mpv/video/out/hwdec/hwdec_vaapi.c

407 lines
12 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <libavutil/hwcontext.h>
#include <libavutil/hwcontext_vaapi.h>
#include "config.h"
#include "video/out/hwdec/hwdec_vaapi.h"
#if HAVE_VAAPI_DRM
#include "libmpv/render_gl.h"
#endif
#if HAVE_VAAPI_X11
#include <va/va_x11.h>
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
static VADisplay *create_x11_va_display(struct ra *ra)
{
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
Display *x11 = ra_get_native_resource(ra, "x11");
return x11 ? vaGetDisplay(x11) : NULL;
}
#endif
#if HAVE_VAAPI_WAYLAND
#include <va/va_wayland.h>
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
static VADisplay *create_wayland_va_display(struct ra *ra)
{
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
struct wl_display *wl = ra_get_native_resource(ra, "wl");
return wl ? vaGetDisplayWl(wl) : NULL;
}
#endif
#if HAVE_VAAPI_DRM
#include <va/va_drm.h>
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
static VADisplay *create_drm_va_display(struct ra *ra)
{
mpv_opengl_drm_params_v2 *params = ra_get_native_resource(ra, "drm_params_v2");
if (!params || params->render_fd == -1)
return NULL;
return vaGetDisplayDRM(params->render_fd);
}
#endif
struct va_create_native {
const char *name;
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
VADisplay *(*create)(struct ra *ra);
};
static const struct va_create_native create_native_cbs[] = {
#if HAVE_VAAPI_X11
{"x11", create_x11_va_display},
#endif
#if HAVE_VAAPI_WAYLAND
{"wayland", create_wayland_va_display},
#endif
#if HAVE_VAAPI_DRM
{"drm", create_drm_va_display},
#endif
};
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
static VADisplay *create_native_va_display(struct ra *ra, struct mp_log *log)
{
for (int n = 0; n < MP_ARRAY_SIZE(create_native_cbs); n++) {
const struct va_create_native *disp = &create_native_cbs[n];
mp_verbose(log, "Trying to open a %s VA display...\n", disp->name);
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
VADisplay *display = disp->create(ra);
if (display)
return display;
}
return NULL;
}
static void determine_working_formats(struct ra_hwdec *hw);
static void uninit(struct ra_hwdec *hw)
{
struct priv_owner *p = hw->priv;
if (p->ctx)
hwdec_devices_remove(hw->devs, &p->ctx->hwctx);
va_destroy(p->ctx);
}
const static vaapi_interop_init interop_inits[] = {
#if HAVE_GL
vaapi_gl_init,
#endif
#if HAVE_VULKAN
vaapi_vk_init,
#endif
NULL
};
static int init(struct ra_hwdec *hw)
{
struct priv_owner *p = hw->priv;
for (int i = 0; interop_inits[i]; i++) {
if (interop_inits[i](hw)) {
break;
}
}
if (!p->interop_map || !p->interop_unmap) {
MP_VERBOSE(hw, "VAAPI hwdec only works with OpenGL or Vulkan backends.\n");
return -1;
}
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
p->display = create_native_va_display(hw->ra, hw->log);
if (!p->display) {
MP_VERBOSE(hw, "Could not create a VA display.\n");
return -1;
}
p->ctx = va_initialize(p->display, hw->log, true);
if (!p->ctx) {
vaTerminate(p->display);
return -1;
}
if (!p->ctx->av_device_ref) {
MP_VERBOSE(hw, "libavutil vaapi code rejected the driver?\n");
return -1;
}
if (hw->probing && va_guess_if_emulated(p->ctx)) {
return -1;
}
determine_working_formats(hw);
if (!p->formats || !p->formats[0]) {
return -1;
}
p->ctx->hwctx.supported_formats = p->formats;
p->ctx->hwctx.driver_name = hw->driver->name;
hwdec_devices_add(hw->devs, &p->ctx->hwctx);
return 0;
}
static void mapper_unmap(struct ra_hwdec_mapper *mapper)
{
