mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-18 01:14:38 +00:00
dc2410d093
It's about the third time I get confused by these functions, half of which manipulate the reference as a whole and those manipulating only an entry. For me "pat_ref_commit" means committing the pattern reference, not just an element, so let's rename it. A number of other ones should really be renamed before 2.4 gets released :-/
2783 lines
75 KiB
C
2783 lines
75 KiB
C
/*
|
|
* Pattern management functions.
|
|
*
|
|
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
|
|
#include <import/ebsttree.h>
|
|
#include <import/lru.h>
|
|
#include <import/xxhash.h>
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/net_helper.h>
|
|
#include <haproxy/pattern.h>
|
|
#include <haproxy/regex.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
char *pat_match_names[PAT_MATCH_NUM] = {
|
|
[PAT_MATCH_FOUND] = "found",
|
|
[PAT_MATCH_BOOL] = "bool",
|
|
[PAT_MATCH_INT] = "int",
|
|
[PAT_MATCH_IP] = "ip",
|
|
[PAT_MATCH_BIN] = "bin",
|
|
[PAT_MATCH_LEN] = "len",
|
|
[PAT_MATCH_STR] = "str",
|
|
[PAT_MATCH_BEG] = "beg",
|
|
[PAT_MATCH_SUB] = "sub",
|
|
[PAT_MATCH_DIR] = "dir",
|
|
[PAT_MATCH_DOM] = "dom",
|
|
[PAT_MATCH_END] = "end",
|
|
[PAT_MATCH_REG] = "reg",
|
|
[PAT_MATCH_REGM] = "regm",
|
|
};
|
|
|
|
int (*pat_parse_fcts[PAT_MATCH_NUM])(const char *, struct pattern *, int, char **) = {
|
|
[PAT_MATCH_FOUND] = pat_parse_nothing,
|
|
[PAT_MATCH_BOOL] = pat_parse_nothing,
|
|
[PAT_MATCH_INT] = pat_parse_int,
|
|
[PAT_MATCH_IP] = pat_parse_ip,
|
|
[PAT_MATCH_BIN] = pat_parse_bin,
|
|
[PAT_MATCH_LEN] = pat_parse_int,
|
|
[PAT_MATCH_STR] = pat_parse_str,
|
|
[PAT_MATCH_BEG] = pat_parse_str,
|
|
[PAT_MATCH_SUB] = pat_parse_str,
|
|
[PAT_MATCH_DIR] = pat_parse_str,
|
|
[PAT_MATCH_DOM] = pat_parse_str,
|
|
[PAT_MATCH_END] = pat_parse_str,
|
|
[PAT_MATCH_REG] = pat_parse_reg,
|
|
[PAT_MATCH_REGM] = pat_parse_reg,
|
|
};
|
|
|
|
int (*pat_index_fcts[PAT_MATCH_NUM])(struct pattern_expr *, struct pattern *, char **) = {
|
|
[PAT_MATCH_FOUND] = pat_idx_list_val,
|
|
[PAT_MATCH_BOOL] = pat_idx_list_val,
|
|
[PAT_MATCH_INT] = pat_idx_list_val,
|
|
[PAT_MATCH_IP] = pat_idx_tree_ip,
|
|
[PAT_MATCH_BIN] = pat_idx_list_ptr,
|
|
[PAT_MATCH_LEN] = pat_idx_list_val,
|
|
[PAT_MATCH_STR] = pat_idx_tree_str,
|
|
[PAT_MATCH_BEG] = pat_idx_tree_pfx,
|
|
[PAT_MATCH_SUB] = pat_idx_list_str,
|
|
[PAT_MATCH_DIR] = pat_idx_list_str,
|
|
[PAT_MATCH_DOM] = pat_idx_list_str,
|
|
[PAT_MATCH_END] = pat_idx_list_str,
|
|
[PAT_MATCH_REG] = pat_idx_list_reg,
|
|
[PAT_MATCH_REGM] = pat_idx_list_regm,
|
|
};
|
|
|
|
void (*pat_prune_fcts[PAT_MATCH_NUM])(struct pattern_expr *) = {
|
|
[PAT_MATCH_FOUND] = pat_prune_gen,
|
|
[PAT_MATCH_BOOL] = pat_prune_gen,
|
|
[PAT_MATCH_INT] = pat_prune_gen,
|
|
[PAT_MATCH_IP] = pat_prune_gen,
|
|
[PAT_MATCH_BIN] = pat_prune_gen,
|
|
[PAT_MATCH_LEN] = pat_prune_gen,
|
|
[PAT_MATCH_STR] = pat_prune_gen,
|
|
[PAT_MATCH_BEG] = pat_prune_gen,
|
|
[PAT_MATCH_SUB] = pat_prune_gen,
|
|
[PAT_MATCH_DIR] = pat_prune_gen,
|
|
[PAT_MATCH_DOM] = pat_prune_gen,
|
|
[PAT_MATCH_END] = pat_prune_gen,
|
|
[PAT_MATCH_REG] = pat_prune_gen,
|
|
[PAT_MATCH_REGM] = pat_prune_gen,
|
|
};
|
|
|
|
struct pattern *(*pat_match_fcts[PAT_MATCH_NUM])(struct sample *, struct pattern_expr *, int) = {
|
|
[PAT_MATCH_FOUND] = NULL,
|
|
[PAT_MATCH_BOOL] = pat_match_nothing,
|
|
[PAT_MATCH_INT] = pat_match_int,
|
|
[PAT_MATCH_IP] = pat_match_ip,
|
|
[PAT_MATCH_BIN] = pat_match_bin,
|
|
[PAT_MATCH_LEN] = pat_match_len,
|
|
[PAT_MATCH_STR] = pat_match_str,
|
|
[PAT_MATCH_BEG] = pat_match_beg,
|
|
[PAT_MATCH_SUB] = pat_match_sub,
|
|
[PAT_MATCH_DIR] = pat_match_dir,
|
|
[PAT_MATCH_DOM] = pat_match_dom,
|
|
[PAT_MATCH_END] = pat_match_end,
|
|
[PAT_MATCH_REG] = pat_match_reg,
|
|
[PAT_MATCH_REGM] = pat_match_regm,
|
|
};
|
|
|
|
/* Just used for checking configuration compatibility */
|
|
int pat_match_types[PAT_MATCH_NUM] = {
|
|
[PAT_MATCH_FOUND] = SMP_T_SINT,
|
|
[PAT_MATCH_BOOL] = SMP_T_SINT,
|
|
[PAT_MATCH_INT] = SMP_T_SINT,
|
|
[PAT_MATCH_IP] = SMP_T_ADDR,
|
|
[PAT_MATCH_BIN] = SMP_T_BIN,
|
|
[PAT_MATCH_LEN] = SMP_T_STR,
|
|
[PAT_MATCH_STR] = SMP_T_STR,
|
|
[PAT_MATCH_BEG] = SMP_T_STR,
|
|
[PAT_MATCH_SUB] = SMP_T_STR,
|
|
[PAT_MATCH_DIR] = SMP_T_STR,
|
|
[PAT_MATCH_DOM] = SMP_T_STR,
|
|
[PAT_MATCH_END] = SMP_T_STR,
|
|
[PAT_MATCH_REG] = SMP_T_STR,
|
|
[PAT_MATCH_REGM] = SMP_T_STR,
|
|
};
|
|
|
|
/* this struct is used to return information */
|
|
static THREAD_LOCAL struct pattern static_pattern;
|
|
static THREAD_LOCAL struct sample_data static_sample_data;
|
|
|
|
/* This is the root of the list of all pattern_ref avalaibles. */
|
|
struct list pattern_reference = LIST_HEAD_INIT(pattern_reference);
|
|
|
|
static THREAD_LOCAL struct lru64_head *pat_lru_tree;
|
|
static unsigned long long pat_lru_seed;
|
|
|
|
/*
|
|
*
|
|
* The following functions are not exported and are used by internals process
|
|
* of pattern matching
|
|
*
|
|
*/
|
|
|
|
/* Background: Fast way to find a zero byte in a word
|
|
* http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
|
|
* hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL;
|
|
*
|
|
* To look for 4 different byte values, xor the word with those bytes and
|
|
* then check for zero bytes:
|
|
*
|
|
* v = (((unsigned char)c * 0x1010101U) ^ delimiter)
|
|
* where <delimiter> is the 4 byte values to look for (as an uint)
|
|
* and <c> is the character that is being tested
|
|
*/
|
|
static inline unsigned int is_delimiter(unsigned char c, unsigned int mask)
|
|
{
|
|
mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */
|
|
return (mask - 0x01010101) & ~mask & 0x80808080U;
|
|
}
|
|
|
|
static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4)
|
|
{
|
|
return d1 << 24 | d2 << 16 | d3 << 8 | d4;
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* These functions are exported and may be used by any other component.
