Add the upstream symbolic names as comments. Normally, these should be
defined in libdrm's drm_fourcc.h header. But DRM_FORMAT_R8 and
DRM_FORMAT_GR88 are not defined anywhere, except in the kernel userland
headers of Linux 4.3 (!). We don't want mpv to depend on bleeding-edge
Linux kernel headers, so this will have to do.
Also, just for completeness, add fourccs for the 3 and 4 channel
formats. I didn't manage to test them, though.
Reduces the amount of hardcoded assumptions about the layout
drastically. (Now adding yuv420 support would be just adjusting an if,
if you ignore the other problems, such as determining the hw format at
all early enough.)
Don't call eglDestroyImageKHR() on the same ID possibly more than once.
Clear the image reference on termination, or we would leak up to 1 image
per VO recreation.
Should work much better than the old GLX interop code. Requires Mesa 11,
and explicitly selecting the X11 EGL backend with:
--vo=opengl:backend=x11egl
Should it turn out that the new interop works well, we will try to
autodetect EGL by default.
This code still uses some bad assumptions, like expecting surfaces to be
in NV12. (This is probably ok, because virtually all HW will use this
format. But we should at least check this on init or so, instead of
failing to render an image if our assumption doesn't hold up.)
This repo was a lot of help: https://github.com/gbeauchesne/ffvademo
The kodi code was also helpful (the magic FourCC it uses for
EGL_LINUX_DRM_FOURCC_EXT are nowhere documented, and
EGL_IMAGE_INTERNAL_FORMAT_EXT as used in ffvademo does
not actually exist).
(This is the 3rd VAAPI GL interop that was implemented in this player.)
The VAAPI EGL interop code will need access to the X11 Display. While
GLX could return it from the current GLX context, EGL has no such
mechanism. (At least no standard one supported by all implementations.)
So mpv makes up such a mechanism.
For internal purposes, this is very rather awkward solution, but it's
needed for libmpv anyway.
These extensions use a bunch of EGL types, so we need to include the EGL
headers in common.h to use our GL function loader with this.
In the future, we should probably require presence of the EGL headers to
reduce the hacks. This might be not so simple at least with OSX, so for
now this has to do.
Surfaces used by hardware decoding formats can be mapped exactly like a
specific software pixel format, e.g. RGBA or NV12. p->image_params is
supposed to be set to this format, but it wasn't.
(How did this ever work?)
Also, setting params->imgfmt in the hwdec interop drivers is pointless
and redundant. (Change them to asserts, because why not.)
This is a pseudo-OpenGL extension for letting libmpv query native
windowing system handles from the API user. (It uses the OpenGL
extension mechanism because I'm lazy. In theory it would be nicer to let
the user pass them with mpv_opengl_cb_init_gl(), but this would require
a more intrusive API change to extend its argument list.)
The naming of the extension and associated function was unnecessarily
Windows specific (using "D3D"), even though it would work just fine for
other platforms. So deprecate the old names and introduce new ones. The
old ones still work.
This turns the old scalers (inherited from MPlayer) into a pre-
processing step (after color conversion and before scaling). The code
for the "sharpen5" scaler is reused for this.
The main reason MPlayer implemented this as scalers was perhaps because
FBOs were too expensive, and making it a scaler allowed to implement
this in 1 pass. But unsharp masking is not really a scaler, and I would
guess the result is more like combining bilinear scaling and unsharp
masking.
Usually, libavcodec ignores errors reported by the hardware decoding
API, so it's not like we can actually escape if the hardware is somehow
acting up.
For normal fallback purposes, or if parts of the hw decoding API which
we actually check fails, we do this by setting and checking the
hwdec_failed flag anyway.
This can happen if the hw decoder allocates padded surfaces (e.g.
mod16), but the VPP output surface was allocated with the exact size.
Apparently VPP requires matching input and output sizes, or it will add
artifacts. In this case, it added mirrored pixels to the bottom few
pixels.
Note that the previous commit should have fixed this. But it didn't
work, while this commit does.
Fixes#2320.
If not set, VPP will use the whole surface. This is a problem if the
surfaces are padded, and especially if the surfaces are padded by
different amounts.
This is an attempt to fix#2320, but it appears to do nothing at all.
The comment was largely outdated, and described the old situation when
we used a "violent" fallback by making get_buffer2 fail completely.
Also, for the case when the hw decoder initialization succeeded (in
get_format), but get_buffer2 for some reason requests something
unexpected, we also can fallback more gracefully and in the same way.
Window classes are process-wide (or at least DLL-wide), so you can't
have 2 classes with the same name. Our code attempted to do this when
for example 2 libmpv instances were created within the same process.
This failed, because RegisterWindowEx() fails if the class already
exists.
Fix this by ignoring RegisterWindowEx() errors. If the class can really
not be registered, we will fail on CreateWindowEx() instead. Of course
we also can't unregister the class, as another thread might be using it.
Windows will free the class automatically if the DLL is unloaded or the
process terminates.
Fixes#2319 (hopefully).
I took this out because I thought the filter chain would auto-negotiate
using nv12 without the explicit hint, and it does in the basic case
with no intermediate filter, but once you start adding filters, it
can end up negotiating a different format and then failing.
Today, vdpaurb will fail if it's used with non-hardware-decoded
content. This created work for the user as they have to explicitly
add or not add it, depending on the content.
