This caused issues with hardware decoding. The VOs by definition dictate
the lifetime of the hardware context, so no surface allocations must
survive the VO. Fixes assertions on exit with vdpau.
draw_image_timed is renamed to draw_frame. struct frame_timing is
renamed to vo_frame. flip_page_timed is merged into draw_frame (the
additional parameters are part of struct vo_frame). draw_frame also
deprecates VOCTRL_REDRAW_FRAME, and replaces it with a method that
works for both VOs which can cache the current frame, and VOs which
need to redraw it anyway.
This is preparation to making the interpolation and (work in progress)
display sync code saner.
Lots of other refactoring, and also some simplifications.
For now, this is trivial (and actually redundant). The future display
sync code will make better use of it. The main point is that the new
internal API pretty much makes this transparent to the vo_opengl
interpolation code.
Now the VO can request a number of future frames with the last parameter
of vo_set_queue_params(). This will be helpful to fix the interpolation
code.
Note that the first frame (after playback start or seeking) will usually
not have any future frames (to make seeking fast). Near the end of the
file, the number of future frames will become lower as well.
Commits 92b27be and f4ce99d removed high-fps logic to to a bug. That bug was
a missing parenthesis around everything after duration >= 0 && ... at the
removed code.
This patch restores the removed code, fixes the bug and then refactors the
code a bit.
This reverts commit f1746741de.
Together with the other revert, this fixes#2023 (the reason being
broken framedrop handling - it was dropping frames when it shouldn't).
Some code always calls vo_event(), even with event==0, which leads to
immediate wakeup, which in turn causes the function to be called again.
This would burn CPU, which was especially noticeable when paused.
Interrupt video timing. This means the Cocoa event loop does not have
to up to 2 video frame durations until redrawing the frame finally has
finished.
We abuse the VO event flags for this. Eventually this should use
wait_vo() or so in the video timing wait function, but for now the
interaction this would require with the code of other VOs/backends
would cause too much of a mess.
Will be used to make video waiting interruptible with Cocoa (see the
following commit).
One worry was that this could cause hangs if the system clock jumps
backwards. Normally we don't support such behavior, because it's
almost impossible to handle it reasonably. E.g. we would have to
change the default clock type for condition variables, which in turn
would require a custom function for creating condition variables,
or so. If the OS even supports different clocks.
But it turns out that this is no issue, because other events seem
to wakeup the wait call anyway, and mpv internal absolute times use
a monotonic clock.
There is not much of a reason to have these wrappers around. Use POSIX
standard functions directly, and use a separate utility function to take
care of the timespec calculations. (Course POSIX for using this weird
format for time values.)
Commit f1746741de changed the drop
logic to have more slack (drop more frames but less frequent) to prevent
drops due to timing jitter when the clip and screen have similar rates.
However, if the clip has higher rate than the screen (or just higher
playback rate), then that policy hurts smoothness since these "chunked
drops" look worse than one frame drop at a time.
This patch restores the old drop logic when the playback frame rate is
higher than ~5% above the screen refresh rate, and solves this issue.
Fixes#1897
on my windows system this allows smoothmotion to work perfectly also in windowed
mode. There's no real right or wrong here, with the the only goal being to
always hit the next vsync. however, on cases where vsync timing is jittery (as
could happen with DWM), this patch tries to aim to the middle of the vsync cycle
to get as least affected as possible by such jitter.
adds 1 vsync interval "slack" before deciding to drop the first frame. it should
help on cases of timing jitter (sleep duration, container timestamps, compositor
vsync timing, etc). once the drop threshold has been crossed, it will keep
dropping until perfect timing alignment. this prevents crossing the drop
threshold back and forth repeatedly and therefore more resilient to frame drops
This requires FFmpeg git master for accelerated hardware decoding.
Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav
will also work.
Most things work. Screenshots don't work with accelerated/opaque
decoding (except using full window screenshot mode). Subtitles are
very slow - even simple but huge overlays can cause frame drops.
This always uses fullscreen mode. It uses dispmanx and mmal directly,
and there are no window managers or anything on this level.
vo_opengl also kind of works, but is pretty useless and slow. It can't
use opaque hardware decoding (copy back can be used by forcing the
option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend
is preferred over the X11 ones in case you're trying on X11; but X11
is even more useless on RPI.
This doesn't correctly reject extended h264 profiles and thus doesn't
fallback to software decoding. The hw supports only up to the high
profile, and will e.g. return garbage for Hi10P video.
This sets a precedent of enabling hw decoding by default, but only
if RPI support is compiled (which most hopefully it will be disabled
on desktop Linux platforms). While it's more or less required to use
hw decoding on the weak RPI, it causes more problems than it solves
on real platforms (Linux has the Intel GPU problem, OSX still has
some cases with broken decoding.) So I can live with this compromise
of having different defaults depending on the platform.
Raspberry Pi 2 is required. This wasn't tested on the original RPI,
though at least decoding itself seems to work (but full playback was
not tested).
This caused complaints because the fps was basically rounded on
microsecond boundaries in the vsync interval (it seemed convenient to
store only the vsync interval). So store the fps as float too, and let
the "display-fps" property return it directly.
Requested change in behavior.