|
|
*
|
|
* The following functions are used for parsing pattern matching input value.
|
|
* The <text> contain the string to be parsed. <pattern> must be a preallocated
|
|
* pattern. The pat_parse_* functions fill this structure with the parsed value.
|
|
* <err> is filled with an error message built with memprintf() function. It is
|
|
* allowed to use a trash as a temporary storage for the returned pattern, as
|
|
* the next call after these functions will be pat_idx_*.
|
|
*
|
|
* In success case, the pat_parse_* function returns 1. If the function
|
|
* fails, it returns 0 and <err> is filled.
|
|
*/
|
|
|
|
/* ignore the current line */
|
|
int pat_parse_nothing(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a string. It is allocated and duplicated. */
|
|
int pat_parse_str(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
pattern->type = SMP_T_STR;
|
|
pattern->ptr.str = (char *)text;
|
|
pattern->len = strlen(text);
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a binary written in hexa. It is allocated. */
|
|
int pat_parse_bin(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
struct buffer *trash;
|
|
|
|
pattern->type = SMP_T_BIN;
|
|
trash = get_trash_chunk();
|
|
pattern->len = trash->size;
|
|
pattern->ptr.str = trash->area;
|
|
return !!parse_binary(text, &pattern->ptr.str, &pattern->len, err);
|
|
}
|
|
|
|
/* Parse a regex. It is allocated. */
|
|
int pat_parse_reg(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
pattern->ptr.str = (char *)text;
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a range of positive integers delimited by either ':' or '-'. If only
|
|
* one integer is read, it is set as both min and max. An operator may be
|
|
* specified as the prefix, among this list of 5 :
|
|
*
|
|
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
|
|
*
|
|
* The default operator is "eq". It supports range matching. Ranges are
|
|
* rejected for other operators. The operator may be changed at any time.
|
|
* The operator is stored in the 'opaque' argument.
|
|
*
|
|
* If err is non-NULL, an error message will be returned there on errors and
|
|
* the caller will have to free it. The function returns zero on error, and
|
|
* non-zero on success.
|
|
*
|
|
*/
|
|
int pat_parse_int(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
const char *ptr = text;
|
|
|
|
pattern->type = SMP_T_SINT;
|
|
|
|
/* Empty string is not valid */
|
|
if (!*text)
|
|
goto not_valid_range;
|
|
|
|
/* Search ':' or '-' separator. */
|
|
while (*ptr != '\0' && *ptr != ':' && *ptr != '-')
|
|
ptr++;
|
|
|
|
/* If separator not found. */
|
|
if (!*ptr) {
|
|
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0) {
|
|
memprintf(err, "'%s' is not a number", text);
|
|
return 0;
|
|
}
|
|
pattern->val.range.max = pattern->val.range.min;
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* If the separator is the first character. */
|
|
if (ptr == text && *(ptr + 1) != '\0') {
|
|
if (strl2llrc(ptr + 1, strlen(ptr + 1), &pattern->val.range.max) != 0)
|
|
goto not_valid_range;
|
|
|
|
pattern->val.range.min_set = 0;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* If separator is the last character. */
|
|
if (*(ptr + 1) == '\0') {
|
|
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0)
|
|
goto not_valid_range;
|
|
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Else, parse two numbers. */
|
|
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0)
|
|
goto not_valid_range;
|
|
|
|
if (strl2llrc(ptr + 1, strlen(ptr + 1), &pattern->val.range.max) != 0)
|
|
goto not_valid_range;
|
|
|
|
if (pattern->val.range.min > pattern->val.range.max)
|
|
goto not_valid_range;
|
|
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
|
|
not_valid_range:
|
|
memprintf(err, "'%s' is not a valid number range", text);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse a range of positive 2-component versions delimited by either ':' or
|
|
* '-'. The version consists in a major and a minor, both of which must be
|
|
* smaller than 65536, because internally they will be represented as a 32-bit
|
|
* integer.
|
|
* If only one version is read, it is set as both min and max. Just like for
|
|
* pure integers, an operator may be specified as the prefix, among this list
|
|
* of 5 :
|
|
*
|
|
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
|
|
*
|
|
* The default operator is "eq". It supports range matching. Ranges are
|
|
* rejected for other operators. The operator may be changed at any time.
|
|
* The operator is stored in the 'opaque' argument. This allows constructs
|
|
* such as the following one :
|
|
*
|
|
* acl obsolete_ssl ssl_req_proto lt 3
|
|
* acl unsupported_ssl ssl_req_proto gt 3.1
|
|
* acl valid_ssl ssl_req_proto 3.0-3.1
|
|
*
|
|
*/
|
|
int pat_parse_dotted_ver(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
const char *ptr = text;
|
|
|
|
pattern->type = SMP_T_SINT;
|
|
|
|
/* Search ':' or '-' separator. */
|
|
while (*ptr != '\0' && *ptr != ':' && *ptr != '-')
|
|
ptr++;
|
|
|
|
/* If separator not found. */
|
|
if (*ptr == '\0' && ptr > text) {
|
|
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
|
|
memprintf(err, "'%s' is not a dotted number", text);
|
|
return 0;
|
|
}
|
|
pattern->val.range.max = pattern->val.range.min;
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* If the separator is the first character. */
|
|
if (ptr == text && *(ptr+1) != '\0') {
|
|
if (strl2llrc_dotted(ptr+1, strlen(ptr+1), &pattern->val.range.max) != 0) {
|
|
memprintf(err, "'%s' is not a valid dotted number range", text);
|
|
return 0;
|
|
}
|
|
pattern->val.range.min_set = 0;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* If separator is the last character. */
|
|
if (ptr == &text[strlen(text)-1]) {
|
|
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
|
|
memprintf(err, "'%s' is not a valid dotted number range", text);
|
|
return 0;
|
|
}
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Else, parse two numbers. */
|
|
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
|
|
memprintf(err, "'%s' is not a valid dotted number range", text);
|
|
return 0;
|
|
}
|
|
if (strl2llrc_dotted(ptr+1, strlen(ptr+1), &pattern->val.range.max) != 0) {
|
|
memprintf(err, "'%s' is not a valid dotted number range", text);
|
|
return 0;
|
|
}
|
|
if (pattern->val.range.min > pattern->val.range.max) {
|
|
memprintf(err, "'%s' is not a valid dotted number range", text);
|
|
return 0;
|
|
}
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* Parse an IP address and an optional mask in the form addr[/mask].
