This commit mainly moves the initial decoding of data (done to probe the
audio format) to generic code. This will make it easier to make audio
decoding non-blocking in a later commit.
This commit also changes how decoders return data: instead of having
them write the data into a prepared buffer, they return a reference to
an internal buffer (by setting dec_audio.decoded). This makes it
significantly easier to handle audio format changes, since the decoders
don't really need to care anymore.
If the decoder didn't set a samplerate, it was initialized from the
container samplerate.
This probably didn't make much sense, because it's passed to the
decoder on initialization (so it could definitely use it). It's an
artifact from commit 66a9eb57 (which removed some Matroska-specific non-
sense), and I've never seen it actually happen since it was made into a
warning. Just get rid of it.
There was confusion about what should go into audio pts calculation and
what not (mainly due to the audio push thread). This has been fixed by
using the playing - not written - audio pts (which properly takes into
account the ao's buffer), and incrementing the samples count only by the
amount of samples actually taken from the buffer (unfortunately this
now forces us to keep the lock too long for my taste).
The final goal is all mp_msg calls produce complete lines. We want this
because otherwise, race conditions could corrupt the terminal output,
and it's inconvenient for the client API too. This commit works towards
this goal. There's still code that has this not fixed yet, though.
Logic for this was missing from pull.c. For push.c it was missing if the
driver didn't support it. But even if the driver supported it (such as
with ao_alsa), strange behavior was observed by users. See issue #933.
Always check explicitly whether the AO is in paused mode, and if so,
don't drain.
Possibly fixes#933.
CC: @mpv-player/stable
There is no standard mechanism for detecting endianess. Doing it at
compile time in a portable way is probably hard. Doing it properly
with a configure check is probably hard too. Using the endian
definitions in <sys/types.h> (usually includes <endian.h>, which is
not available everywhere) works under circumstances, but the previous
commit broke it on OSX.
Ideally all code should be endian dependent, but that is not possible
due to the dependencies (such as FFmpeg, some video output APIs, some
audio output APIs).
Create a header osdep/endian.h, which contains various fallbacks.
Note that the last fallback uses libavutil; however, it's not clear
whether AV_HAVE_BIGENDIAN is a public symbol, or whether including
<libavutil/bswap.h> really makes it visible. And in fact we don't want
to pollute the namespace with libavutil definitions either. Thus it's
only the last fallback.
Doesn't work quite right, and will pause for the latency duration after
seeking. Some users use --ao=null to disable audio (even though they
should probably use --no-audio), and this use-case is broken by this
issue too.
CC: @mpv-player/stable
Previous code was completly wrong. This still doesn't report the device
latency, but we report the buffer latency (as before the AO refactoring) and
the AudioUnit's latency (this is a new 'feature').
Apparently we can also report the device actual latency and we should also
calculate the actual sample rate of the audio device instead of using the
nominal sample rate, but I'll leave this for a later commit.
The mplayer1/2/mpv CoreAudio audio output historically contained both usage
of AUHAL APIs (these go through the CoreAudio audio server) and the Device
based APIs (used only for output of compressed formats in exclusive mode).
The latter is a very unwieldy and low level API and pretty much forces us to
write a lot of code for little workr. Also with the widespread of HDMI, the
actual need for outputting compressed audio directly to the device is getting
lower (it was very useful with S/PDIF for bandwidth constraints not allowing
a number if channels transmitted in LPCM).
Considering how invasive it is (uses hog/exclusive mode), the new AO
(`ao_coreaudio_device`) is not going to be autoprobed but the user will have
to select it.
Something like "char *s = ...; isdigit(s[0]);" triggers undefined
behavior, because char can be signed, and thus s[0] can be a negative
value. The is*() functions require unsigned char _or_ EOF. EOF is a
special value outside of unsigned char range, thus the argument to the
is*() functions can't be a char.
This undefined behavior can actually trigger crashes if the
implementation of these functions e.g. uses lookup tables, which are
then indexed with out-of-range values.
Replace all <ctype.h> uses with our own custom mp_is*() functions added
with misc/ctype.h. As a bonus, these functions are locale-independent.
(Although currently, we _require_ C locale for other reasons.)
rgain is not an additive value. It's a multiplier/gain.
