} \
} while (0)
int slice_process (picture_t * picture, uint8_t code, uint8_t * buffer)
{
#define bit_buf (slice.bitstream_buf)
#define bits (slice.bitstream_bits)
#define bit_ptr (slice.bitstream_ptr)
slice_t slice;
int macroblock_modes;
int width;
int ypos=code-1;
uint8_t * dest[3];
int offset;
uint8_t ** forward_ref[2];
width = picture->coded_picture_width;
offset = ypos * width * 4;
forward_ref[0] = picture->forward_reference_frame;
if (picture->picture_structure != FRAME_PICTURE) {
offset <<= 1;
forward_ref[1] = picture->forward_reference_frame;
current_field = (picture->picture_structure == BOTTOM_FIELD);
if ((picture->second_field) &&
(picture->picture_coding_type != B_TYPE))
forward_ref[picture->picture_structure == TOP_FIELD] =
picture->current_frame;
slice.f_motion.ref[1][0] = forward_ref[1][0] + offset * 4 + width;
slice.f_motion.ref[1][1] = forward_ref[1][1] + offset + (width >> 1);
slice.f_motion.ref[1][2] = forward_ref[1][2] + offset + (width >> 1);
slice.b_motion.ref[1][0] =
picture->backward_reference_frame[0] + offset * 4 + width;
slice.b_motion.ref[1][1] =
picture->backward_reference_frame[1] + offset + (width >> 1);
slice.b_motion.ref[1][2] =
picture->backward_reference_frame[2] + offset + (width >> 1);
}
slice.f_motion.ref[0][0] = forward_ref[0][0] + offset * 4;
slice.f_motion.ref[0][1] = forward_ref[0][1] + offset;
slice.f_motion.ref[0][2] = forward_ref[0][2] + offset;
slice.f_motion.f_code[0] = picture->f_code[0][0];
slice.f_motion.f_code[1] = picture->f_code[0][1];
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
slice.b_motion.ref[0][0] =
picture->backward_reference_frame[0] + offset * 4;
slice.b_motion.ref[0][1] =
picture->backward_reference_frame[1] + offset;
slice.b_motion.ref[0][2] =
picture->backward_reference_frame[2] + offset;
slice.b_motion.f_code[0] = picture->f_code[1][0];
slice.b_motion.f_code[1] = picture->f_code[1][1];
slice.b_motion.pmv[0][0] = slice.b_motion.pmv[0][1] = 0;
slice.b_motion.pmv[1][0] = slice.b_motion.pmv[1][1] = 0;
if ((! HACK_MODE) && (!picture->mpeg1) &&
(picture->picture_coding_type == B_TYPE))
offset = 0;
dest[0] = picture->current_frame[0] + offset * 4;
dest[1] = picture->current_frame[1] + offset;
dest[2] = picture->current_frame[2] + offset;
switch (picture->picture_structure) {
case BOTTOM_FIELD:
dest[0] += width;
dest[1] += width >> 1;
dest[2] += width >> 1;
// follow thru
case TOP_FIELD:
width <<= 1;
}
//reset intra dc predictor
slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]=
1<< (picture->intra_dc_precision + 7) ;
bitstream_init (&slice, buffer);
slice.quantizer_scale = get_quantizer_scale (&slice,
picture->q_scale_type);
//Ignore intra_slice and all the extra data
while (bit_buf & 0x80000000) {
DUMPBITS (bit_buf, bits, 9);
NEEDBITS (bit_buf, bits, bit_ptr);
}
DUMPBITS (bit_buf, bits, 1);
NEEDBITS (bit_buf, bits, bit_ptr);
offset = get_macroblock_address_increment (&slice) << 4;
while (1) {
NEEDBITS (bit_buf, bits, bit_ptr);
macroblock_modes =
get_macroblock_modes (&slice, picture->picture_structure,
picture->picture_coding_type,
picture->frame_pred_frame_dct);
// maybe integrate MACROBLOCK_QUANT test into get_macroblock_modes ?