|
|
* The addr may either be an IPv4 address or a hostname. The mask
|
|
* may either be a dotted mask or a number of bits. Returns 1 if OK,
|
|
* otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6).
|
|
*/
|
|
int pat_parse_ip(const char *text, struct pattern *pattern, int mflags, char **err)
|
|
{
|
|
if (str2net(text, !(mflags & PAT_MF_NO_DNS) && (global.mode & MODE_STARTING),
|
|
&pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) {
|
|
pattern->type = SMP_T_IPV4;
|
|
return 1;
|
|
}
|
|
else if (str62net(text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) {
|
|
pattern->type = SMP_T_IPV6;
|
|
return 1;
|
|
}
|
|
else {
|
|
memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", text);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* These functions are exported and may be used by any other component.
|
|
*
|
|
* This function just takes a sample <smp> and checks if this sample matches
|
|
* with the pattern <pattern>. This function returns only PAT_MATCH or
|
|
* PAT_NOMATCH.
|
|
*
|
|
*/
|
|
|
|
/* always return false */
|
|
struct pattern *pat_match_nothing(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
if (smp->data.u.sint) {
|
|
if (fill) {
|
|
static_pattern.data = NULL;
|
|
static_pattern.ref = NULL;
|
|
static_pattern.type = 0;
|
|
static_pattern.ptr.str = NULL;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* NB: For two strings to be identical, it is required that their length match */
|
|
struct pattern *pat_match_str(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
int icase;
|
|
struct ebmb_node *node;
|
|
struct pattern_tree *elt;
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
/* Lookup a string in the expression's pattern tree. */
|
|
if (!eb_is_empty(&expr->pattern_tree)) {
|
|
char prev = 0;
|
|
|
|
if (smp->data.u.str.data < smp->data.u.str.size) {
|
|
/* we may have to force a trailing zero on the test pattern and
|
|
* the buffer is large enough to accommodate it. If the flag
|
|
* CONST is set, duplicate the string
|
|
*/
|
|
prev = smp->data.u.str.area[smp->data.u.str.data];
|
|
if (prev) {
|
|
if (smp->flags & SMP_F_CONST) {
|
|
if (!smp_dup(smp))
|
|
return NULL;
|
|
} else {
|
|
smp->data.u.str.area[smp->data.u.str.data] = '\0';
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Otherwise, the sample is duplicated. A trailing zero
|
|
* is automatically added to the string.
|
|
*/
|
|
if (!smp_dup(smp))
|
|
return NULL;
|
|
}
|
|
|
|
node = ebst_lookup(&expr->pattern_tree, smp->data.u.str.area);
|
|
if (prev)
|
|
smp->data.u.str.area[smp->data.u.str.data] = prev;
|
|
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_STR;
|
|
static_pattern.ptr.str = (char *)elt->node.key;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
}
|
|
|
|
/* look in the list */
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (pattern->len != smp->data.u.str.data)
|
|
continue;
|
|
|
|
icase = expr->mflags & PAT_MF_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0)) {
|
|
ret = pattern;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* NB: For two binaries buf to be identical, it is required that their lengths match */
|
|
struct pattern *pat_match_bin(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (pattern->len != smp->data.u.str.data)
|
|
continue;
|
|
|
|
if (memcmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0) {
|
|
ret = pattern;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Executes a regex. It temporarily changes the data to add a trailing zero,
|
|
* and restores the previous character when leaving. This function fills
|
|
* a matching array.
|
|
*/
|
|
struct pattern *pat_match_regm(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (regex_exec_match2(pattern->ptr.reg, smp->data.u.str.area, smp->data.u.str.data,
|
|
MAX_MATCH, pmatch, 0)) {
|
|
ret = pattern;
|
|
smp->ctx.a[0] = pmatch;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Executes a regex. It temporarily changes the data to add a trailing zero,
|
|
* and restores the previous character when leaving.
|
|
*/
|
|
struct pattern *pat_match_reg(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (regex_exec2(pattern->ptr.reg, smp->data.u.str.area, smp->data.u.str.data)) {
|
|
ret = pattern;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Checks that the pattern matches the beginning of the tested string. */
|
|
struct pattern *pat_match_beg(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
int icase;
|
|
struct ebmb_node *node;
|
|
struct pattern_tree *elt;
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
/* Lookup a string in the expression's pattern tree. */
|
|
if (!eb_is_empty(&expr->pattern_tree)) {
|
|
char prev = 0;
|
|
|
|
if (smp->data.u.str.data < smp->data.u.str.size) {
|
|
/* we may have to force a trailing zero on the test pattern and
|
|
* the buffer is large enough to accommodate it.
|
|
*/
|
|
prev = smp->data.u.str.area[smp->data.u.str.data];
|
|
if (prev)
|
|
smp->data.u.str.area[smp->data.u.str.data] = '\0';
|
|
}
|
|
else {
|
|
/* Otherwise, the sample is duplicated. A trailing zero
|
|
* is automatically added to the string.
|
|
*/
|
|
if (!smp_dup(smp))
|
|
return NULL;
|
|
}
|
|
|
|
node = ebmb_lookup_longest(&expr->pattern_tree,
|
|
smp->data.u.str.area);
|
|
if (prev)
|
|
smp->data.u.str.area[smp->data.u.str.data] = prev;
|
|
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_STR;
|
|
static_pattern.ptr.str = (char *)elt->node.key;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
}
|
|
|
|
/* look in the list */
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (pattern->len > smp->data.u.str.data)
|
|
continue;
|
|
|
|
icase = expr->mflags & PAT_MF_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area, pattern->len) != 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area, pattern->len) != 0))
|
|
continue;
|
|
|
|
ret = pattern;
|
|
break;
|
|
}
|
|
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Checks that the pattern matches the end of the tested string. */
|
|
struct pattern *pat_match_end(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
int icase;
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (pattern->len > smp->data.u.str.data)
|
|
continue;
|
|
|
|
icase = expr->mflags & PAT_MF_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area + smp->data.u.str.data - pattern->len, pattern->len) != 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area + smp->data.u.str.data - pattern->len, pattern->len) != 0))
|
|
continue;
|
|
|
|
ret = pattern;
|
|
break;
|
|
}
|
|
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string.
|
|
* NB: Suboptimal, should be rewritten using a Boyer-Moore method.
