/* * slice.c * Copyright (C) 1999-2000 Aaron Holtzman * * This file is part of mpeg2dec, a free MPEG-2 video stream decoder. * * mpeg2dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpeg2dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include "mpeg2_internal.h" #include "attributes.h" extern mc_functions_t mc_functions; extern void (* idct_block_copy) (int16_t * block, uint8_t * dest, int stride); extern void (* idct_block_add) (int16_t * block, uint8_t * dest, int stride); static int16_t DCTblock[64] ATTR_ALIGN(16); #include "vlc.h" static int non_linear_quantizer_scale [] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 96, 104, 112 }; static inline int get_macroblock_modes (slice_t * slice, int picture_structure, int picture_coding_type, int frame_pred_frame_dct) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int macroblock_modes; MBtab * tab; switch (picture_coding_type) { case I_TYPE: tab = MB_I + UBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if ((! frame_pred_frame_dct) && (picture_structure == FRAME_PICTURE)) { macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; case P_TYPE: tab = MB_P + UBITS (bit_buf, 5); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if (picture_structure != FRAME_PICTURE) { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } return macroblock_modes; } else if (frame_pred_frame_dct) { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) macroblock_modes |= MC_FRAME; return macroblock_modes; } else { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) { macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; } case B_TYPE: tab = MB_B + UBITS (bit_buf, 6); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if (picture_structure != FRAME_PICTURE) { if (! (macroblock_modes & MACROBLOCK_INTRA)) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } return macroblock_modes; } else if (frame_pred_frame_dct) { //if (! (macroblock_modes & MACROBLOCK_INTRA)) macroblock_modes |= MC_FRAME; return macroblock_modes; } else { if (macroblock_modes & MACROBLOCK_INTRA) goto intra; macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) { intra: macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; } case D_TYPE: DUMPBITS (bit_buf, bits, 1); return MACROBLOCK_INTRA; default: return 0; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_quantizer_scale (slice_t * slice, int q_scale_type) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int quantizer_scale_code; quantizer_scale_code = UBITS (bit_buf, 5); DUMPBITS (bit_buf, bits, 5); if (q_scale_type) return non_linear_quantizer_scale [quantizer_scale_code]; else return quantizer_scale_code << 1; #undef bit_buf #undef bits #undef bit_ptr } static inline int get_motion_delta (slice_t * slice, int f_code) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int delta; int sign; MVtab * tab; if (bit_buf & 0x80000000) { DUMPBITS (bit_buf, bits, 1); return 0; } else if (bit_buf >= 0x0c000000) { tab = MV_4 + UBITS (bit_buf, 4); delta = (tab->delta << f_code) + 1; bits += tab->len + f_code + 1; bit_buf <<= tab->len; sign = SBITS (bit_buf, 1); bit_buf <<= 1; if (f_code) delta += UBITS (bit_buf, f_code); bit_buf <<= f_code; return (delta ^ sign) - sign; } else { tab = MV_10 + UBITS (bit_buf, 10); delta = (tab->delta << f_code) + 1; bits += tab->len + 1; bit_buf <<= tab->len; sign = SBITS (bit_buf, 1); bit_buf <<= 1; if (f_code) { NEEDBITS (bit_buf, bits, bit_ptr); delta += UBITS (bit_buf, f_code); DUMPBITS (bit_buf, bits, f_code); } return (delta ^ sign) - sign; } #undef bit_buf #undef bits #undef bit_ptr } static inline int bound_motion_vector (int vector, int f_code) { #if 1 int limit; limit = 16 << f_code; if (vector >= limit) return vector - 2*limit; else if (vector < -limit) return vector + 2*limit; else return vector; #else return (vector << (27 - f_code)) >> (27 - f_code); #endif } static inline int get_dmv (slice_t * slice) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) DMVtab * tab; tab = DMV_2 + UBITS (bit_buf, 2); DUMPBITS (bit_buf, bits, tab->len); return tab->dmv; #undef bit_buf #undef bits #undef bit_ptr } static inline int get_coded_block_pattern (slice_t * slice) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) CBPtab * tab; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x20000000) { tab = CBP_7 - 16 + UBITS (bit_buf, 7); DUMPBITS (bit_buf, bits, tab->len); return tab->cbp; } else { tab = CBP_9 + UBITS (bit_buf, 9); DUMPBITS (bit_buf, bits, tab->len); return tab->cbp; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_luma_dc_dct_diff (slice_t * slice) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) DCtab * tab; int size; int dc_diff; if (bit_buf < 0xf8000000) { tab = DC_lum_5 + UBITS (bit_buf, 5); size = tab->size; if (size) { bits += tab->len + size; bit_buf <<= tab->len; dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); bit_buf <<= size; return dc_diff; } else { DUMPBITS (bit_buf, bits, 3); return 0; } } else { tab = DC_long - 0x1e0 + UBITS (bit_buf, 9); size = tab->size; DUMPBITS (bit_buf, bits, tab->len); NEEDBITS (bit_buf, bits, bit_ptr); dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); DUMPBITS (bit_buf, bits, size); return dc_diff; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_chroma_dc_dct_diff (slice_t * slice) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) DCtab * tab; int size; int dc_diff; if (bit_buf < 0xf8000000) { tab = DC_chrom_5 + UBITS (bit_buf, 5); size = tab->size; if (size) { bits += tab->len + size; bit_buf <<= tab->len; dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); bit_buf <<= size; return dc_diff; } else { DUMPBITS (bit_buf, bits, 2); return 0; } } else { tab = DC_long - 0x3e0 + UBITS (bit_buf, 10); size = tab->size; DUMPBITS (bit_buf, bits, tab->len + 1); NEEDBITS (bit_buf, bits, bit_ptr); dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); DUMPBITS (bit_buf, bits, size); return dc_diff; } #undef bit_buf #undef bits #undef bit_ptr } #define SATURATE(val) \ do { \ if (val > 2047) \ val = 2047; \ else if (val < -2048) \ val = -2048; \ } while (0) static void get_intra_block_B14 (picture_t * picture, slice_t * slice, int16_t * dest) { int i; int j; int val; uint8_t * scan = picture->scan; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = slice->quantizer_scale; int mismatch; DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; i = 0; mismatch = ~dest[0]; bit_buf = slice->bitstream_buf; bits = slice->bitstream_bits; bit_ptr = slice->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5); i += tab->run; if (i >= 64) break; // end of block normal_code: j = scan[i]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4; // if (bitstream_get (1)) val = -val; val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x04000000) { tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8); i += tab->run; if (i < 64) goto normal_code; // escape code i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; // illegal, but check needed to avoid buffer overflow j = scan[i]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = (SBITS (bit_buf, 12) * quantizer_scale * quant_matrix[j]) / 16; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 - 16 + UBITS (bit_buf, 13); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 - 16 + UBITS (bit_buf, 15); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; // illegal, but check needed to avoid buffer overflow } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 2); // dump end of block code slice->bitstream_buf = bit_buf; slice->bitstream_bits = bits; slice->bitstream_ptr = bit_ptr; } static void get_intra_block_B15 (picture_t * picture, slice_t * slice, int16_t * dest) { int i; int j; int val; uint8_t * scan = picture->scan; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = slice->quantizer_scale; int mismatch; DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; i = 0; mismatch = ~dest[0]; bit_buf = slice->bitstream_buf; bits = slice->bitstream_bits; bit_ptr = slice->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x04000000) { tab = DCT_B15_8 - 4 + UBITS (bit_buf, 8); i += tab->run; if (i < 64) { normal_code: j = scan[i]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4; // if (bitstream_get (1)) val = -val; val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else { // end of block. I commented out this code because if we // dont exit here we will still exit at the later test :) //if (i >= 128) break; // end of block // escape code i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; // illegal, but check against buffer overflow j = scan[i]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = (SBITS (bit_buf, 12) * quantizer_scale * quant_matrix[j]) / 16; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } } else if (bit_buf >= 0x02000000) { tab = DCT_B15_10 - 8 + UBITS (bit_buf, 10); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 - 16 + UBITS (bit_buf, 13); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 - 16 + UBITS (bit_buf, 15); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; // illegal, but check needed to avoid buffer overflow } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 4); // dump end of block code slice->bitstream_buf = bit_buf; slice->bitstream_bits = bits; slice->bitstream_ptr = bit_ptr; } static void get_non_intra_block (picture_t * picture, slice_t * slice, int16_t * dest) { int i; int j; int val; uint8_t * scan = picture->scan; uint8_t * quant_matrix = picture->non_intra_quantizer_matrix; int quantizer_scale = slice->quantizer_scale; int mismatch; DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; i = -1; mismatch = 1; bit_buf = slice->bitstream_buf; bits = slice->bitstream_bits; bit_ptr = slice->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x28000000) { tab = DCT_B14DC_5 - 5 + UBITS (bit_buf, 5); goto entry_1; } else goto entry_2; while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5); entry_1: i += tab->run; if (i >= 64) break; // end of block normal_code: j = scan[i]; bit_buf <<= tab->len; bits += tab->len + 1; val = ((2*tab->level+1) * quantizer_scale * quant_matrix[j]) >> 5; // if (bitstream_get (1)) val = -val; val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } entry_2: if (bit_buf >= 0x04000000) { tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8); i += tab->run; if (i < 64) goto normal_code; // escape code i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; // illegal, but check needed to avoid buffer overflow j = scan[i]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = 2 * (SBITS (bit_buf, 12) + SBITS (bit_buf, 1)) + 1; val = (val * quantizer_scale * quant_matrix[j]) / 32; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 - 16 + UBITS (bit_buf, 13); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 - 16 + UBITS (bit_buf, 15); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; // illegal, but check needed to avoid buffer overflow } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 2); // dump end of block code slice->bitstream_buf = bit_buf; slice->bitstream_bits = bits; slice->bitstream_ptr = bit_ptr; } static void get_mpeg1_intra_block (picture_t * picture, slice_t * slice, int16_t * dest) { int i; int j; int val; uint8_t * scan = picture->scan; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = slice->quantizer_scale; DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; i = 0; bit_buf = slice->bitstream_buf; bits = slice->bitstream_bits; bit_ptr = slice->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5); i += tab->run; if (i >= 64) break; // end of block normal_code: j = scan[i]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[j]) >> 4; // oddification val = (val - 1) | 1; // if (bitstream_get (1)) val = -val; val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x04000000) { tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8); i += tab->run; if (i < 64) goto normal_code; // escape code i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; // illegal, but check needed to avoid buffer overflow j = scan[i]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = SBITS (bit_buf, 8); if (! (val & 0x7f)) { DUMPBITS (bit_buf, bits, 8); val = UBITS (bit_buf, 8) + 2 * val; } val = (val * quantizer_scale * quant_matrix[j]) / 16; // oddification val = (val + ~SBITS (val, 1)) | 1; SATURATE (val); dest[j] = val; DUMPBITS (bit_buf, bits, 8); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 - 16 + UBITS (bit_buf, 13); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 - 16 + UBITS (bit_buf, 15); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; // illegal, but check needed to avoid buffer overflow } DUMPBITS (bit_buf, bits, 2); // dump end of block code slice->bitstream_buf = bit_buf; slice->bitstream_bits = bits; slice->bitstream_ptr = bit_ptr; } static void get_mpeg1_non_intra_block (picture_t * picture, slice_t * slice, int16_t * dest) { int i; int j; int val; uint8_t * scan = picture->scan; uint8_t * quant_matrix = picture->non_intra_quantizer_matrix; int quantizer_scale = slice->quantizer_scale; DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; i = -1; bit_buf = slice->bitstream_buf; bits = slice->bitstream_bits; bit_ptr = slice->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x28000000) { tab = DCT_B14DC_5 - 5 + UBITS (bit_buf, 5); goto entry_1; } else goto entry_2; while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 - 5 + UBITS (bit_buf, 5); entry_1: i += tab->run; if (i >= 64) break; // end of block normal_code: j = scan[i]; bit_buf <<= tab->len; bits += tab->len + 1; val = ((2*tab->level+1) * quantizer_scale * quant_matrix[j]) >> 5; // oddification val = (val - 1) | 1; // if (bitstream_get (1)) val = -val; val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } entry_2: if (bit_buf >= 0x04000000) { tab = DCT_B14_8 - 4 + UBITS (bit_buf, 8); i += tab->run; if (i < 64) goto normal_code; // escape code i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; // illegal, but check needed to avoid buffer overflow j = scan[i]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = SBITS (bit_buf, 8); if (! (val & 0x7f)) { DUMPBITS (bit_buf, bits, 8); val = UBITS (bit_buf, 8) + 2 * val; } val = 2 * (val + SBITS (val, 1)) + 1; val = (val * quantizer_scale * quant_matrix[j]) / 32; // oddification val = (val + ~SBITS (val, 1)) | 1; SATURATE (val); dest[j] = val; DUMPBITS (bit_buf, bits, 8); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 - 8 + UBITS (bit_buf, 10); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 - 16 + UBITS (bit_buf, 13); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 - 16 + UBITS (bit_buf, 15); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; // illegal, but check needed to avoid buffer overflow } DUMPBITS (bit_buf, bits, 2); // dump end of block code slice->bitstream_buf = bit_buf; slice->bitstream_bits = bits; slice->bitstream_ptr = bit_ptr; } static inline int get_macroblock_address_increment (slice_t * slice) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) MBAtab * tab; int mba; mba = 0; while (1) { if (bit_buf >= 0x10000000) { tab = MBA_5 - 2 + UBITS (bit_buf, 5); DUMPBITS (bit_buf, bits, tab->len); return mba + tab->mba; } else if (bit_buf >= 0x03000000) { tab = MBA_11 - 24 + UBITS (bit_buf, 11); DUMPBITS (bit_buf, bits, tab->len); return mba + tab->mba; } else switch (UBITS (bit_buf, 11)) { case 8: // macroblock_escape mba += 33; // no break here on purpose case 15: // macroblock_stuffing (MPEG1 only) DUMPBITS (bit_buf, bits, 11); NEEDBITS (bit_buf, bits, bit_ptr); break; default: // end of slice, or error return 0; } } #undef bit_buf #undef bits #undef bit_ptr } static inline void slice_intra_DCT (picture_t * picture, slice_t * slice, int cc, uint8_t * dest, int stride) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) NEEDBITS (bit_buf, bits, bit_ptr); //Get the intra DC coefficient and inverse quantize it if (cc == 0) slice->dc_dct_pred[0] += get_luma_dc_dct_diff (slice); else slice->dc_dct_pred[cc] += get_chroma_dc_dct_diff (slice); DCTblock[0] = slice->dc_dct_pred[cc] << (3 - picture->intra_dc_precision); if (picture->mpeg1) { if (picture->picture_coding_type != D_TYPE) get_mpeg1_intra_block (picture, slice, DCTblock); } else if (picture->intra_vlc_format) get_intra_block_B15 (picture, slice, DCTblock); else get_intra_block_B14 (picture, slice, DCTblock); idct_block_copy (DCTblock, dest, stride); memset (DCTblock, 0, sizeof (DCTblock)); #undef bit_buf #undef bits #undef bit_ptr } static inline void slice_non_intra_DCT (picture_t * picture, slice_t * slice, uint8_t * dest, int stride) { if (picture->mpeg1) get_mpeg1_non_intra_block (picture, slice, DCTblock); else get_non_intra_block (picture, slice, DCTblock); idct_block_add (DCTblock, dest, stride); memset (DCTblock, 0, sizeof (DCTblock)); } static inline void motion_block (void (** table) (uint8_t *, uint8_t *, int32_t, int32_t), int x_pred, int y_pred, uint8_t * dest[3], int dest_offset, uint8_t * src[3], int src_offset, int stride, int height, int second_half) { int xy_half; uint8_t * src1; uint8_t * src2; xy_half = ((y_pred & 1) << 1) | (x_pred & 1); src1 = src[0] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride + second_half * (stride << 3); table[xy_half] (dest[0] + dest_offset + second_half * (stride << 