In order to safely re-enable patch modules, add a special
.kpatch.checksum section containing an md5sum of a patch module's
contents. The contents of this section are exported to sysfs via
patch_init and double checked when kpatch load finds that a module of
the same name is already loaded.
When working on large patches that are bound to have lots of
errors, it can be frustrating to have to re-run the build and wait
after every error you fix. With this patch, you get a chance to see
most (if not all) of the errors you'll be facing, at least across
the different object files.
This adds support for shadow variables, which allow you to add new
"shadow" fields to existing data structures.
To allow patches to call the shadow functions in the core module, I had
to add a funky hack to use --warn-unresolved-symbols when linking, which
allows the patched vmlinux to link with the missing symbols. I also
added greps to the log file to ensure that only unresolved symbols to
kpatch_shadow_* are allowed. We can remove this hack once the core
module gets moved into the kernel tree.
Fixes#314.
In the case that a new global symbol is defined in a file but not used
by a changed function, the symbol will currently not be included.
However, since it is global, another file in the patch my reference it,
but it will not be there.
This commit includes new global symbols so that they may be referenced
by changes in other files within the same patch.
Signed-off-by: Seth Jennings <sjenning@redhat.com>
WARN_ON_ONCE places the __warned static local variable in the
.data.unlikely section, so it's not bundled (i.e. ignored by the
-fdata-sections gcc flag). There's no reason why we can't rename
unbundled symbols, so add support for them.
Fixes#394.
If a patch adds a new function in foo.c, and calls that function from
bar.c, currently it fails with something like:
kpatch_create_dynamic_rela_sections: 2115: lookup_global_symbol failed for tpe_allow_file, needed for .text.do_mmap_pgoff
This (crudely) fixes the issue by assuming that if we can't find the
global symbol in the original vmlinux, that it will be provided by
another object in the patch module. If that assumption is incorrect,
the module will fail to load due to the missing symbol dependency.
A (perhaps) better way to fix this is to search for the symbol in the
patched version of the vmlinux. But I think this approach is good
enough, for now at least.
Fixes#388.
The naming of variables in this function is confusing, and really threw
me for a loop: sec is first used as an iterator, then sec is reused to
point to the dynrela section, then sec2 is used as another iterator.
Instead make sec the iterator for both loops and dynsec the dynrela
section pointer.
When a function foo.isra.1 has a switch statement, it might have a
corresponding .rodata.foo.isra.1 section (in addition to its
.text.foo.isra.1 section). If so, rename that section too.
Otherwise kpatch-build will get confused when comparing the function's
relas which reference the .rodata section, and will mark the function's
rela section as changed because the rela symbol names differ.
I found this bug when trying to build the patch from upstream Linux
commit a3c54931. Unfortunately this issue is already fixed on F20 and I
wasn't able to come up with a similarly failing test case for the
integration test suite.
When the argument is a .ko file, it should be considered a path (i.e.
don't even look for it in the installed DB). When the argument is a
module name, it should be considered a loaded or installed module (and
then in the case of kpatch load we have to do a reverse translation of
all installed modules to see if any of them match).
Signed-off-by: Seth Jennings <sjenning@redhat.com>