|
|
*/
|
|
struct pattern *pat_match_sub(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
int icase;
|
|
char *end;
|
|
char *c;
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
struct pattern *ret = NULL;
|
|
struct lru64 *lru = NULL;
|
|
|
|
if (pat_lru_tree) {
|
|
unsigned long long seed = pat_lru_seed ^ (long)expr;
|
|
|
|
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
|
|
pat_lru_tree, expr, expr->ref->revision);
|
|
if (lru && lru->domain) {
|
|
ret = lru->data;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (pattern->len > smp->data.u.str.data)
|
|
continue;
|
|
|
|
end = smp->data.u.str.area + smp->data.u.str.data - pattern->len;
|
|
icase = expr->mflags & PAT_MF_IGNORE_CASE;
|
|
if (icase) {
|
|
for (c = smp->data.u.str.area; c <= end; c++) {
|
|
if (tolower((unsigned char)*c) != tolower((unsigned char)*pattern->ptr.str))
|
|
continue;
|
|
if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0) {
|
|
ret = pattern;
|
|
goto leave;
|
|
}
|
|
}
|
|
} else {
|
|
for (c = smp->data.u.str.area; c <= end; c++) {
|
|
if (*c != *pattern->ptr.str)
|
|
continue;
|
|
if (strncmp(pattern->ptr.str, c, pattern->len) == 0) {
|
|
ret = pattern;
|
|
goto leave;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
leave:
|
|
if (lru)
|
|
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This one is used by other real functions. It checks that the pattern is
|
|
* included inside the tested string, but enclosed between the specified
|
|
* delimiters or at the beginning or end of the string. The delimiters are
|
|
* provided as an unsigned int made by make_4delim() and match up to 4 different
|
|
* delimiters. Delimiters are stripped at the beginning and end of the pattern.
|
|
*/
|
|
static int match_word(struct sample *smp, struct pattern *pattern, int mflags, unsigned int delimiters)
|
|
{
|
|
int may_match, icase;
|
|
char *c, *end;
|
|
char *ps;
|
|
int pl;
|
|
|
|
pl = pattern->len;
|
|
ps = pattern->ptr.str;
|
|
|
|
while (pl > 0 && is_delimiter(*ps, delimiters)) {
|
|
pl--;
|
|
ps++;
|
|
}
|
|
|
|
while (pl > 0 && is_delimiter(ps[pl - 1], delimiters))
|
|
pl--;
|
|
|
|
if (pl > smp->data.u.str.data)
|
|
return PAT_NOMATCH;
|
|
|
|
may_match = 1;
|
|
icase = mflags & PAT_MF_IGNORE_CASE;
|
|
end = smp->data.u.str.area + smp->data.u.str.data - pl;
|
|
for (c = smp->data.u.str.area; c <= end; c++) {
|
|
if (is_delimiter(*c, delimiters)) {
|
|
may_match = 1;
|
|
continue;
|
|
}
|
|
|
|
if (!may_match)
|
|
continue;
|
|
|
|
if (icase) {
|
|
if ((tolower((unsigned char)*c) == tolower((unsigned char)*ps)) &&
|
|
(strncasecmp(ps, c, pl) == 0) &&
|
|
(c == end || is_delimiter(c[pl], delimiters)))
|
|
return PAT_MATCH;
|
|
} else {
|
|
if ((*c == *ps) &&
|
|
(strncmp(ps, c, pl) == 0) &&
|
|
(c == end || is_delimiter(c[pl], delimiters)))
|
|
return PAT_MATCH;
|
|
}
|
|
may_match = 0;
|
|
}
|
|
return PAT_NOMATCH;
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string, but enclosed
|
|
* between the delimiters '?' or '/' or at the beginning or end of the string.
|
|
* Delimiters at the beginning or end of the pattern are ignored.
|
|
*/
|
|
struct pattern *pat_match_dir(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (match_word(smp, pattern, expr->mflags, make_4delim('/', '?', '?', '?')))
|
|
return pattern;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string, but enclosed
|
|
* between the delmiters '/', '?', '.' or ":" or at the beginning or end of
|
|
* the string. Delimiters at the beginning or end of the pattern are ignored.
|
|
*/
|
|
struct pattern *pat_match_dom(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if (match_word(smp, pattern, expr->mflags, make_4delim('/', '?', '.', ':')))
|
|
return pattern;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Checks that the integer in <test> is included between min and max */
|
|
struct pattern *pat_match_int(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.u.sint) &&
|
|
(!pattern->val.range.max_set || smp->data.u.sint <= pattern->val.range.max))
|
|
return pattern;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Checks that the length of the pattern in <test> is included between min and max */
|
|
struct pattern *pat_match_len(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.u.str.data) &&
|
|
(!pattern->val.range.max_set || smp->data.u.str.data <= pattern->val.range.max))
|
|
return pattern;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct pattern *pat_match_ip(struct sample *smp, struct pattern_expr *expr, int fill)
|
|
{
|
|
unsigned int v4; /* in network byte order */
|
|
struct in6_addr tmp6;
|
|
struct in_addr *s;
|
|
struct ebmb_node *node;
|
|
struct pattern_tree *elt;
|
|
struct pattern_list *lst;
|
|
struct pattern *pattern;
|
|
|
|
/* The input sample is IPv4. Try to match in the trees. */
|
|
if (smp->data.type == SMP_T_IPV4) {
|
|
/* Lookup an IPv4 address in the expression's pattern tree using
|
|
* the longest match method.
|
|
*/
|
|
s = &smp->data.u.ipv4;
|
|
node = ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr);
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_IPV4;
|
|
static_pattern.val.ipv4.addr.s_addr = read_u32(elt->node.key);
|
|
if (!cidr2dotted(elt->node.node.pfx, &static_pattern.val.ipv4.mask))
|
|
return NULL;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
|
|
/* The IPv4 sample don't match the IPv4 tree. Convert the IPv4
|
|
* sample address to IPv6 with the mapping method using the ::ffff:
|
|
* prefix, and try to lookup in the IPv6 tree.
|
|
*/
|
|
memset(&tmp6, 0, 10);
|
|
write_u16(&tmp6.s6_addr[10], htons(0xffff));
|
|
write_u32(&tmp6.s6_addr[12], smp->data.u.ipv4.s_addr);
|
|
node = ebmb_lookup_longest(&expr->pattern_tree_2, &tmp6);
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_IPV6;
|
|
memcpy(&static_pattern.val.ipv6.addr, elt->node.key, 16);
|
|
static_pattern.val.ipv6.mask = elt->node.node.pfx;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
}
|
|
|
|
/* The input sample is IPv6. Try to match in the trees. */
|
|
if (smp->data.type == SMP_T_IPV6) {
|
|
/* Lookup an IPv6 address in the expression's pattern tree using
|
|
* the longest match method.
|
|
*/
|
|
node = ebmb_lookup_longest(&expr->pattern_tree_2, &smp->data.u.ipv6);
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_IPV6;
|
|
memcpy(&static_pattern.val.ipv6.addr, elt->node.key, 16);
|
|
static_pattern.val.ipv6.mask = elt->node.node.pfx;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
|
|
/* Try to convert 6 to 4 when the start of the ipv6 address match the
|
|
* following forms :
|
|
* - ::ffff:ip:v4 (ipv4 mapped)
|
|
* - ::0000:ip:v4 (old ipv4 mapped)
|
|
* - 2002:ip:v4:: (6to4)
|
|
*/
|
|
if ((read_u64(&smp->data.u.ipv6.s6_addr[0]) == 0 &&
|
|
(read_u32(&smp->data.u.ipv6.s6_addr[8]) == 0 ||
|
|
read_u32(&smp->data.u.ipv6.s6_addr[8]) == htonl(0xFFFF))) ||
|
|
read_u16(&smp->data.u.ipv6.s6_addr[0]) == htons(0x2002)) {
|
|
if (read_u32(&smp->data.u.ipv6.s6_addr[0]) == 0)
|
|
v4 = read_u32(&smp->data.u.ipv6.s6_addr[12]);
|
|
else
|
|
v4 = htonl((ntohs(read_u16(&smp->data.u.ipv6.s6_addr[2])) << 16) +
|
|
ntohs(read_u16(&smp->data.u.ipv6.s6_addr[4])));
|
|
|
|
/* Lookup an IPv4 address in the expression's pattern tree using the longest
|
|
* match method.