struct priv_owner *p_owner = mapper->owner->priv;
VADisplay *display = p_owner->display;
struct priv *p = mapper->priv;
VAStatus status;
p_owner->interop_unmap(mapper);
#if VA_CHECK_VERSION(1, 1, 0)
if (p->surface_acquired) {
for (int n = 0; n < p->desc.num_objects; n++)
close(p->desc.objects[n].fd);
p->surface_acquired = false;
}
#endif
if (p->buffer_acquired) {
status = vaReleaseBufferHandle(display, p->current_image.buf);
CHECK_VA_STATUS(mapper, "vaReleaseBufferHandle()");
p->buffer_acquired = false;
}
if (p->current_image.image_id != VA_INVALID_ID) {
status = vaDestroyImage(display, p->current_image.image_id);
CHECK_VA_STATUS(mapper, "vaDestroyImage()");
p->current_image.image_id = VA_INVALID_ID;
}
}
static void mapper_uninit(struct ra_hwdec_mapper *mapper)
{
struct priv_owner *p_owner = mapper->owner->priv;
if (p_owner->interop_uninit) {
p_owner->interop_uninit(mapper);
}
}
static bool check_fmt(struct ra_hwdec_mapper *mapper, int fmt)
{
struct priv_owner *p_owner = mapper->owner->priv;
for (int n = 0; p_owner->formats && p_owner->formats[n]; n++) {
if (p_owner->formats[n] == fmt)
return true;
}
return false;
}
static int mapper_init(struct ra_hwdec_mapper *mapper)
{
struct priv_owner *p_owner = mapper->owner->priv;
struct priv *p = mapper->priv;
p->current_image.buf = p->current_image.image_id = VA_INVALID_ID;
mapper->dst_params = mapper->src_params;
mapper->dst_params.imgfmt = mapper->src_params.hw_subfmt;
mapper->dst_params.hw_subfmt = 0;
struct ra_imgfmt_desc desc = {0};
if (!ra_get_imgfmt_desc(mapper->ra, mapper->dst_params.imgfmt, &desc))
return -1;
p->num_planes = desc.num_planes;
mp_image_set_params(&p->layout, &mapper->dst_params);
if (p_owner->interop_init)
if (!p_owner->interop_init(mapper, &desc))
return -1;
vaapi: determine surface format in decoder, not in renderer Until now, we have made the assumption that a driver will use only 1 hardware surface format. the format is dictated by the driver (you don't create surfaces with a specific format - you just pass a rt_format and get a surface that will be in a specific driver-chosen format). In particular, the renderer created a dummy surface to probe the format, and hoped the decoder would produce the same format. Due to a driver bug this required a workaround to actually get the same format as the driver did. Change this so that the format is determined in the decoder. The format is then passed down as hw_subfmt, which allows the renderer to configure itself with the correct format. If the hardware surface changes its format midstream, the renderer can be reconfigured using the normal mechanisms. This calls va_surface_init_subformat() each time after the decoder returns a surface. Since libavcodec/AVFrame has no concept of sub- formats, this is unavoidable. It creates and destroys a derived VAImage, but this shouldn't have any bad performance effects (at least I didn't notice any measurable effects). Note that vaDeriveImage() failures are silently ignored as some drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL interop. In addition, we still probe whether we can map an image in the EGL interop code. This is important as it's the only way to determine whether EGL interop is supported at all. With respect to the driver bug mentioned above, it doesn't matter which format the test surface has. In vf_vavpp, also remove the rt_format guessing business. I think the existing logic was a bit meaningless anyway. It's not even a given that vavpp produces the same rt_format for output.
