Remove the max_count creation parameter, because it's pointless and
rarely ever did anything. Add a talloc parent parameter instead (which
is something completely different, but convenient, and all callers needs
to be changed anyway).
Instead of clearing the pool when the now removed maximum is reached,
clear it on image parameter changes instead.
If feed_packet() ended with DATA_WAIT, the player should have gone to
sleep, until the demuxer wakes it up again when there is new data. But
the call to read_frame() unconditionally overwrote this status code, so
it never waited. The consequence was that the core burned CPU by
effectively polling the demuxer status, which was noticeable especially
when seeking in network streams (since seeking is async, decoders will
start out with having to wait for network).
Regression since commit 33e5755c.
This enables DXVA2 hardware decoding with ra_d3d11. It should be useful
for Windows 7, where D3D11VA is not available. Images are transfered
from D3D9 to D3D11 using D3D9Ex surface sharing[1].
Following Microsoft's recommendations, it uses a queue of shared
surfaces, similar to Microsoft's ISurfaceQueue. This will hopefully
prevent surface sharing from impacting parallelism and allow multiple
D3D11 frames to be in-flight at once.
[1]: https://msdn.microsoft.com/en-us/library/windows/desktop/ee913554.aspx
In a lost device scenario, resize() will fail and p->backbuffer will be
NULL. We can't recover from lost devices yet, but we should still check
for a NULL backbuffer in start_frame() rather than crashing.
Also remove a NULL check for p->swapchain. This was a red herring, since
p->swapchain never becomes NULL in an error condition, but p->backbuffer
actually does.
This should fix the crash in #5320, but it doesn't fix the underlying
reason for the lost device (which is probably a driver bug.)
Previously, mpv would attempt to use a BGRA swapchain in the hope that
it would give better performance, since the Windows desktop is also
composited in BGRA. In practice, it seems like there is no noticable
performance difference between RGBA and BGRA swapchains and BGRA
swapchains cause trouble with a42b8b1142, which attempts to use the
swapchain format for intermediate FBOs, even though D3D11 does not
guarantee BGRA surfaces will work with UAV typed stores.
The old code tried to make sure at all times to try to read a new
packet. Only once that was read, it tried to retrieve new video or audio
frames the decoder might already have decoded.
Change this to strictly read frames from the decoder until it signals
that it wants a new packet, and only then read and feed a new packet.
This is in theory nicer, follows the libavcodec recommended data flow,
and and reduces the minimum latency by 1 frame.
This merely requires switching the order in which those calls are done.
Normally, the decoder will return only 1 frame until a new packet is
required. If we would just feed it 1 packet, return DATA_AGAIN, and wait
until the next frame is decoded, we would run the playloop 1 time too
often for no reason (which is fine but might have some overhead). To
avoid this, try to read a frame again after possibly feeding a packet.
For this reason, move the feed/read code to its own functions each,
instead of merely moving the code.
The audio and video code for this particular thing is basically
duplicated. The idea is to unify them one day, so make the change to
both. (Doing this for video is the real motivation for this change, see
below.)
The video code change is slightly more complicated, because we have to
care about the framedrop counting (which is just a heuristic, but for
now considered better than nothing, and possibly considered required to
warn the user of framedrops happening - maybe).
Apparently this change helps with stalling streams on Android with the
mediacodec wrapper and mpeg2 decoder implementations which deinterlace on
decoding (and return 2 frames per packet).
Based on an idea and observations by tmm1.
Uses the EGL width/height by default when the user fails to set
the android-surface-width/android-surface-height options.
This means the vo-resize command is optional, and does not need to
be implemented on android devices which do not support rotation.
Signed-off-by: Aman Gupta <aman@tmm1.net>
Apparently some Intel drivers have a bug where copying from staging
buffers to constant buffers does not work. We used to keep a copy of the
buffer data in a staging buffer to enable partial constant buffer
updates. To work around this bug, keep the copy in talloc-allocated
system memory instead.