3), src1, stride, height); x_pred /= 2; y_pred /= 2; xy_half = ((y_pred & 1) << 1) | (x_pred & 1); stride >>= 1; height >>= 1; src_offset >>= 1; src_offset += second_half * (stride << 2); dest_offset >>= 1; dest_offset += second_half * (stride << 2); src1 = src[1] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride; src2 = src[2] + src_offset + (x_pred >> 1) + (y_pred >> 1) * stride; table[4+xy_half] (dest[1] + dest_offset, src1, stride, height); table[4+xy_half] (dest[2] + dest_offset, src2, stride, height); } static void motion_mp1 (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[0]); motion_y = bound_motion_vector (motion_y, motion->f_code[0]); motion->pmv[0][1] = motion_y; if (motion->f_code[1]) { motion_x <<= 1; motion_y <<= 1; } motion_block (table, motion_x, motion_y, dest, offset, motion->ref[0], offset, width, 16, 0); #undef bit_buf #undef bits #undef bit_ptr } static void motion_mp1_reuse (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { int motion_x, motion_y; motion_x = motion->pmv[0][0]; motion_y = motion->pmv[0][1]; if (motion->f_code[1]) { motion_x <<= 1; motion_y <<= 1; } motion_block (table, motion_x, motion_y, dest, offset, motion->ref[0], offset, width, 16, 0); } static void motion_fr_frame (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; motion_block (table, motion_x, motion_y, dest, offset, motion->ref[0], offset, width, 16, 0); #undef bit_buf #undef bits #undef bit_ptr } static void motion_fr_field (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; int field_select; NEEDBITS (bit_buf, bits, bit_ptr); field_select = SBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[0][1] >> 1) + get_motion_delta (slice, motion->f_code[1]); //motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[0][1] = motion_y << 1; motion_block (table, motion_x, motion_y, dest, offset, motion->ref[0], offset + (field_select & width), width * 2, 8, 0); NEEDBITS (bit_buf, bits, bit_ptr); field_select = SBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[1][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[1][1] >> 1) + get_motion_delta (slice, motion->f_code[1]); //motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion_y << 1; motion_block (table, motion_x, motion_y, dest, offset + width, motion->ref[0], offset + (field_select & width), width * 2, 8, 0); #undef bit_buf #undef bits #undef bit_ptr } static int motion_dmv_top_field_first; static void motion_fr_dmv (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; int dmv_x, dmv_y; int m; int other_x, other_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); dmv_x = get_dmv (slice); NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[0][1] >> 1) + get_motion_delta (slice, motion->f_code[1]); //motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y << 1; NEEDBITS (bit_buf, bits, bit_ptr); dmv_y = get_dmv (slice); motion_block (mc_functions.put, motion_x, motion_y, dest, offset, motion->ref[0], offset, width * 2, 8, 0); m = motion_dmv_top_field_first ? 1 : 3; other_x = ((motion_x * m + (motion_x > 0)) >> 1) + dmv_x; other_y = ((motion_y * m + (motion_y > 0)) >> 1) + dmv_y - 1; motion_block (mc_functions.avg, other_x, other_y, dest, offset, motion->ref[0], offset + width, width * 2, 8, 0); motion_block (mc_functions.put, motion_x, motion_y, dest, offset + width, motion->ref[0], offset + width, width * 2, 8, 0); m = motion_dmv_top_field_first ? 3 : 1; other_x = ((motion_x * m + (motion_x > 0)) >> 1) + dmv_x; other_y = ((motion_y * m + (motion_y > 0)) >> 1) + dmv_y + 1; motion_block (mc_functions.avg, other_x, other_y, dest, offset + width, motion->ref[0], offset, width * 2, 8, 0); #undef bit_buf #undef bits #undef bit_ptr } // like motion_frame, but reuse previous motion vectors static void motion_fr_reuse (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { motion_block (table, motion->pmv[0][0], motion->pmv[0][1], dest, offset, motion->ref[0], offset, width, 16, 0); } // like motion_frame, but use null motion vectors static void motion_fr_zero (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { motion_block (table, 0, 0, dest, offset, motion->ref[0], offset, width, 16, 0); } // like motion_frame, but parsing without actual motion compensation static void motion_fr_conceal (slice_t * slice, motion_t * motion) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); tmp = bound_motion_vector (tmp, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); tmp = bound_motion_vector (tmp, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = tmp; DUMPBITS (bit_buf, bits, 1); // remove marker_bit #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_field (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; int field_select; NEEDBITS (bit_buf, bits, bit_ptr); field_select = UBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, 1); NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; motion_block (table, motion_x, motion_y, dest, offset, motion->ref[field_select], offset, width, 16, 0); #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_16x8 (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; int field_select; NEEDBITS (bit_buf, bits, bit_ptr); field_select = UBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, 1); NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[0][1] = motion_y; motion_block (table, motion_x, motion_y, dest, offset, motion->ref[field_select], offset, width, 8, 0); NEEDBITS (bit_buf, bits, bit_ptr); field_select = UBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, 1); NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[1][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[1][1] + get_motion_delta (slice, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion_y; motion_block (table, motion_x, motion_y, dest, offset, motion->ref[field_select], offset, width, 8, 1); #undef bit_buf #undef bits #undef bit_ptr } static int current_field = 0; static void motion_fi_dmv (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int motion_x, motion_y; int dmv_x, dmv_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); dmv_x = get_dmv (slice); NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; NEEDBITS (bit_buf, bits, bit_ptr); dmv_y = get_dmv (slice); motion_block (mc_functions.put, motion_x, motion_y, dest, offset, motion->ref[current_field], offset, width, 16, 0); motion_x = ((motion_x + (motion_x > 0)) >> 1) + dmv_x; motion_y = ((motion_y + (motion_y > 0)) >> 1) + dmv_y + 2 * current_field - 1; motion_block (mc_functions.avg, motion_x, motion_y, dest, offset, motion->ref[!current_field], offset, width, 16, 0); #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_reuse (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { motion_block (table, motion->pmv[0][0], motion->pmv[0][1], dest, offset, motion->ref[current_field], offset, width, 16, 0); } static void motion_fi_zero (slice_t * slice, motion_t * motion, uint8_t * dest[3], int offset, int width, void (** table) (uint8_t *, uint8_t *, int, int)) { motion_block (table, 0, 0, dest, offset, motion->ref[current_field], offset, width, 16, 0); } static void motion_fi_conceal (slice_t * slice, motion_t * motion) { #define bit_buf (slice->bitstream_buf) #define bits (slice->bitstream_bits) #define bit_ptr (slice->bitstream_ptr) int tmp; NEEDBITS (bit_buf, bits, bit_ptr); DUMPBITS (bit_buf, bits, 1); // remove field_select NEEDBITS (bit_buf, bits, bit_ptr); tmp = motion->pmv[0][0] + get_motion_delta (slice, motion->f_code[0]); tmp = bound_motion_vector (tmp, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = motion->pmv[0][1] + get_motion_delta (slice, motion->f_code[1]); tmp = bound_motion_vector (tmp, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = tmp; DUMPBITS (bit_buf, bits, 1); // remove marker_bit #undef bit_buf #undef bits #undef bit_ptr } #define MOTION(routine,direction,slice,dest,offset,stride) \ do { \ if ((direction) & MACROBLOCK_MOTION_FORWARD) \ routine (&slice, &((slice).f_motion), dest, offset, stride, \ mc_functions.put); \ if ((direction) & MACROBLOCK_MOTION_BACKWARD) \ routine (&slice, &((slice).b_motion), dest, offset, stride, \ ((direction) & MACROBLOCK_MOTION_FORWARD ? \ mc_functions.avg : mc_functions.put)); \ } while (0) #define CHECK_DISPLAY \ do { \ if (offset == width) { \ slice.f_motion.ref[0][0] += 16 * offset; \ slice.f_motion.ref[0][1] += 4 * offset; \ slice.f_motion.ref[0][2] += 4 * offset; \ slice.b_motion.ref[0][0] += 16 * offset; \ slice.b_motion.ref[0][1] += 4 * offset; \ slice.b_motion.ref[0][2] += 4 * offset; \ dest[0] += 16 * offset; \ dest[1] += 4 * offset; \ dest[2] += 4 * offset; \ offset = 0; ++ypos; \ } \ } while (0) int