1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-26 09:33:30 +00:00
mpv/sub/dec_sub.c

321 lines
8.9 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* GNU Lesser General Public License for more details.
*
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <pthread.h>
#include "config.h"
#include "demux/demux.h"
#include "sd.h"
#include "dec_sub.h"
#include "options/options.h"
2013-12-21 18:06:37 +00:00
#include "common/global.h"
#include "common/msg.h"
#include "osdep/threads.h"
extern const struct sd_functions sd_ass;
extern const struct sd_functions sd_lavc;
static const struct sd_functions *const sd_list[] = {
&sd_lavc,
#if HAVE_LIBASS
&sd_ass,
#endif
NULL
};
struct dec_sub {
pthread_mutex_t lock;
2013-12-21 18:06:37 +00:00
struct mp_log *log;
struct mpv_global *global;
struct MPOpts *opts;
struct attachment_list *attachments;
struct sh_stream *sh;
double last_pkt_pts;
bool preload_attempted;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
struct mp_codec_params *codec;
double start, end;
double last_vo_pts;
struct sd *sd;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
struct demux_packet *new_segment;
};
void sub_lock(struct dec_sub *sub)
{
pthread_mutex_lock(&sub->lock);
}
void sub_unlock(struct dec_sub *sub)
{
pthread_mutex_unlock(&sub->lock);
}
void sub_destroy(struct dec_sub *sub)
{
if (!sub)
return;
sub_reset(sub);
sub->sd->driver->uninit(sub->sd);
talloc_free(sub->sd);
pthread_mutex_destroy(&sub->lock);
talloc_free(sub);
}
static struct sd *init_decoder(struct dec_sub *sub)
{
for (int n = 0; sd_list[n]; n++) {
const struct sd_functions *driver = sd_list[n];
struct sd *sd = talloc(NULL, struct sd);
*sd = (struct sd){
.global = sub->global,
.log = mp_log_new(sd, sub->log, driver->name),
.opts = sub->opts,
.driver = driver,
.attachments = sub->attachments,
.codec = sub->codec,
.preload_ok = true,
};
if (sd->driver->init(sd) >= 0)
return sd;
talloc_free(sd);
2013-06-23 22:47:08 +00:00
}
MP_ERR(sub, "Could not find subtitle decoder for format '%s'.\n",
sub->codec->codec);
return NULL;
}
// Thread-safety of the returned object: all functions are thread-safe,
// except sub_get_bitmaps() and sub_get_text(). Decoder backends (sd_*)
// do not need to acquire locks.
// Ownership of attachments goes to the caller, and is released with
// talloc_free() (even on failure).
struct dec_sub *sub_create(struct mpv_global *global, struct sh_stream *sh,
struct attachment_list *attachments)
{
assert(sh && sh->type == STREAM_SUB);
struct dec_sub *sub = talloc(NULL, struct dec_sub);
*sub = (struct dec_sub){
.log = mp_log_new(sub, global->log, "sub"),
.global = global,
.opts = global->opts,
.sh = sh,
.codec = sh->codec,
.attachments = talloc_steal(sub, attachments),
.last_pkt_pts = MP_NOPTS_VALUE,
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
.last_vo_pts = MP_NOPTS_VALUE,
.start = MP_NOPTS_VALUE,
.end = MP_NOPTS_VALUE,
};
mpthread_mutex_init_recursive(&sub->lock);
sub->sd = init_decoder(sub);
if (sub->sd)
return sub;
talloc_free(sub);
return NULL;
2013-06-23 22:47:08 +00:00
}
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
// Called locked.
static void update_segment(struct dec_sub *sub)
{
if (sub->new_segment && sub->last_vo_pts != MP_NOPTS_VALUE &&
sub->last_vo_pts >= sub->new_segment->start)
{
MP_VERBOSE(sub, "Switch segment: %f at %f\n", sub->new_segment->start,
sub->last_vo_pts);
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
sub->codec = sub->new_segment->codec;
sub->start = sub->new_segment->start;
sub->end = sub->new_segment->end;
struct sd *new = init_decoder(sub);
if (new) {
sub->sd->driver->uninit(sub->sd);
talloc_free(sub->sd);
sub->sd = new;
} else {
// We'll just keep the current decoder, and feed it possibly
// invalid data (not our fault if it crashes or something).
MP_ERR(sub, "Can't change to new codec.\n");
}
sub->sd->driver->decode(sub->sd, sub->new_segment);
talloc_free(sub->new_segment);
sub->new_segment = NULL;
}
}
bool sub_can_preload(struct dec_sub *sub)
{
bool r;
pthread_mutex_lock(&sub->lock);
r = sub->sd->driver->accept_packets_in_advance && !sub->preload_attempted;
pthread_mutex_unlock(&sub->lock);
return r;
}
void sub_preload(struct dec_sub *sub)
{
pthread_mutex_lock(&sub->lock);
sub->preload_attempted = true;
for (;;) {
struct demux_packet *pkt = demux_read_packet(sub->sh);
if (!pkt)
break;
sub->sd->driver->decode(sub->sd, pkt);
talloc_free(pkt);
}
pthread_mutex_unlock(&sub->lock);
}
// Read packets from the demuxer stream passed to sub_create(). Return true if
// enough packets were read, false if the player should wait until the demuxer
// signals new packets available (and then should retry).