|
|
*/
|
|
node = ebmb_lookup_longest(&expr->pattern_tree, &v4);
|
|
while (node) {
|
|
elt = ebmb_entry(node, struct pattern_tree, node);
|
|
if (elt->ref->gen_id != expr->ref->curr_gen) {
|
|
node = ebmb_next(node);
|
|
continue;
|
|
}
|
|
if (fill) {
|
|
static_pattern.data = elt->data;
|
|
static_pattern.ref = elt->ref;
|
|
static_pattern.sflags = PAT_SF_TREE;
|
|
static_pattern.type = SMP_T_IPV4;
|
|
static_pattern.val.ipv4.addr.s_addr = read_u32(elt->node.key);
|
|
if (!cidr2dotted(elt->node.node.pfx, &static_pattern.val.ipv4.mask))
|
|
return NULL;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Lookup in the list. the list contain only IPv4 patterns */
|
|
list_for_each_entry(lst, &expr->patterns, list) {
|
|
pattern = &lst->pat;
|
|
|
|
if (pattern->ref->gen_id != expr->ref->curr_gen)
|
|
continue;
|
|
|
|
/* The input sample is IPv4, use it as is. */
|
|
if (smp->data.type == SMP_T_IPV4) {
|
|
v4 = smp->data.u.ipv4.s_addr;
|
|
}
|
|
else if (smp->data.type == SMP_T_IPV6) {
|
|
/* v4 match on a V6 sample. We want to check at least for
|
|
* the following forms :
|
|
* - ::ffff:ip:v4 (ipv4 mapped)
|
|
* - ::0000:ip:v4 (old ipv4 mapped)
|
|
* - 2002:ip:v4:: (6to4)
|
|
*/
|
|
if (read_u64(&smp->data.u.ipv6.s6_addr[0]) == 0 &&
|
|
(read_u32(&smp->data.u.ipv6.s6_addr[8]) == 0 ||
|
|
read_u32(&smp->data.u.ipv6.s6_addr[8]) == htonl(0xFFFF))) {
|
|
v4 = read_u32(&smp->data.u.ipv6.s6_addr[12]);
|
|
}
|
|
else if (read_u16(&smp->data.u.ipv6.s6_addr[0]) == htons(0x2002)) {
|
|
v4 = htonl((ntohs(read_u16(&smp->data.u.ipv6.s6_addr[2])) << 16) +
|
|
ntohs(read_u16(&smp->data.u.ipv6.s6_addr[4])));
|
|
}
|
|
else
|
|
continue;
|
|
} else {
|
|
/* impossible */
|
|
continue;
|
|
}
|
|
|
|
/* Check if the input sample match the current pattern. */
|
|
if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0)
|
|
return pattern;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* finds the pattern holding <list> from list head <head> and deletes it.
|
|
* This is made for use for pattern removal within an expression.
|
|
*/
|
|
static void pat_unlink_from_head(void **head, void **list)
|
|
{
|
|
while (*head) {
|
|
if (*head == list) {
|
|
*head = *list;
|
|
return;
|
|
}
|
|
head = *head;
|
|
}
|
|
}
|
|
|
|
void free_pattern_tree(struct eb_root *root)
|
|
{
|
|
struct eb_node *node, *next;
|
|
struct pattern_tree *elt;
|
|
|
|
node = eb_first(root);
|
|
while (node) {
|
|
next = eb_next(node);
|
|
eb_delete(node);
|
|
elt = container_of(node, struct pattern_tree, node);
|
|
pat_unlink_from_head(&elt->ref->tree_head, &elt->from_ref);
|
|
free(elt->data);
|
|
free(elt);
|
|
node = next;
|
|
}
|
|
}
|
|
|
|
void pat_prune_gen(struct pattern_expr *expr)
|
|
{
|
|
struct pattern_list *pat, *tmp;
|
|
|
|
list_for_each_entry_safe(pat, tmp, &expr->patterns, list) {
|
|
LIST_DEL(&pat->list);
|
|
pat_unlink_from_head(&pat->pat.ref->list_head, &pat->from_ref);
|
|
if (pat->pat.sflags & PAT_SF_REGFREE)
|
|
regex_free(pat->pat.ptr.ptr);
|
|
else
|
|
free(pat->pat.ptr.ptr);
|
|
free(pat->pat.data);
|
|
free(pat);
|
|
}
|
|
|
|
free_pattern_tree(&expr->pattern_tree);
|
|
free_pattern_tree(&expr->pattern_tree_2);
|
|
LIST_INIT(&expr->patterns);
|
|
expr->ref->revision = rdtsc();
|
|
}
|
|
|
|
/*
|
|
*
|
|
* The following functions are used for the pattern indexation
|
|
*
|
|
*/
|
|
|
|
int pat_idx_list_val(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
struct pattern_list *patl;
|
|
|
|
/* allocate pattern */
|
|
patl = calloc(1, sizeof(*patl));
|
|
if (!patl) {
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* duplicate pattern */
|
|
memcpy(&patl->pat, pat, sizeof(*pat));
|
|
|
|
/* chain pattern in the expression */
|
|
LIST_ADDQ(&expr->patterns, &patl->list);
|
|
/* and from the reference */
|
|
patl->from_ref = pat->ref->list_head;
|
|
pat->ref->list_head = &patl->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
int pat_idx_list_ptr(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
struct pattern_list *patl;
|
|
|
|
/* allocate pattern */
|
|
patl = calloc(1, sizeof(*patl));
|
|
if (!patl) {
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* duplicate pattern */
|
|
memcpy(&patl->pat, pat, sizeof(*pat));
|
|
patl->pat.ptr.ptr = malloc(patl->pat.len);
|
|
if (!patl->pat.ptr.ptr) {
|
|
free(patl);
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
memcpy(patl->pat.ptr.ptr, pat->ptr.ptr, pat->len);
|
|
|
|
/* chain pattern in the expression */
|
|
LIST_ADDQ(&expr->patterns, &patl->list);
|
|
/* and from the reference */
|
|
patl->from_ref = pat->ref->list_head;
|
|
pat->ref->list_head = &patl->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
int pat_idx_list_str(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
struct pattern_list *patl;
|
|
|
|
/* allocate pattern */
|
|
patl = calloc(1, sizeof(*patl));
|
|
if (!patl) {
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* duplicate pattern */
|
|
memcpy(&patl->pat, pat, sizeof(*pat));
|
|
patl->pat.ptr.str = malloc(patl->pat.len + 1);
|
|
if (!patl->pat.ptr.str) {
|
|
free(patl);
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
memcpy(patl->pat.ptr.ptr, pat->ptr.ptr, pat->len);
|
|
patl->pat.ptr.str[patl->pat.len] = '\0';
|
|
|
|
/* chain pattern in the expression */
|
|
LIST_ADDQ(&expr->patterns, &patl->list);
|
|
/* and from the reference */
|
|
patl->from_ref = pat->ref->list_head;
|
|
pat->ref->list_head = &patl->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
int pat_idx_list_reg_cap(struct pattern_expr *expr, struct pattern *pat, int cap, char **err)