There doesn't seem to be any noticable performance difference from
keeping the copy in system memory. Our cbuffers are probably too small
for it to matter anyway.
See also: https://crbug.com/593024Fixes#5293
This fixes when resuming certain broken h264 files encoded by x264. See
FFmpeg commit 840b41b2a643fc8f0617c0370125a19c02c6b586 about the x264
bug itself.
Normally, the unregistered user data SEI (that contains the x264 version
string) is informational only. But libavcodec uses it to workaround a
x264 bug, which was recently fixed in both libavcodec and x264. The fact
that both encoder and decoder were buggy is the reason that it was not
found earlier, and there are apparently a lot of files around created by
the broken decoder. If libavcodec sees the SEI, this bug can be worked
around by using the old behavior.
If you resume a file with mpv (i.e. seeking when the file loads),
libavcodec never sees the first video packet. Consequently it has to
assume the file is not broken, and never applies the workaround,
resulting in garbage being played.
Fix this by always feeding the first video packet to the decoder on
init, and then flushing the codec (to avoid that an unwanted image is
output). Flushing the codec does not remove info such as the x264
version. We also abuse the fact that the first avcodec_send_packet()
always pushes the frame into the decoder (so we don't have to trigger
the decoder by requsting an output frame).
Technically, the user could just use --vd-lavc-o with the same result.
But I find it better to make this an explicit option, so we can document
the ups and downs, and also avoid setting it for non-h264.
This means that we now explicitly set an interval of 1. Although that
should be the EGL default, some drivers could possibly ignore this
(unconfirmed). In any case, this commit also allows disabling vsync, for
users who want it.
Crashed when no vdpau device was loaded. Also there was a mistake of not
setting p->ctx, which broke software surface input mode. This was not
found before, because p->ctx is not needed for anything else.
Fixes#5294.
A release has been made, so drop options deprecated for that release.
Also drop some options which have been deprecated a much longer time
before.
Also fix a typo in client-api-changes.rst.
The queue family index and the queue info index are not necessarily the
same, so we're forced to do a check based on the queue family index
itself.
Fixes#5049
A vulkan validation layer update pointed out that this was wrong; we
still need to use the access type corresponding to the stage mask, even
if it means our code won't be able to skip the pipeline barrier (which
would be wrong anyway).
In additiona to this, we're also not allowed to specify any source
access mask when transitioning from top_of_pipe, which doesn't make any
sense anyway.
Async compute in particular seems to cause problems on some drivers, and
even when supprted the benefits are not that massive from the tests I
have seen, so it's probably safe to keep off by default.
Async transfer on the other hand seems to work better and offers a more
substantial improvement, so it's kept on.
This gets confused by e.g. SPARSE_BIT on the TRANSFER_BIT, leading to
situations where "more specialized" is ambiguous and the logic breaks
down. So to fix it, only compare the subset we care about.
blit() implies scaling, copy() is the equivalent command to use when the
formats are compatible (same pixel size) and the rects have the same
dimensions.
This allows RAs with support for non-opaque FBO formats to use a more
appropriate FBO format for the output tex, possibly enabling a more
efficient blit operation.
This requires distinguishing between real formats (which can be used to
create textures) and fake formats (e.g. ra_gl's FBO hack).
On AMD devices, we only get one graphics pipe but several compute pipes
which can (in theory) run independently. As such, we should prefer
compute shaders over fragment shaders in scenarios where we expect them
to be better for parallelism.
This is amusingly trivial to do, and actually improves performance even
in a single-queue scenario.
Instead of using a single primary queue, we generate multiple
vk_cmdpools and pick the right one dynamically based on the intent.