bool sub_read_packets(struct dec_sub *sub, double video_pts)
{
bool r = true;
pthread_mutex_lock(&sub->lock);
while (1) {
bool read_more = true;
if (sub->sd->driver->accepts_packet)
read_more = sub->sd->driver->accepts_packet(sub->sd);
if (!read_more)
break;
if (sub->new_segment && sub->new_segment->start < video_pts) {
sub->last_vo_pts = video_pts;
update_segment(sub);
}
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
if (sub->new_segment)
break;
struct demux_packet *pkt;
int st = demux_read_packet_async(sub->sh, &pkt);
// Note: "wait" (st==0) happens with non-interleaved streams only, and
// then we should stop the playloop until a new enough packet has been
// seen (or the subtitle decoder's queue is full). This does not happen
// for interleaved subtitle streams, which never return "wait" when
// reading.
if (st <= 0) {
r = st < 0 || (sub->last_pkt_pts != MP_NOPTS_VALUE &&
sub->last_pkt_pts > video_pts);
break;
}
sub->last_pkt_pts = pkt->pts;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
if (pkt->new_segment) {
sub->new_segment = pkt;
// Note that this can be delayed to a much later point in time.
update_segment(sub);
break;
}
if (!(sub->preload_attempted && sub->sd->preload_ok))
sub->sd->driver->decode(sub->sd, pkt);
talloc_free(pkt);
}
pthread_mutex_unlock(&sub->lock);
return r;
}
// You must call sub_lock/sub_unlock if more than 1 thread access sub.
// The issue is that *res will contain decoder allocated data, which might
// be deallocated on the next decoder access.
void sub_get_bitmaps(struct dec_sub *sub, struct mp_osd_res dim, double pts,
struct sub_bitmaps *res)
{
struct MPOpts *opts = sub->opts;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
sub->last_vo_pts = pts;
update_segment(sub);
if (sub->end != MP_NOPTS_VALUE && pts >= sub->end)
return;
if (opts->sub_visibility && sub->sd->driver->get_bitmaps)
sub->sd->driver->get_bitmaps(sub->sd, dim, pts, res);
}
// See sub_get_bitmaps() for locking requirements.
// It can be called unlocked too, but then only 1 thread must call this function
// at a time (unless exclusive access is guaranteed).
char *sub_get_text(struct dec_sub *sub, double pts)
{
pthread_mutex_lock(&sub->lock);
struct MPOpts *opts = sub->opts;
char *text = NULL;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
sub->last_vo_pts = pts;
update_segment(sub);
if (opts->sub_visibility && sub->sd->driver->get_text)
text = sub->sd->driver->get_text(sub->sd, pts);
pthread_mutex_unlock(&sub->lock);
return text;
}
void sub_reset(struct dec_sub *sub)
{
pthread_mutex_lock(&sub->lock);
if (sub->sd->driver->reset)
sub->sd->driver->reset(sub->sd);
sub->last_pkt_pts = MP_NOPTS_VALUE;
Rewrite ordered chapters and timeline stuff This uses a different method to piece segments together. The old approach basically changes to a new file (with a new start offset) any time a segment ends. This meant waiting for audio/video end on segment end, and then changing to the new segment all at once. It had a very weird impact on the playback core, and some things (like truly gapless segment transitions, or frame backstepping) just didn't work. The new approach adds the demux_timeline pseudo-demuxer, which presents an uniform packet stream from the many segments. This is pretty similar to how ordered chapters are implemented everywhere else. It also reminds of the FFmpeg concat pseudo-demuxer. The "pure" version of this approach doesn't work though. Segments can actually have different codec configurations (different extradata), and subtitles are most likely broken too. (Subtitles have multiple corner cases which break the pure stream-concatenation approach completely.) To counter this, we do two things: - Reinit the decoder with each segment. We go as far as allowing concatenating files with completely different codecs for the sake of EDL (which also uses the timeline infrastructure). A "lighter" approach would try to make use of decoder mechanism to update e.g. the extradata, but that seems fragile. - Clip decoded data to segment boundaries. This is equivalent to normal playback core mechanisms like hr-seek, but now the playback core doesn't need to care about these things. These two mechanisms are equivalent to what happened in the old implementation, except they don't happen in the playback core anymore. In other words, the playback core is completely relieved from timeline implementation details. (Which honestly is exactly what I'm trying to do here. I don't think ordered chapter behavior deserves improvement, even if it's bad - but I want to get it out from the playback core.) There is code duplication between audio and video decoder common code. This is awful and could be shareable - but this will happen later. Note that the audio path has some code to clip audio frames for the purpose of codec preroll/gapless handling, but it's not shared as sharing it would cause more pain than it would help.
2016-02-15 20:04:07 +00:00
sub->start = sub->end = MP_NOPTS_VALUE;
sub->last_vo_pts = MP_NOPTS_VALUE;
talloc_free(sub->new_segment);
sub->new_segment = NULL;
pthread_mutex_unlock(&sub->lock);
}
void sub_select(struct dec_sub *sub, bool selected)
{
pthread_mutex_lock(&sub->lock);
if (sub->sd->driver->select)
sub->sd->driver->select(sub->sd, selected);
pthread_mutex_unlock(&sub->lock);
}
int sub_control(struct dec_sub *sub, enum sd_ctrl cmd, void *arg)
{
int r = CONTROL_UNKNOWN;
pthread_mutex_lock(&sub->lock);
if (sub->sd->driver->control)
r = sub->sd->driver->control(sub->sd, cmd, arg);
pthread_mutex_unlock(&sub->lock);
return r;
}