|
|
{
|
|
struct pattern_list *patl;
|
|
|
|
/* allocate pattern */
|
|
patl = calloc(1, sizeof(*patl));
|
|
if (!patl) {
|
|
memprintf(err, "out of memory while indexing pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* duplicate pattern */
|
|
memcpy(&patl->pat, pat, sizeof(*pat));
|
|
|
|
/* compile regex */
|
|
patl->pat.sflags |= PAT_SF_REGFREE;
|
|
if (!(patl->pat.ptr.reg = regex_comp(pat->ptr.str, !(expr->mflags & PAT_MF_IGNORE_CASE),
|
|
cap, err))) {
|
|
free(patl);
|
|
return 0;
|
|
}
|
|
|
|
/* chain pattern in the expression */
|
|
LIST_ADDQ(&expr->patterns, &patl->list);
|
|
/* and from the reference */
|
|
patl->from_ref = pat->ref->list_head;
|
|
pat->ref->list_head = &patl->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
int pat_idx_list_reg(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
return pat_idx_list_reg_cap(expr, pat, 0, err);
|
|
}
|
|
|
|
int pat_idx_list_regm(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
return pat_idx_list_reg_cap(expr, pat, 1, err);
|
|
}
|
|
|
|
int pat_idx_tree_ip(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
unsigned int mask;
|
|
struct pattern_tree *node;
|
|
|
|
/* Only IPv4 can be indexed */
|
|
if (pat->type == SMP_T_IPV4) {
|
|
/* in IPv4 case, check if the mask is contiguous so that we can
|
|
* insert the network into the tree. A continuous mask has only
|
|
* ones on the left. This means that this mask + its lower bit
|
|
* added once again is null.
|
|
*/
|
|
mask = ntohl(pat->val.ipv4.mask.s_addr);
|
|
if (mask + (mask & -mask) == 0) {
|
|
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
|
|
|
|
/* node memory allocation */
|
|
node = calloc(1, sizeof(*node) + 4);
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* copy the pointer to sample associated to this node */
|
|
node->data = pat->data;
|
|
node->ref = pat->ref;
|
|
|
|
/* FIXME: insert <addr>/<mask> into the tree here */
|
|
memcpy(node->node.key, &pat->val.ipv4.addr, 4); /* network byte order */
|
|
node->node.node.pfx = mask;
|
|
|
|
/* Insert the entry. */
|
|
ebmb_insert_prefix(&expr->pattern_tree, &node->node, 4);
|
|
node->from_ref = pat->ref->tree_head;
|
|
pat->ref->tree_head = &node->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
else {
|
|
/* If the mask is not contiguous, just add the pattern to the list */
|
|
return pat_idx_list_val(expr, pat, err);
|
|
}
|
|
}
|
|
else if (pat->type == SMP_T_IPV6) {
|
|
/* IPv6 also can be indexed */
|
|
node = calloc(1, sizeof(*node) + 16);
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* copy the pointer to sample associated to this node */
|
|
node->data = pat->data;
|
|
node->ref = pat->ref;
|
|
|
|
/* FIXME: insert <addr>/<mask> into the tree here */
|
|
memcpy(node->node.key, &pat->val.ipv6.addr, 16); /* network byte order */
|
|
node->node.node.pfx = pat->val.ipv6.mask;
|
|
|
|
/* Insert the entry. */
|
|
ebmb_insert_prefix(&expr->pattern_tree_2, &node->node, 16);
|
|
node->from_ref = pat->ref->tree_head;
|
|
pat->ref->tree_head = &node->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pat_idx_tree_str(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
int len;
|
|
struct pattern_tree *node;
|
|
|
|
/* Only string can be indexed */
|
|
if (pat->type != SMP_T_STR) {
|
|
memprintf(err, "internal error: string expected, but the type is '%s'",
|
|
smp_to_type[pat->type]);
|
|
return 0;
|
|
}
|
|
|
|
/* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */
|
|
if (expr->mflags & PAT_MF_IGNORE_CASE)
|
|
return pat_idx_list_str(expr, pat, err);
|
|
|
|
/* Process the key len */
|
|
len = strlen(pat->ptr.str) + 1;
|
|
|
|
/* node memory allocation */
|
|
node = calloc(1, sizeof(*node) + len);
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* copy the pointer to sample associated to this node */
|
|
node->data = pat->data;
|
|
node->ref = pat->ref;
|
|
|
|
/* copy the string */
|
|
memcpy(node->node.key, pat->ptr.str, len);
|
|
|
|
/* index the new node */
|
|
ebst_insert(&expr->pattern_tree, &node->node);
|
|
node->from_ref = pat->ref->tree_head;
|
|
pat->ref->tree_head = &node->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
int pat_idx_tree_pfx(struct pattern_expr *expr, struct pattern *pat, char **err)
|
|
{
|
|
int len;
|
|
struct pattern_tree *node;
|
|
|
|
/* Only string can be indexed */
|
|
if (pat->type != SMP_T_STR) {
|
|
memprintf(err, "internal error: string expected, but the type is '%s'",
|
|
smp_to_type[pat->type]);
|
|
return 0;
|
|
}
|
|
|
|
/* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */
|
|
if (expr->mflags & PAT_MF_IGNORE_CASE)
|
|
return pat_idx_list_str(expr, pat, err);
|
|
|
|
/* Process the key len */
|
|
len = strlen(pat->ptr.str);
|
|
|
|
/* node memory allocation */
|
|
node = calloc(1, sizeof(*node) + len + 1);
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
/* copy the pointer to sample associated to this node */
|
|
node->data = pat->data;
|
|
node->ref = pat->ref;
|
|
|
|
/* copy the string and the trailing zero */
|
|
memcpy(node->node.key, pat->ptr.str, len + 1);
|
|
node->node.node.pfx = len * 8;
|
|
|
|
/* index the new node */
|
|
ebmb_insert_prefix(&expr->pattern_tree, &node->node, len);
|
|
node->from_ref = pat->ref->tree_head;
|
|
pat->ref->tree_head = &node->from_ref;
|
|
expr->ref->revision = rdtsc();
|
|
|
|
/* that's ok */
|
|
return 1;
|
|
}
|
|
|
|
/* Deletes all patterns from reference <elt>. Note that all of their
|
|
* expressions must be locked, and the pattern lock must be held as well.