slice_process (picture_t * picture, uint8_t code, uint8_t * buffer) { #define bit_buf (slice.bitstream_buf) #define bits (slice.bitstream_bits) #define bit_ptr (slice.bitstream_ptr) slice_t slice; int macroblock_modes; int width; int ypos=code-1; uint8_t * dest[3]; int offset; uint8_t ** forward_ref[2]; width = picture->coded_picture_width; offset = ypos * width * 4; forward_ref[0] = picture->forward_reference_frame; if (picture->picture_structure != FRAME_PICTURE) { offset <<= 1; forward_ref[1] = picture->forward_reference_frame; current_field = (picture->picture_structure == BOTTOM_FIELD); if ((picture->second_field) && (picture->picture_coding_type != B_TYPE)) forward_ref[picture->picture_structure == TOP_FIELD] = picture->current_frame; slice.f_motion.ref[1][0] = forward_ref[1][0] + offset * 4 + width; slice.f_motion.ref[1][1] = forward_ref[1][1] + offset + (width >> 1); slice.f_motion.ref[1][2] = forward_ref[1][2] + offset + (width >> 1); slice.b_motion.ref[1][0] = picture->backward_reference_frame[0] + offset * 4 + width; slice.b_motion.ref[1][1] = picture->backward_reference_frame[1] + offset + (width >> 1); slice.b_motion.ref[1][2] = picture->backward_reference_frame[2] + offset + (width >> 1); } slice.f_motion.ref[0][0] = forward_ref[0][0] + offset * 4; slice.f_motion.ref[0][1] = forward_ref[0][1] + offset; slice.f_motion.ref[0][2] = forward_ref[0][2] + offset; slice.f_motion.f_code[0] = picture->f_code[0][0]; slice.f_motion.f_code[1] = picture->f_code[0][1]; slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; slice.b_motion.ref[0][0] = picture->backward_reference_frame[0] + offset * 4; slice.b_motion.ref[0][1] = picture->backward_reference_frame[1] + offset; slice.b_motion.ref[0][2] = picture->backward_reference_frame[2] + offset; slice.b_motion.f_code[0] = picture->f_code[1][0]; slice.b_motion.f_code[1] = picture->f_code[1][1]; slice.b_motion.pmv[0][0] = slice.b_motion.pmv[0][1] = 0; slice.b_motion.pmv[1][0] = slice.b_motion.pmv[1][1] = 0; if ((! HACK_MODE) && (!picture->mpeg1) && (picture->picture_coding_type == B_TYPE)) offset = 0; dest[0] = picture->current_frame[0] + offset * 4; dest[1] = picture->current_frame[1] + offset; dest[2] = picture->current_frame[2] + offset; switch (picture->picture_structure) { case BOTTOM_FIELD: dest[0] += width; dest[1] += width >> 1; dest[2] += width >> 1; // follow thru case TOP_FIELD: width <<= 1; } //reset intra dc predictor slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]= 1<< (picture->intra_dc_precision + 7) ; bitstream_init (&slice, buffer); slice.quantizer_scale = get_quantizer_scale (&slice, picture->q_scale_type); //Ignore intra_slice and all the extra data while (bit_buf & 0x80000000) { DUMPBITS (bit_buf, bits, 9); NEEDBITS (bit_buf, bits, bit_ptr); } DUMPBITS (bit_buf, bits, 1); NEEDBITS (bit_buf, bits, bit_ptr); offset = get_macroblock_address_increment (&slice) << 4; while (1) { NEEDBITS (bit_buf, bits, bit_ptr); macroblock_modes = get_macroblock_modes (&slice, picture->picture_structure, picture->picture_coding_type, picture->frame_pred_frame_dct); // maybe integrate MACROBLOCK_QUANT test into get_macroblock_modes ? if (macroblock_modes & MACROBLOCK_QUANT) slice.quantizer_scale = get_quantizer_scale (&slice, picture->q_scale_type); if (macroblock_modes & MACROBLOCK_INTRA) { int DCT_offset, DCT_stride; if (picture->concealment_motion_vectors) { if (picture->picture_structure == FRAME_PICTURE) motion_fr_conceal (&slice, &slice.f_motion); else motion_fi_conceal (&slice, &slice.f_motion); } else { slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; slice.b_motion.pmv[0][0] = slice.b_motion.pmv[0][1] = 0; slice.b_motion.pmv[1][0] = slice.b_motion.pmv[1][1] = 0; } if (macroblock_modes & DCT_TYPE_INTERLACED) { DCT_offset = width; DCT_stride = width * 2; } else { DCT_offset = width * 8; DCT_stride = width; } // Decode lum blocks slice_intra_DCT (picture, &slice, 0, dest[0] + offset, DCT_stride); slice_intra_DCT (picture, &slice, 0, dest[0] + offset + 8, DCT_stride); slice_intra_DCT (picture, &slice, 0, dest[0] + offset + DCT_offset, DCT_stride); slice_intra_DCT (picture, &slice, 0, dest[0] + offset + DCT_offset + 8, DCT_stride); // Decode chroma blocks slice_intra_DCT (picture, &slice, 1, dest[1] + (offset>>1), width>>1); slice_intra_DCT (picture, &slice, 