This has a number of immediate benefits:
1. We can use async texture uploads
2. We can use the DMA engine for buffer updates
3. We can benefit from async compute on AMD GPUs
Unfortunately, the major downside is that due to the lack of QF
ownership tracking, we need to use CONCURRENT sharing for all resources
(buffers *and* images!). In theory, we could try figuring out a way to
get rid of the concurrent sharing for buffers (which is only needed for
compute shader UBOs), but even so, the concurrent sharing mode doesn't
really seem to have a significant impact over here (nvidia). It's
possible that other platforms may disagree.
Our deadlock-avoidance strategy is stupidly simple: Just flush the
command every time we need to switch queues, and make sure all
submission and callbacks happen in FIFO order. This required lifting the
cmds_pending and cmds_queued out from vk_cmdpool to mpvk_ctx, and some
functions died/got moved as a result, but that's a relatively minor
change.
On my hardware this is a fairly significant performance boost, mainly
due to async transfers. (Nvidia doesn't expose separate compute queues
anyway). On AMD, this should be a performance boost as well due to async
compute.
This is especially interesting for vulkan since it allows completely
skipping the layout transition as part of the renderpass. Unfortunately,
that also means it needs to be put into renderpass_params, as opposed to
renderpass_run_params (unlike #4777).
Closes#4777.
This uses the new vk_signal mechanism to order all access to textures.
This has several advantageS:
1. It allows real synchronization of image access across multiple frames
when using multiple queues for parallelism.
2. It allows using events instead of pipeline barriers, which is a
finer-grained synchronization primitive that allows for more
efficient layout transitions over longer durations.
This commit also restructures some of the implicit transition code for
renderpasses to be more flexible and correct. (Note: this technically
drops the ability to transition the image out of undefined layout when
not blending, but that was a bug anyway and needs to be done properly)
vo_gpu: vulkan: remove no-longer-true optimization
The change to the output_tex format makes this no longer true, and it
actually seems to hurt performance now as well. So just don't do it
anymore. I also realized it hurts performance when drawing an OSD, so
it's probably not a good idea anyway.
This combines VkSemaphores and VkEvents into a common umbrella
abstraction which can resolve to either.
We aggressively try to prefer VkEvents over VkSemaphores whenever the
conditions are met (1. we can unsignal the semaphore, i.e. it comes from
the same frame; and 2. it comes from the same queue).
Instead of being submitted immediately, commands are appended into an
internal submission queue, and the actual submission is done once per
frame (at the same time as queue cycling). Again, the benefits are not
immediately obvious because nothing benefits from this yet, but it will
make more sense for an upcoming vk_signal mechanism.
This also cleans up the way the ra_vk submission interacts with the
synchronization/callbacks from the ra_vk_ctx. Although currently, the
way the dependency is signalled is a bit hacky: normally it would be
associated with the ra_tex itself and waited on in the appropriate stage
implicitly. But that code is just temporary, so I'm keeping it in there
for a better commit order.
Instead of associating a single VkSemaphore with every command buffer
and allowing the user to ad-hoc wait on it during submission, make the
raw semaphores-to-signal array work like the raw semaphores-to-wait-on
array. Doesn't really provide a clear benefit yet, but it's required for
upcoming modifications.
1. No more static arrays (deps / callbacks / queues / cmds)
2. Allows safely recording multiple commands at the same time
3. Uses resources optimally by never over-allocating commands
Libav has been broken due to the hwdec changes. This was always a
temporary situation (depended on pending patches to be merged), although
it took a bit longer. This also restores the travis config.
One code change is needed in vd_lavc.c, because it checks the AV_PIX_FMT
for videotoolbox (as opposed to the mpv format identifier), which is not
available in Libav. Add an ifdef; the affected code is for a deprecated
option anyway.
This hack was part of a solution to VSync judder in desktop OpenGL on
Windows. Rather than using blocking-SwapBuffers(), mpv could use
DwmFlush() to wait for the image to be presented by the compositor.
Since this would only work while the compositor was running, and the
compositor was silently disabled when OpenGL entered exclusive
fullscreen mode, mpv needed a way to detect exclusive fullscreen mode.