As an improvement, we can make vdpaurb pass through any frames
that aren't hardware decoded, so that it can always be present in the
filter chain, if desired.
I see no point in keeping these around. Keeping wrappers for some select
libavfilter filters just because MPlayer had these filters is not a good
reason.
Ultimately, all real filtering work should go to libavfilter, and users
should get used to using vf_lavfi directly. We might even not require
the awful double-nested syntax for using libavfilter one day.
vf_rotate, vf_yadif, vf_stereo3d are kept because mpv uses them
internally. (They all extend the lavfi filters or change their
defaults.) vf_mirror is kept for symmetry with vf_flip. vf_gradfun and
vf_pullup are probably semi-popular, so I'll remove them not yet - only
after some more discussion.
These were normalized and are saner now. We want to use the new fields,
and also get rid of the deprecation warnings, so use them. There's no
release yet which uses these, so some ifdeffery is unfortunately needed.
2 things are being stupid here: Apple for requiring rectangle textures
with their IOSurface interop for no reason, and OpenGL having a
different sampler type for rectangle textures.
The removal of source-shader is a side effect, since this effectively
replaces it - and the video-reading code has been significantly
restructured to make more sense and be more readable.
This means users no longer have to constantly download and maintain a
separate deband.glsl installation alongside mpv, which was the only real
use case for source-shader that we found either way.
This is mostly to cut down somewhat on the amount of code bloat in
video.c by moving out helper functions (including scaler kernels and
color management routines) to a separate file.
It would certainly be possible to move out more functions (eg. dithering
or CMS code) with some extra effort/refactoring, but this is a start.
Signed-off-by: wm4 <wm4@nowhere>
Instead of the other way around of disabling disallowed options. This is
more robust and also slightly simpler, at least conceptually. If new
vo_opengl features are added, they don't need to be explicitly disabled
for dumb-mode just to avoid that it accidentally breaks.
Sigh...
Hopefully this code will be completely unnecessary one day, as it's
only needed due to the sub-option parser craziness.
Move dumb_mode to the top of the struct, so the C universal initializer
doesn't cause warnings with all those broken compilers.
The single path optimization, rendering the video in one shader pass and
without FBO indirections, was removed soem commits ago. It didn't have a
place in this code, and caused considerable complexity and maintenance
issues.
On the other hand, it still has some worth, such as for use with
extremely crappy hardware (GLES only or OpenGL 2.1 without FBO
extension). Ideally, these use cases would be handled by a separate VO
(say, vo_gles). While cleaner, this would still cause code duplication
and other complexity.
The third option is making the single-pass optimization a completely
separate code path, with most vo_opengl features disabled. While this
does duplicate some functionality (such as "unpacking" the video data
from textures), it's also relatively unintrusive, and the high quality
code path doesn't need to take it into account at all. On another
positive node, this "dumb-mode" could be forced in other cases where
OpenGL 2.1 is not enough, and where we don't want to care about versions
this old.
This change makes vo_opengl slightly less compatible (ancient devices
without FBOs will no longer work) and decreases performance in the
simplest case (vo=opengl), in exchange for significantly reducing code
complexity and making everything easier to reason about.
This didn't seem entirely sane. It probably worked by accident, because
"position" is always the first attribute, and thus the default value 0
for the location was always correct.
Often, we don't know whether hardware decoding will work until we've
tried. (This used to be different, but API changes and improvements in
libavcodec led to this situation.) We will often output that we're going
to use hardware decoding, and then print a fallback warning.
Instead, print the status once we have decoded a frame.
Some of the old messages are turned into verbose messages, which should
be helpful for debugging. Also add some new ones.
The fallback at initialization time was basically duplicated, maybe for
the sake of showing a different error message. This doesn't matter
anymore; not much can fail at initialization anymore. Most meaningful
and common errors happen either at probing or in get_format (when the
actual hw decoder is initialized).
If PBO upload fails, disable PBOs and revert to the normal codepath. In
theory we should retry PBO upload on failure (because OpenGL specifies
that it can sporadically fail), but since it normally doesn't happen,
and the fallback will work, I'm not bothering.
Some restructuring is needed, since glUnmapBuffer needs to be called
earlier. In fact, the old code structure didn't make too much sense, and
is a leftover from MPlayer's direct rendering support, which let the
decoder decode to a PBO-mapped region. This means the buffer_ptr field
can be dropped. Drop buffer_size as well, since it only had 2 possible
values (0 or the size required for the current config).
Can significantly help with very large video resolutions on nvidia
drivers. It doesn't seem to have negative effects on Intel drivers
either. (Although it could have on Intel drivers for older hardware.)
For now, this is only for --vo=opengl-hq. Maybe --vo=opengl should use
it too, but it's still meant to be the crappy, fail-safe default.
Setup a dummy image for the given image params, and get the plane sizes
from that. Admittedly not much of a simplification, but conceptually
it's simpler and less error-prone, as the image layout is guaranteed to
be the same, rather than essentially duplicating the way it is
determined.
This is from times when we supported padded/non-NPOT textures. The
difference is not useful anymore, and theoretical support for different
sizes is most likely buggy and unmaintained. So remove it.
Also remove the tex_ prefix wherever it appears.
Use mp_image_copy() instead of copying manually. (This function checks
whether the destination is regarded writeable, which it is not, because
the destination is the source image with changed pointers, so
refcounting has to be removed from the destination image by resetting
mpi->bufs.)