2, dest[2] + (offset>>1), width>>1); if (picture->picture_coding_type == D_TYPE) { NEEDBITS (bit_buf, bits, bit_ptr); DUMPBITS (bit_buf, bits, 1); } } else { if (picture->mpeg1) { if ((macroblock_modes & MOTION_TYPE_MASK) == MC_FRAME) MOTION (motion_mp1, macroblock_modes, slice, dest, offset,width); else { // non-intra mb without forward mv in a P picture slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); } } else if (picture->picture_structure == FRAME_PICTURE) switch (macroblock_modes & MOTION_TYPE_MASK) { case MC_FRAME: MOTION (motion_fr_frame, macroblock_modes, slice, dest, offset, width); break; case MC_FIELD: MOTION (motion_fr_field, macroblock_modes, slice, dest, offset, width); break; case MC_DMV: motion_dmv_top_field_first = picture->top_field_first; MOTION (motion_fr_dmv, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); break; case 0: // non-intra mb without forward mv in a P picture slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); break; } else switch (macroblock_modes & MOTION_TYPE_MASK) { case MC_FIELD: MOTION (motion_fi_field, macroblock_modes, slice, dest, offset, width); break; case MC_16X8: MOTION (motion_fi_16x8, macroblock_modes, slice, dest, offset, width); break; case MC_DMV: motion_dmv_top_field_first = picture->top_field_first; MOTION (motion_fi_dmv, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); break; case 0: // non-intra mb without forward mv in a P picture slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; MOTION (motion_fi_zero, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); break; } //6.3.17.4 Coded block pattern if (macroblock_modes & MACROBLOCK_PATTERN) { int coded_block_pattern; int DCT_offset, DCT_stride; if (macroblock_modes & DCT_TYPE_INTERLACED) { DCT_offset = width; DCT_stride = width * 2; } else { DCT_offset = width * 8; DCT_stride = width; } coded_block_pattern = get_coded_block_pattern (&slice); // Decode lum blocks if (coded_block_pattern & 0x20) slice_non_intra_DCT (picture, &slice, dest[0] + offset, DCT_stride); if (coded_block_pattern & 0x10) slice_non_intra_DCT (picture, &slice, dest[0] + offset + 8, DCT_stride); if (coded_block_pattern & 0x08) slice_non_intra_DCT (picture, &slice, dest[0] + offset + DCT_offset, DCT_stride); if (coded_block_pattern & 0x04) slice_non_intra_DCT (picture, &slice, dest[0] + offset + DCT_offset + 8, DCT_stride); // Decode chroma blocks if (coded_block_pattern & 0x2) slice_non_intra_DCT (picture, &slice, dest[1] + (offset>>1), width >> 1); if (coded_block_pattern & 0x1) slice_non_intra_DCT (picture, &slice, dest[2] + (offset>>1), width >> 1); } slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]= 1 << (picture->intra_dc_precision + 7); } // printf("[%d]",slice.quantizer_scale); // printf("[%d,%d]",offset>>4,ypos); quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale; offset += 16; CHECK_DISPLAY; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf & 0x80000000) { DUMPBITS (bit_buf, bits, 1); } else { int mba_inc; mba_inc = get_macroblock_address_increment (&slice); if (!mba_inc) break; //reset intra dc predictor on skipped block slice.dc_dct_pred[0]=slice.dc_dct_pred[1]=slice.dc_dct_pred[2]= 1<< (picture->intra_dc_precision + 7); //handling of skipped mb's differs between P_TYPE and B_TYPE //pictures if (picture->picture_coding_type == P_TYPE) { slice.f_motion.pmv[0][0] = slice.f_motion.pmv[0][1] = 0; slice.f_motion.pmv[1][0] = slice.f_motion.pmv[1][1] = 0; do { if (picture->picture_structure == FRAME_PICTURE) MOTION (motion_fr_zero, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); else MOTION (motion_fi_zero, MACROBLOCK_MOTION_FORWARD, slice, dest, offset, width); quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale; // printf("[%d,%d]",offset>>4,ypos); offset += 16; CHECK_DISPLAY; } while (--mba_inc); } else { do { if (picture->mpeg1) MOTION (motion_mp1_reuse, macroblock_modes, slice, dest, offset, width); else if (picture->picture_structure == FRAME_PICTURE) MOTION (motion_fr_reuse, macroblock_modes, slice, dest, offset, width); else MOTION (motion_fi_reuse, macroblock_modes, slice, dest, offset, width); quant_store[ypos+1][(offset>>4)+1] = slice.quantizer_scale; // printf("[%d,%d]",offset>>4,ypos); offset += 16; CHECK_DISPLAY; } while (--mba_inc); } } } return 0; #undef bit_buf #undef bits #undef bit_ptr }