The code that is being removed could detect exclusive fullscreen mode by
checking the state of an undocumented mutex using undocumented native
API functions, but because of how fragile it was, it was always meant to
be removed when a better solution for accurate VSync in OpenGL was
found. Since then, mpv got the dxinterop backend, which uses desktop
OpenGL but has accurate VSync. It also got a native Direct3D 11 backend,
which is a viable alternative to OpenGL on Windows.
For people who are still using desktop OpenGL with WGL, there shouldn't
be much of a difference, since mpv can use other API functions to detect
exclusive fullscreen.
Refactored and split the `reinit_window_state` code into four
separate functions:
- `update_window_style` used to update window styles without
modifying the window rect.
- `fit_window_on_screen` used to adjust the window size when it is
larger than the screen size. Added a helper function `fit_rect` to
fit one rect on another without using any data from w32 struct.
- `update_fullscreen_state` used to calculate the new fullscreen
state and adjust the window rect accordingly.
- `update_window_state` used to display the window on screen with
new size, position and ontop state.
This commit fixes three issues:
- fixed#4753 by skipping `fit_window_on_screen` for a maximized
window, since maximized window should already fit on the screen.
It should be noted that this bug was only reproducible with
`--fit-border` option which is enabled by default. The cause of the
bug is that after calling the `add_window_borders` for a maximized
window, the rect in result is slightly larger than the screen rect,
which is okay, `SetWindowPos` will interpret it as a maximized state
later, so no auto-fitting to screen size is needed here.
- fixed#5215 by skipping `fit_window_on_screen` when leaving fullscreen.
On a multi-monitor system if the mpv window was stretched to cover
multiple monitors, its size was reset after switching back from
fullscreen to fit the size of the active monitor. Also, when changing
`--ontop` and `--border` options, now only the
`update_window_style` and `update_window_state` functions are used,
so `fit_window_on_screen` is not used for them too.
- fixed#2451 by moving the `ITaskbarList2_MarkFullscreenWindow`
below the `SetWindowPos`. If the taskbar is notified about fullscreen
state before the window is shown on screen, the taskbar button could
be missing until Alt-TAB is pressed, usually it was reproducible on
Windows 8.
Other changes:
- In `update_fullscreen_state` the `reset window bounds` debug
message now reports client area size and position, instead of window area
size and position. This is done for consistency with debug messages
in handling fullscreen state above in this function, since they also print
window bounds of the client area.
- Refactored `gui_thread_reconfig`. Added a new window flag `fit_on_screen`
to fit the window on screen even when leaving fullscreen. This is needed
for the case when the new video opened while the window is still in the
fullscreen state.
- Moved parent and fullscreen state checks out from the WM_MOVING to
`snap_to_screen_edges` function for consistency with other functions.
There's no point in keeping these checks out of the function body.
When window and screen size and position are stored in RECT, it's
much easier to modify them using WinAPI functions.
Added two macros to get width and height of the rect.
I've decided that MP_TRACE means “noisy spam per frame”, whereas
MP_DBG just means “more verbose debugging messages than MSGL_V”.
Basically, MSGL_DBG shouldn't create spam per frame like it currently
does, and MSGL_V should make sense to the end-user and provide mostly
additional informational output.
MP_DBG is basically what I want to make the new default for --log-file,
so the cut-off point for MP_DBG is if we probably want to know if for
debugging purposes but the user most likely doesn't care about on the
terminal.
Also, the debug callbacks for libass and ffmpeg got bumped in their
verbosity levels slightly, because being external components they're a
bit less relevant to mpv debugging, and a bit too over-eager in what
they consider to be relevant information.
I exclusively used the "try it on my machine and remove messages from
MSGL_* until it does what I want it to" approach of refactoring, so
YMMV.
Annoying exception that makes no sense to keep. Normally, users or
client applications will either use --hwdec=auto, or not set the option
at all, which both leads to the expected result.