Instead of somehow having 4 different cases with each their own weight,
do it with a single function that decides which channel layout is the
better fallback.
This is simpler, and also introduces new (fixed) semantics. The new test
added to test/chmap_sel.c actually works now. This is a mixed case with
no perfect upmix or downmix, but the better choice is the one which
loses the least channels from the original layout.
One test also changes. If the input is 7.1(wide-side), and the available
layouts are 7.1 and 5.1(side), the latter is now chosen instead of the
former. This makes sense: both layouts contain 6 out of 8 channels from
the original layout, but the 5.1(side) one is smaller. This follows the
general logic. The 7.1 layout has FLC/RLC speakers instead of BL/BR,
and judging by the names, "front left center" is completely different
from "back left". If these should be exchangeable, a separate exception
would have to be added.
Reuse MP_SPEAKER_ID_NA for this. If all mp_chmap entries are set to NA,
the channel layout has special "unknown channel layout" semantics, which
are used to deal with some corner cases.
As indicated by the added test. In this case, fallback and downmix have
the same score, but fallback happens to give better results. So prefer
fallback over downmix.
(This is probably not a correct solution.)
Instead of just failing during channel map selection, try to select a close
layout that makes most sense and upmix/downmix to that instead of failing AO
initialization. The heuristic is rather simple, and uses the following steps:
1) If mono is required always prefer stereo to a multichannel upmix.
2) Search for an upmix that is an exact superset of the required channel map.
3) Search for a downmix that is the exact subset of the required channel map.
4) Search for either an upmix or downmix that is the closest (minimum difference
of channels) to the required channel map.