|
|
*/
|
|
void pat_delete_gen(struct pat_ref *ref, struct pat_ref_elt *elt)
|
|
{
|
|
struct pattern_tree *tree;
|
|
struct pattern_list *pat;
|
|
void **node;
|
|
|
|
/* delete all known tree nodes. They are all allocated inline */
|
|
for (node = elt->tree_head; node;) {
|
|
tree = container_of(node, struct pattern_tree, from_ref);
|
|
node = *node;
|
|
BUG_ON(tree->ref != elt);
|
|
|
|
ebmb_delete(&tree->node);
|
|
free(tree->data);
|
|
free(tree);
|
|
}
|
|
|
|
/* delete all list nodes and free their pattern entries (str/reg) */
|
|
for (node = elt->list_head; node;) {
|
|
pat = container_of(node, struct pattern_list, from_ref);
|
|
node = *node;
|
|
BUG_ON(pat->pat.ref != elt);
|
|
|
|
/* Delete and free entry. */
|
|
LIST_DEL(&pat->list);
|
|
if (pat->pat.sflags & PAT_SF_REGFREE)
|
|
regex_free(pat->pat.ptr.reg);
|
|
else
|
|
free(pat->pat.ptr.ptr);
|
|
free(pat->pat.data);
|
|
free(pat);
|
|
}
|
|
|
|
/* update revision number to refresh the cache */
|
|
ref->revision = rdtsc();
|
|
elt->tree_head = NULL;
|
|
elt->list_head = NULL;
|
|
}
|
|
|
|
void pattern_init_expr(struct pattern_expr *expr)
|
|
{
|
|
LIST_INIT(&expr->patterns);
|
|
expr->pattern_tree = EB_ROOT;
|
|
expr->pattern_tree_2 = EB_ROOT;
|
|
}
|
|
|
|
void pattern_init_head(struct pattern_head *head)
|
|
{
|
|
LIST_INIT(&head->head);
|
|
}
|
|
|
|
/* The following functions are relative to the management of the reference
|
|
* lists. These lists are used to store the original pattern and associated
|
|
* value as string form.
|
|
*
|
|
* This is used with modifiable ACL and MAPS
|
|
*
|
|
* The pattern reference are stored with two identifiers: the unique_id and
|
|
* the reference.
|
|
*
|
|
* The reference identify a file. Each file with the same name point to the
|
|
* same reference. We can register many times one file. If the file is modified,
|
|
* all his dependencies are also modified. The reference can be used with map or
|
|
* acl.
|
|
*
|
|
* The unique_id identify inline acl. The unique id is unique for each acl.
|
|
* You cannot force the same id in the configuration file, because this repoort
|
|
* an error.
|
|
*
|
|
* A particular case appears if the filename is a number. In this case, the
|
|
* unique_id is set with the number represented by the filename and the
|
|
* reference is also set. This method prevent double unique_id.
|
|
*
|
|
*/
|
|
|
|
/* This function looks up a reference by name. If the reference is found, a
|
|
* pointer to the struct pat_ref is returned, otherwise NULL is returned.
|
|
*/
|
|
struct pat_ref *pat_ref_lookup(const char *reference)
|
|
{
|
|
struct pat_ref *ref;
|
|
|
|
list_for_each_entry(ref, &pattern_reference, list)
|
|
if (ref->reference && strcmp(reference, ref->reference) == 0)
|
|
return ref;
|
|
return NULL;
|
|
}
|
|
|
|
/* This function looks up a reference's unique id. If the reference is found, a
|
|
* pointer to the struct pat_ref is returned, otherwise NULL is returned.
|
|
*/
|
|
struct pat_ref *pat_ref_lookupid(int unique_id)
|
|
{
|
|
struct pat_ref *ref;
|
|
|
|
list_for_each_entry(ref, &pattern_reference, list)
|
|
if (ref->unique_id == unique_id)
|
|
return ref;
|
|
return NULL;
|
|
}
|
|
|
|
/* This function removes from the pattern reference <ref> all the patterns
|
|
* attached to the reference element <elt>, and the element itself. The
|
|
* reference must be locked.
|
|
*/
|
|
void pat_ref_delete_by_ptr(struct pat_ref *ref, struct pat_ref_elt *elt)
|
|
{
|
|
struct pattern_expr *expr;
|
|
struct bref *bref, *back;
|
|
|
|
/*
|
|
* we have to unlink all watchers from this reference pattern. We must
|
|
* not relink them if this elt was the last one in the list.
|
|
*/
|
|
list_for_each_entry_safe(bref, back, &elt->back_refs, users) {
|
|
LIST_DEL(&bref->users);
|
|
LIST_INIT(&bref->users);
|
|
if (elt->list.n != &ref->head)
|
|
LIST_ADDQ(&LIST_ELEM(elt->list.n, typeof(elt), list)->back_refs, &bref->users);
|
|
bref->ref = elt->list.n;
|
|
}
|
|
|
|
/* delete all entries from all expressions for this pattern */
|
|
list_for_each_entry(expr, &ref->pat, list)
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
|
|
|
|
pat_delete_gen(ref, elt);
|
|
|
|
list_for_each_entry(expr, &ref->pat, list)
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
|
|
LIST_DEL(&elt->list);
|
|
free(elt->sample);
|
|
free(elt->pattern);
|
|
free(elt);
|
|
}
|
|
|
|
/* This function removes all the patterns matching the pointer <refelt> from
|
|
* the reference and from each expr member of this reference. This function
|
|
* returns 1 if the entry was found and deleted, otherwise zero.
|
|
*/
|
|
int pat_ref_delete_by_id(struct pat_ref *ref, struct pat_ref_elt *refelt)
|
|
{
|
|
struct pat_ref_elt *elt, *safe;
|
|
|
|
/* delete pattern from reference */
|
|
list_for_each_entry_safe(elt, safe, &ref->head, list) {
|
|
if (elt == refelt) {
|
|
pat_ref_delete_by_ptr(ref, elt);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function removes all patterns matching <key> from the reference
|
|
* and from each expr member of the reference. This function returns 1
|
|
* if the deletion is done and returns 0 is the entry is not found.
|
|
*/
|
|
int pat_ref_delete(struct pat_ref *ref, const char *key)
|
|
{
|
|
struct pat_ref_elt *elt, *safe;
|
|
int found = 0;
|
|
|
|
/* delete pattern from reference */
|
|
list_for_each_entry_safe(elt, safe, &ref->head, list) {
|
|
if (strcmp(key, elt->pattern) == 0) {
|
|
pat_ref_delete_by_ptr(ref, elt);
|
|
found = 1;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* find and return an element <elt> matching <key> in a reference <ref>
|
|
* return NULL if not found
|
|
*/
|
|
struct pat_ref_elt *pat_ref_find_elt(struct pat_ref *ref, const char *key)
|
|
{
|
|
struct pat_ref_elt *elt;
|
|
|
|
list_for_each_entry(elt, &ref->head, list) {
|
|
if (strcmp(key, elt->pattern) == 0)
|
|
return elt;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* This function modifies the sample of pat_ref_elt <elt> in all expressions
|
|
* found under <ref> to become <value>. It is assumed that the caller has
|
|
* already verified that <elt> belongs to <ref>.
|
|
*/
|
|
static inline int pat_ref_set_elt(struct pat_ref *ref, struct pat_ref_elt *elt,
|
|
const char *value, char **err)
|
|
{
|
|
struct pattern_expr *expr;
|
|
struct sample_data **data;
|
|
char *sample;
|
|
struct sample_data test;
|
|
|
|
/* Try all needed converters. */
|
|
list_for_each_entry(expr, &ref->pat, list) {
|
|
if (!expr->pat_head->parse_smp)
|
|
continue;
|
|
|
|
if (!expr->pat_head->parse_smp(value, &test)) {
|
|
memprintf(err, "unable to parse '%s'", value);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Modify pattern from reference. */
|
|
sample = strdup(value);
|
|
if (!sample) {
|
|
memprintf(err, "out of memory error");
|
|
return 0;
|
|
}
|
|
/* Load sample in each reference. All the conversions are tested
|
|
* below, normally these calls don't fail.