Note that we set the assumed "infinite" display_fps to 1e6, which
conveniently lets vo_get_vsync_interval() return a dummy value of 1,
which can be easily checked against, and still avoids doing math with
float INFs.
I'm not comfortable with VOCTRL_GET_DISPLAY_FPS being called every
frame.
This requires the VO to set VO_EVENT_WIN_STATE if the FPS could have
changed. At least the X11 backend does this.
With mf://, rather long frame durations are common. By default, one
frame takes 1 second. This causes the if branch changed with this commit
to always being taken, which in turn leads to the player not being woken
up correctly. (As a consequence, it "freezes" by waiting for events that
never come, and moving the mouse cursor over the window will wake it up
again and advance video.)
Obviously, the code should account for how long the video frame takes.
The code is probably still not fully correct, but for now this fixes the
issue at hand.
Fixes#1521.
Usually, a VO must react to VOCTRL_REDRAW_FRAME in order to redraw the
current screen correctly if video is paused (this is done to update
OSD). But if it's not supported, we can just draw the current image
again in the generic vo.c code.
Unfortunately, this turned out pretty useless, because the VOs which
would benefit from this need to redraw even if there is no image, in
order to draw a black screen in --idle --force-window mode. The way
redrawing is handled in the X11 common code and in vo_x11 and vo_xv is
in the way, and I'm not sure what exactly vo_wayland requires. Other VOs
have a non-trivial implementation of VOCTRL_REDRAW_FRAME, which
(probably) makes redrawing slightly more efficient, e.g. by skipping
texture upload. So for now, no VO uses this new functionality, but since
it's trivial, commit it anyway.
The vo_driver->untimed case is for forcibly disabling redraw for vo_lavc
and vo_image always.
At the time screenshot support was added, images weren't refcounted yet,
so screenshots required specialized implementations in the VOs. But now
we can handle these things much simpler. Also see commit 5bb24980.
If there are VOs in the future which can't do this (e.g. they need to
write to the image passed to vo_driver->draw_image), this still could be
disabled on a per-VO basis etc., so we lose no potential performance
advantages.
vo.c queried the VO at initialization whether it wants to be updated on
every display frame, or every video frame. If the smoothmotion option
was changed at runtime, the rendering mode in vo.c wasn't updated.
Just let vo_opengl set the mode directly. Abuse the existing
vo_set_flip_queue_offset() function for this.
Also add a comment suggesting the use of --display-fps to the manpage,
which doesn't have anything to do with the rest of this commit, but is
important to make smoothmotion run well.
The logic disabled framedropping if the frame was interpolated (i.e. the
render call is only done to interpolate between the previous frame, and
the frame before that).
It seems doing this wasn't even necessary, and broke framedrop in
smoothmotion mode. In fact, this code did nothing for display with video
fps below display fps. It did prevent the framedrop counter from going
up, though. So change it so that dropped interpolated frames are never
reported. (Doing so can give confusing results, such as dropping 1000s
of frames on slow operations like video start or changing filters.)
SmoothMotion is a way to time and blend frames made popular by MadVR. It's
intended behaviour is to remove stuttering caused by mismatches between the
display refresh rate and the video fps, while preserving the video's original
artistic qualities (no soap opera effect). It's supposed to make 24fps video
playback on 60hz monitors as close as possible to a 24hz monitor.
Instead of drawing a frame once once it's pts has passed the vsync time, we
redraw at the display refresh rate, and if we detect the vsync is between two
frames we interpolated them (depending on their position relative to the vsync).
We actually interpolate as few frames as possible to avoid a blur effect as
much as possible. For example, if we were to play back a 1fps video on a 60hz
monitor, we would blend at most on 1 vsync for each frame (while the other 59
vsyncs would be rendered as is).
Frame interpolation is always done before scaling and in linear light when
possible (an ICC profile is used, or :srgb is used).
And remove all uses of the VFCAP_CSP_SUPPORTED* constants. This is
supposed to reduce conversions if many filters are used (with many
incompatible pixel formats), and also for preferring the VO's natively
supported pixel formats (as opposed to conversion).
This is worthless by now. Not only do the main VOs not use software
conversion, but also the way vf_lavfi and libavfilter work mostly break
the way the old MPlayer mechanism worked. Other important filters like
vf_vapoursynth do not support "proper" format negotation either.
Part of this was already removed with the vf_scale cleanup from today.
While I'm touching every single VO, also fix the query_format argument
(it's not a FourCC anymore).
We still need to send the VO a duration in these cases. Disabling
framedrop has logically absolutely nothing to do with these cases; it
was overlooked in commit 918b06c4.
So we always send the frame duration (or a guess for it), and check
whether framedropping is actually enabled in the VO code. (It would
be cleaner to send framedrop as a flag, but I don't care about that
right now.)
The last video frame is another case that has a separate code path,
although it's pretty similar to the one in commit 73e5aa87. Fix this
in a different way, which also takes care of the last frame case,
although without context the code becomes slightly more tricky.
As further cleanup, move the decision about framedropping itself to
the same place, so the check in vo.c becomes much simpler. The check
for the vo->driver->encode flag, which is remvoed completely, was
redundant too.
Fixes#1480.