Previous behaviour produced negative level values in some cases
(when rgain < 1.0) which caused volume to be louder when its value
was lowered.
CC: @mpv-player/stable
Signed-off-by: Mohammad Alsaleh <CE.Mohammad.AlSaleh@gmail.com>
Signed-off-by: wm4 <wm4@nowhere>
While I'm not very fond of "const", it's important for declarations
(it decides whether a symbol is emitted in a read-only or read/write
section). Fix all these cases, so we have writeable global data only
when we really need.
So the device buffer can be refilled quickly. Fixes dropouts in certain
cases: if all data is moved from the soft buffer to the audio device
buffer, the waiting code thinks it has to enter the mode in which it
waits for new data from the decoder. This doesn't work, because the
get_space() logic tries to keep the total buffer size down. get_space()
will return 0 (or a very low value) because the device buffer is full,
and the decoder can't refill the soft buffer. But this means if the AO
buffer runs out, the device buffer can't be refilled from the soft
buffer. I guess this mess happened because the code is trying to deal
with both AOs with proper event handling, and AOs with arbitrary
behavior.
Unfortunately this increases latency, as the total buffered audio
becomes larger. There are other ways to fix this again, but not today.
Fixes#818.
Apparently this can happen. So actually only return from waiting if ALSA
excplicitly signals that new output is available, or if we are woken up
externally.
This did not flush remaining audio in the buffer correctly (in case an
AO has an internal block size). So we have to make the audio feed thread
to write the remaining audio, and wait until it's done.
Checking the avoid_ao_wait variable should be enough to be sure that all
data that can be written was written to the AO driver.
This code handles buggy AOs (even if all AOs are bug-free, it's good for
robustness). Move handling of it to the AO feed thread. Now this check
doesn't require magic numbers and does exactly what's it supposed to do.
Until now, we've always calculated a timeout based on a heuristic when
to refill the audio buffers. Allow AOs to do it completely event-based
by providing wait and wakeup callbacks.
This also shuffles around the heuristic used for other AOs, and there is
a minor possibility that behavior slightly changes in real-world cases.
But in general it should be much more robust now.
ao_pulse.c now makes use of event-based waiting. It already did before,
but the code for time-based waiting was also involved. This commit also
removes one awkward artifact of the PulseAudio API out of the generic
code: the callback asking for more data can be reentrant, and thus
requires a separate lock for waiting (or a recursive mutex).
There were subtle and minor race conditions in the pull.c code, and AOs
using it (jack, portaudio, sdl, wasapi). Attempt to remove these.
There was at least a race condition in the ao_reset() implementation:
mp_ring_reset() was called concurrently to the audio callback. While the
ringbuffer uses atomics to allow concurrent access, the reset function
wasn't concurrency-safe (and can't easily be made to).
Fix this by stopping the audio callback before doing a reset. After
that, we can do anything without needing synchronization. The callback
is resumed when resuming playback at a later point.
Don't call driver->pause, and make driver->resume and driver->reset
start/stop the audio callback. In the initial state, the audio callback
must be disabled.
JackAudio of course is different. Maybe there is no way to suspend the
audio callback without "disconnecting" it (what jack_deactivate() would
do), so I'm not trying my luck, and implemented a really bad hack doing
active waiting until we get the audio callback into a state where it
won't interfere. Once the callback goes from AO_STATE_WAIT to NONE, we
can be sure that the callback doesn't access the ringbuffer or anything
else anymore. Since both sched_yield() and pthread_yield() apparently
are not always available, use mp_sleep_us(1) to avoid burning CPU during
active waiting.
The ao_jack.c change also removes a race condition: apparently we didn't
initialize _all_ ao fields before starting the audio callback.
In ao_wasapi.c, I'm not sure whether reset really waits for the audio
callback to return. Kovensky says it's not guaranteed, so disable the
reset callback - for now the behavior of ao_wasapi.c is like with
ao_jack.c, and active waiting is used to deal with the audio callback.
In most places where af_fmt2bits is called to get the bits/sample, the
result is immediately converted to bytes/sample. Avoid this by getting
bytes/sample directly by introducing af_fmt2bps.