We prefer to fail fast rather than degrade in unpredictable ways.
The example in sub/ is particularly egregious because the code just
skips the work it's meant to do when an allocation fails.
Pull AOs work off of a callback that relies on mpv's internal timer. So
like with the related video changes, convert all of these to nanoseconds
instead. In many cases, the underlying audio API does actually provide
nanosecond resolution as well.
All authors have agreed to the relicensing.
The code was pretty much rewritten by Stefano Pigozzi. Since the rewrite
happened incrementally, and seems to include refactored portions of
older code, this relicensing was done on the pre-refactor code do.
The original commit adding this AO (as ao_macosx.c) credits Timothy J.
Wood as original author. He was asked and agreed to LGPL. It's not
entirely sure from which project this code came from, but it's probably
libao. In that project, Stanley Seibert made some changes to it (who as
a major developer of libao was asked just to be sure), and also Ralph
Giles and Ben Hines made two small changes. The latter were not asked,
but none of their code survived anyway.
When selecting a device that simply doesn't exist with --audio-device,
AudioUnit will still initialize and start playback without complaining.
But it will never call the audio render callback, which leads to audio
playback simply not progressing.
I couldn't find a way to get AudioUnit to report an error at all, so
here's a crappy hack that takes care of this in most cases. We assume
that all devices have a kAudioDevicePropertyDeviceIsAlive property.
Invalid devices will error when querying the property (with 'obj!' as
status code).
This is not the correct fix, because we try to double-guess AudioUnit's
behavior by accessing a lower label API. Suggestions welcome.
Reportedly fixes operation with "USB connected Parasound ZDAC v.2". (OSX
and USB audio sure is not nice at all.)
This might be perceived as hang by some users, so it's quite possible
that this will have to be adjusted again somehow.
Fixes#2409.
This could sometimes cause crashes in hotplug events. (Apparently in
cases when CoreAudio changes its state asynchronously, or such.)
CA_GET_STR() does not set the string if there was an error, so errors
have to be strictly checked before using it.
ao_coreaudio (using AudioUnit) accounted only for part of the latency -
move the code in ao_coreaudio_exclusive to utils, and use that for the
AudioUnit code.
(There's still the question why CoreAudio and AudioUnit require you to
jump through hoops this much, but apparently that's how it is.)
Mapping of spdif formats was imperfect. Since the first format on the
list is somehow AAC, it was returned first, which is confusing, because
CoreAudio calls all spdif formats AC3. Since the spdif formats have some
rather arbitrary, reverse mapping the formats didn"t actually work
either. Fix by explicitly ignoring these when spdif is used.
Also, don't forget to set the samplerate in ca_asbd_to_mpformat(), or it
will work only in some cases.
May help with (supposedly) bad drivers, which can put the device into
some sort of broken state when trying to set a different physical
format. When the previous format is restored, it apparently recovers.
This might make the change-physical-format suboption more robust.
Replace all the check macros with function calls. Give them all the
same case and naming schema.
Drop af_fmt2bits(). Only af_fmt2bps() survives as af_fmt_to_bytes().
Introduce af_fmt_is_pcm(), and use it in situations that used
!AF_FORMAT_IS_SPECIAL. Nobody really knew what a "special" format
was. It simply meant "not PCM".
Originally, this was written for comparing the sample format only, but
ca_change_physical_format_sync() actually expects that the full format
is compared. (For all other uses it doesn't matter.)
They are useless. Not only are they actually rarely in use; but
libavcodec doesn't even output them, as libavcodec has no such sample
formats for decoded audio.
Even if it should happen that we actually still need them (e.g. if doing
direct hardware output), there are better solutions. Swapping the sign
is a fast and lossless operation and can be done inplace, so AO actually
needing it could do this directly.
If you wonder why we keep U8 instead of S8: because libavcodec does it.
Instead of trying to use af_format_conversion_score() (which tries to be
all kinds of clever), just compare the raw bits as a quality measure. Do
this because otherwise, weird formats like padded 24 bit formats will be
excluded, even though they might be the highest precision formats for
some hardware.
This means that for now, the user would have to check whether the format
is usable at all before calling ca_asbd_is_better(). But since this is
currently only used for ao_coreaudio.c and for the physical format, it
doesn't matter.
If coreaudio-exclusive should get PCM support, the best would be to
revert this change, and to add support for 24 bit formats directly.
It appears this is the reason coreaudio-exclusive does not work without
explicitly specifying a device, even if the default device maps to
something passthrough-capable.
Instead of always picking a somehow better format over the previous one,
select a format that is equal to or better the requested format, but is
also reasonably close.
Drop the mFormatID comparison - checking the sample format handles this
already.
Make sure to exclude channel counts that can't be used.
Useful with some of the following commits.
ca_fill_asbd() should behave exactly as before.
Instead of actually implementing the inverse function of ca_fill_asbd(),
just loop over the (small) list of mpv functions and check if any mpv
equivalent to a given ASBD exists.
kAudioFormatFlagIsSignedInteger implicates that it's only used with
integer formats. The mpv internal flag on the other hand signals the
presence of a sign, and this is set on float formats.
Until now, this probably worked fine, because at least AudioUnit is
ignoring the uncorrect flag.
The message log level shouldn't get to decide whether something fails
or not. So replace the fatal error check on the verbose output code
path with a warning.