if (macroblock_modes & MACROBLOCK_QUANT)
slice.quantizer_scale =
get_quantizer_scale (&slice, picture->q_scale_type);
if (macroblock_modes & MACROBLOCK_INTRA) {
int DCT_offset, DCT_stride;
if (picture->concealment_motion_vectors) {
if (picture->picture_structure == FRAME_PICTURE)
motion_fr_conceal (&slice, &slice.f_motion);
else
motion_fi_conceal (&slice, &slice.f_motion);
} else {
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
slice.b_motion.pmv[0][0] = slice.b_motion.pmv[0][1] = 0;
slice.b_motion.pmv[1][0] = slice.b_motion.pmv[1][1] = 0;
}
if (macroblock_modes & DCT_TYPE_INTERLACED) {
DCT_offset = width;
DCT_stride = width * 2;
} else {
DCT_offset = width * 8;
DCT_stride = width;
}
// Decode lum blocks
slice_intra_DCT (picture, &slice, 0,
dest[0] + offset, DCT_stride);
slice_intra_DCT (picture, &slice, 0,
dest[0] + offset + 8, DCT_stride);
slice_intra_DCT (picture, &slice, 0,
dest[0] + offset + DCT_offset, DCT_stride);
slice_intra_DCT (picture, &slice, 0,
dest[0] + offset + DCT_offset + 8, DCT_stride);
// Decode chroma blocks
slice_intra_DCT (picture, &slice, 1,
dest[1] + (offset>>1), width>>1);
slice_intra_DCT (picture, &slice, 2,
dest[2] + (offset>>1), width>>1);
if (picture->picture_coding_type == D_TYPE) {
NEEDBITS (bit_buf, bits, bit_ptr);
DUMPBITS (bit_buf, bits, 1);
}
} else {
if (picture->mpeg1) {
if ((macroblock_modes & MOTION_TYPE_MASK) == MC_FRAME)
MOTION (motion_mp1, macroblock_modes, slice,
dest, offset,width);
else {
// non-intra mb without forward mv in a P picture
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD, slice,
dest, offset, width);
}
} else if (picture->picture_structure == FRAME_PICTURE)
switch (macroblock_modes & MOTION_TYPE_MASK) {
case MC_FRAME:
MOTION (motion_fr_frame, macroblock_modes, slice,
dest, offset, width);
break;
case MC_FIELD:
MOTION (motion_fr_field, macroblock_modes, slice,
dest, offset, width);
break;
case MC_DMV:
motion_dmv_top_field_first = picture->top_field_first;
MOTION (motion_fr_dmv, MACROBLOCK_MOTION_FORWARD, slice,
dest, offset, width);
break;
case 0:
// non-intra mb without forward mv in a P picture
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD, slice,
dest, offset, width);
break;
}
else
switch (macroblock_modes & MOTION_TYPE_MASK) {
case MC_FIELD:
MOTION (motion_fi_field, macroblock_modes, slice,
dest, offset, width);
break;
case MC_16X8:
MOTION (motion_fi_16x8, macroblock_modes, slice,
dest, offset, width);
break;
case MC_DMV:
motion_dmv_top_field_first = picture->top_field_first;
MOTION (motion_fi_dmv, MACROBLOCK_MOTION_FORWARD, slice,
dest, offset, width);
break;
case 0:
// non-intra mb without forward mv in a P picture
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
MOTION (motion_fi_zero, MACROBLOCK_MOTION_FORWARD, slice,
dest, offset, width);
break;
}
//6.3.17.4 Coded block pattern
if (macroblock_modes & MACROBLOCK_PATTERN) {
int coded_block_pattern;
int DCT_offset, DCT_stride;
if (macroblock_modes & DCT_TYPE_INTERLACED) {
DCT_offset = width;
DCT_stride = width * 2;
} else {
DCT_offset = width * 8;
DCT_stride = width;
}
coded_block_pattern = get_coded_block_pattern (&slice);
// Decode lum blocks
if (coded_block_pattern & 0x20)
slice_non_intra_DCT (picture, &slice,
dest[0] + offset, DCT_stride);
if (coded_block_pattern & 0x10)
slice_non_intra_DCT (picture, &slice,
dest[0] + offset + 8, DCT_stride);
if (coded_block_pattern & 0x08)
slice_non_intra_DCT (picture, &slice,
dest[0] + offset + DCT_offset,
DCT_stride);
if (coded_block_pattern & 0x04)
slice_non_intra_DCT (picture, &slice,
dest[0] + offset + DCT_offset + 8,
DCT_stride);
// Decode chroma blocks
if (coded_block_pattern & 0x2)
slice_non_intra_DCT (picture, &slice,
dest[1] + (offset>>1), width >> 1);
if (coded_block_pattern & 0x1)
slice_non_intra_DCT (picture, &slice,
dest[2] + (offset>>1), width >> 1);
}
slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]=
1 << (picture->intra_dc_precision + 7);
}
// printf("[%d]",slice.quantizer_scale);
// printf("[%d,%d]",offset>>4,ypos);
quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale;
offset += 16;
CHECK_DISPLAY;
NEEDBITS (bit_buf, bits, bit_ptr);
if (bit_buf & 0x80000000) {
DUMPBITS (bit_buf, bits, 1);
} else {
int mba_inc;
mba_inc = get_macroblock_address_increment (&slice);
if (!mba_inc)
break;
//reset intra dc predictor on skipped block
slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]=
1<< (picture->intra_dc_precision + 7);
//handling of skipped mb's differs between P_TYPE and B_TYPE
//pictures
if (picture->picture_coding_type == P_TYPE) {
slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0;
slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0;
do {
if (picture->picture_structure == FRAME_PICTURE)
MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD,
slice, dest, offset, width);
else
MOTION (motion_fi_zero, MACROBLOCK_MOTION_FORWARD,
slice, dest, offset, width);
quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale;
// printf("[%d,%d]",offset>>4,ypos);
offset += 16;
CHECK_DISPLAY;
} while (--mba_inc);
} else {
do {
if (picture->mpeg1)
MOTION (motion_mp1_reuse, macroblock_modes,
slice, dest, offset, width);
else if (picture->picture_structure == FRAME_PICTURE)
MOTION (motion_fr_reuse, macroblock_modes,
slice, dest, offset, width);
else
MOTION (motion_fi_reuse, macroblock_modes,
slice, dest, offset, width);
quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale;
// printf("[%d,%d]",offset>>4,ypos);
offset += 16;
CHECK_DISPLAY;
} while (--mba_inc);
}
}
}
return 0;
#undef bit_buf
#undef bits
#undef bit_ptr
}