2016-04-11 18:46:05 +00:00
if (!p_owner->probing_formats && !check_fmt(mapper, mapper->dst_params.imgfmt))
{
MP_FATAL(mapper, "unsupported VA image format %s\n",
mp_imgfmt_to_name(mapper->dst_params.imgfmt));
return -1;
}
vaapi: determine surface format in decoder, not in renderer Until now, we have made the assumption that a driver will use only 1 hardware surface format. the format is dictated by the driver (you don't create surfaces with a specific format - you just pass a rt_format and get a surface that will be in a specific driver-chosen format). In particular, the renderer created a dummy surface to probe the format, and hoped the decoder would produce the same format. Due to a driver bug this required a workaround to actually get the same format as the driver did. Change this so that the format is determined in the decoder. The format is then passed down as hw_subfmt, which allows the renderer to configure itself with the correct format. If the hardware surface changes its format midstream, the renderer can be reconfigured using the normal mechanisms. This calls va_surface_init_subformat() each time after the decoder returns a surface. Since libavcodec/AVFrame has no concept of sub- formats, this is unavoidable. It creates and destroys a derived VAImage, but this shouldn't have any bad performance effects (at least I didn't notice any measurable effects). Note that vaDeriveImage() failures are silently ignored as some drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL interop. In addition, we still probe whether we can map an image in the EGL interop code. This is important as it's the only way to determine whether EGL interop is supported at all. With respect to the driver bug mentioned above, it doesn't matter which format the test surface has. In vf_vavpp, also remove the rt_format guessing business. I think the existing logic was a bit meaningless anyway. It's not even a given that vavpp produces the same rt_format for output.
2016-04-11 18:46:05 +00:00
return 0;
}
static int mapper_map(struct ra_hwdec_mapper *mapper)
{
struct priv_owner *p_owner = mapper->owner->priv;
struct priv *p = mapper->priv;
VAStatus status;
VADisplay *display = p_owner->display;
#if VA_CHECK_VERSION(1, 1, 0)
if (p->esh_not_implemented)
goto esh_failed;
status = vaExportSurfaceHandle(display, va_surface_id(mapper->src),
VA_SURFACE_ATTRIB_MEM_TYPE_DRM_PRIME_2,
VA_EXPORT_SURFACE_READ_ONLY |
VA_EXPORT_SURFACE_SEPARATE_LAYERS,
&p->desc);
if (!CHECK_VA_STATUS_LEVEL(mapper, "vaExportSurfaceHandle()",
p_owner->probing_formats ? MSGL_V : MSGL_ERR)) {
if (status == VA_STATUS_ERROR_UNIMPLEMENTED)
p->esh_not_implemented = true;
goto esh_failed;
}
vaSyncSurface(display, va_surface_id(mapper->src));
// No need to error out if sync fails, but good to know if it did.
CHECK_VA_STATUS(mapper, "vaSyncSurface()");
p->surface_acquired = true;
if (!p_owner->interop_map(mapper))
goto esh_failed;
if (p->desc.fourcc == VA_FOURCC_YV12)
MPSWAP(struct ra_tex*, mapper->tex[1], mapper->tex[2]);
return 0;
esh_failed:
if (p->surface_acquired) {
for (int n = 0; n < p->desc.num_objects; n++)
close(p->desc.objects[n].fd);
p->surface_acquired = false;
}
#endif // VA_CHECK_VERSION
if (p_owner->interop_map_legacy) {
VAImage *va_image = &p->current_image;
status = vaDeriveImage(display, va_surface_id(mapper->src), va_image);
if (!CHECK_VA_STATUS(mapper, "vaDeriveImage()"))
goto err;
VABufferInfo buffer_info = {.mem_type = VA_SURFACE_ATTRIB_MEM_TYPE_DRM_PRIME};
status = vaAcquireBufferHandle(display, va_image->buf, &buffer_info);
if (!CHECK_VA_STATUS(mapper, "vaAcquireBufferHandle()"))
goto err;
p->buffer_acquired = true;
int drm_fmts[8] = {
// 1 bytes per component, 1-4 components
MKTAG('R', '8', ' ', ' '), // DRM_FORMAT_R8
MKTAG('G', 'R', '8', '8'), // DRM_FORMAT_GR88
0, // untested (DRM_FORMAT_RGB888?)
0, // untested (DRM_FORMAT_RGBA8888?)
// 2 bytes per component, 1-4 components
MKTAG('R', '1', '6', ' '), // proposed DRM_FORMAT_R16
MKTAG('G', 'R', '3', '2'), // proposed DRM_FORMAT_GR32
0, // N/A
0, // N/A
};
if (!p_owner->interop_map_legacy(mapper, &buffer_info, drm_fmts))
goto err;
if (va_image->format.fourcc == VA_FOURCC_YV12)
MPSWAP(struct ra_tex*, mapper->tex[1], mapper->tex[2]);
return 0;
} else {
mapper_unmap(mapper);
goto err;
}
err:
if (!p_owner->probing_formats)
MP_FATAL(mapper, "mapping VAAPI EGL image failed\n");
return -1;
}
static bool try_format(struct ra_hwdec *hw, struct mp_image *surface)
{
bool ok = false;
struct ra_hwdec_mapper *mapper = ra_hwdec_mapper_create(hw, &surface->params);
if (mapper)
ok = ra_hwdec_mapper_map(mapper, surface) >= 0;
ra_hwdec_mapper_free(&mapper);
return ok;
}
static void determine_working_formats(struct ra_hwdec *hw)
{
struct priv_owner *p = hw->priv;
int num_formats = 0;
int *formats = NULL;
p->probing_formats = true;
AVHWFramesConstraints *fc =
av_hwdevice_get_hwframe_constraints(p->ctx->av_device_ref, NULL);
if (!fc) {
2017-10-23 08:53:28 +00:00
MP_WARN(hw, "failed to retrieve libavutil frame constraints\n");
goto done;
}
for (int n = 0; fc->valid_sw_formats[n] != AV_PIX_FMT_NONE; n++) {
AVBufferRef *fref = NULL;
struct mp_image *s = NULL;
AVFrame *frame = NULL;
fref = av_hwframe_ctx_alloc(p->ctx->av_device_ref);
if (!fref)
goto err;
AVHWFramesContext *fctx = (void *)fref->data;
fctx->format = AV_PIX_FMT_VAAPI;
fctx->sw_format = fc->valid_sw_formats[n];
fctx->width = 128;
fctx->height = 128;
if (av_hwframe_ctx_init(fref) < 0)
goto err;
frame = av_frame_alloc();
if (!frame)
goto err;
if (av_hwframe_get_buffer(fref, frame, 0) < 0)
goto err;
s = mp_image_from_av_frame(frame);
if (!s || !mp_image_params_valid(&s->params))
goto err;
if (try_format(hw, s))
MP_TARRAY_APPEND(p, formats, num_formats, s->params.hw_subfmt);
err:
talloc_free(s);
av_frame_free(&frame);
av_buffer_unref(&fref);
}
av_hwframe_constraints_free(&fc);
done:
MP_TARRAY_APPEND(p, formats, num_formats, 0); // terminate it
p->formats = formats;
p->probing_formats = false;
MP_VERBOSE(hw, "Supported formats:\n");
for (int n = 0; formats[n]; n++)
MP_VERBOSE(hw, " %s\n", mp_imgfmt_to_name(formats[n]));
}
const struct ra_hwdec_driver ra_hwdec_vaegl = {
.name = "vaapi-egl",
.priv_size = sizeof(struct priv_owner),
.imgfmts = {IMGFMT_VAAPI, 0},
.init = init,
.uninit = uninit,
.mapper = &(const struct ra_hwdec_mapper_driver){
.priv_size = sizeof(struct priv),
.init = mapper_init,
.uninit = mapper_uninit,
.map = mapper_map,
.unmap = mapper_unmap,
},
};