|
|
*/
|
|
list_for_each_entry(expr, &ref->pat, list) {
|
|
if (!expr->pat_head->parse_smp)
|
|
continue;
|
|
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
|
|
data = pattern_find_smp(expr, elt);
|
|
if (data && *data && !expr->pat_head->parse_smp(sample, *data))
|
|
*data = NULL;
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
}
|
|
|
|
/* free old sample only when all exprs are updated */
|
|
free(elt->sample);
|
|
elt->sample = sample;
|
|
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function modifies the sample of pat_ref_elt <refelt> in all expressions
|
|
* found under <ref> to become <value>, after checking that <refelt> really
|
|
* belongs to <ref>.
|
|
*/
|
|
int pat_ref_set_by_id(struct pat_ref *ref, struct pat_ref_elt *refelt, const char *value, char **err)
|
|
{
|
|
struct pat_ref_elt *elt;
|
|
|
|
/* Look for pattern in the reference. */
|
|
list_for_each_entry(elt, &ref->head, list) {
|
|
if (elt == refelt) {
|
|
if (!pat_ref_set_elt(ref, elt, value, err))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
memprintf(err, "key or pattern not found");
|
|
return 0;
|
|
}
|
|
|
|
/* This function modifies to <value> the sample of all patterns matching <key>
|
|
* under <ref>.
|
|
*/
|
|
int pat_ref_set(struct pat_ref *ref, const char *key, const char *value, char **err)
|
|
{
|
|
struct pat_ref_elt *elt;
|
|
int found = 0;
|
|
char *_merr;
|
|
char **merr;
|
|
|
|
if (err) {
|
|
merr = &_merr;
|
|
*merr = NULL;
|
|
}
|
|
else
|
|
merr = NULL;
|
|
|
|
/* Look for pattern in the reference. */
|
|
list_for_each_entry(elt, &ref->head, list) {
|
|
if (strcmp(key, elt->pattern) == 0) {
|
|
if (!pat_ref_set_elt(ref, elt, value, merr)) {
|
|
if (err && merr) {
|
|
if (!found) {
|
|
*err = *merr;
|
|
} else {
|
|
memprintf(err, "%s, %s", *err, *merr);
|
|
free(*merr);
|
|
*merr = NULL;
|
|
}
|
|
}
|
|
}
|
|
found = 1;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
memprintf(err, "entry not found");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* This function creates a new reference. <ref> is the reference name.
|
|
* <flags> are PAT_REF_*. /!\ The reference is not checked, and must
|
|
* be unique. The user must check the reference with "pat_ref_lookup()"
|
|
* before calling this function. If the function fails, it returns NULL,
|
|
* otherwise it returns the new struct pat_ref.
|
|
*/
|
|
struct pat_ref *pat_ref_new(const char *reference, const char *display, unsigned int flags)
|
|
{
|
|
struct pat_ref *ref;
|
|
|
|
ref = calloc(1, sizeof(*ref));
|
|
if (!ref)
|
|
return NULL;
|
|
|
|
if (display) {
|
|
ref->display = strdup(display);
|
|
if (!ref->display) {
|
|
free(ref);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ref->reference = strdup(reference);
|
|
if (!ref->reference) {
|
|
free(ref->display);
|
|
free(ref);
|
|
return NULL;
|
|
}
|
|
|
|
ref->flags = flags;
|
|
ref->unique_id = -1;
|
|
ref->revision = 0;
|
|
|
|
LIST_INIT(&ref->head);
|
|
LIST_INIT(&ref->pat);
|
|
HA_SPIN_INIT(&ref->lock);
|
|
LIST_ADDQ(&pattern_reference, &ref->list);
|
|
|
|
return ref;
|
|
}
|
|
|
|
/* This function creates a new reference. <unique_id> is the unique id. If
|
|
* the value of <unique_id> is -1, the unique id is calculated later.
|
|
* <flags> are PAT_REF_*. /!\ The reference is not checked, and must
|
|
* be unique. The user must check the reference with "pat_ref_lookup()"
|
|
* or pat_ref_lookupid before calling this function. If the function
|
|
* fails, it returns NULL, otherwise it returns the new struct pat_ref.
|
|
*/
|
|
struct pat_ref *pat_ref_newid(int unique_id, const char *display, unsigned int flags)
|
|
{
|
|
struct pat_ref *ref;
|
|
|
|
ref = calloc(1, sizeof(*ref));
|
|
if (!ref)
|
|
return NULL;
|
|
|
|
if (display) {
|
|
ref->display = strdup(display);
|
|
if (!ref->display) {
|
|
free(ref);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ref->reference = NULL;
|
|
ref->flags = flags;
|
|
ref->curr_gen = 0;
|
|
ref->next_gen = 0;
|
|
ref->unique_id = unique_id;
|
|
LIST_INIT(&ref->head);
|
|
LIST_INIT(&ref->pat);
|
|
HA_SPIN_INIT(&ref->lock);
|
|
LIST_ADDQ(&pattern_reference, &ref->list);
|
|
|
|
return ref;
|
|
}
|
|
|
|
/* This function adds entry to <ref>. It can fail on memory error. It returns
|
|
* the newly added element on success, or NULL on failure. The PATREF_LOCK on
|
|
* <ref> must be held. It sets the newly created pattern's generation number
|
|
* to the same value as the reference's.
|
|
*/
|
|
struct pat_ref_elt *pat_ref_append(struct pat_ref *ref, const char *pattern, const char *sample, int line)
|
|
{
|
|
struct pat_ref_elt *elt;
|
|
|
|
elt = calloc(1, sizeof(*elt));
|
|
if (!elt)
|
|
goto fail;
|
|
|
|
elt->gen_id = ref->curr_gen;
|
|
elt->line = line;
|
|
|
|
elt->pattern = strdup(pattern);
|
|
if (!elt->pattern)
|
|
goto fail;
|
|
|
|
if (sample) {
|
|
elt->sample = strdup(sample);
|
|
if (!elt->sample)
|
|
goto fail;
|
|
}
|
|
|
|
LIST_INIT(&elt->back_refs);
|
|
elt->list_head = NULL;
|
|
elt->tree_head = NULL;
|
|
LIST_ADDQ(&ref->head, &elt->list);
|
|
return elt;
|
|
fail:
|
|
if (elt)
|
|
free(elt->pattern);
|
|
free(elt);
|
|
return NULL;
|
|
}
|
|
|
|
/* This function creates sample found in <elt>, parses the pattern also
|
|
* found in <elt> and inserts it in <expr>. The function copies <patflags>
|
|
* into <expr>. If the function fails, it returns 0 and <err> is filled.
|
|
* In success case, the function returns 1.
|
|
*/
|
|
int pat_ref_push(struct pat_ref_elt *elt, struct pattern_expr *expr,
|
|
int patflags, char **err)
|
|
{
|
|
struct sample_data *data;
|
|
struct pattern pattern;
|
|
|
|
/* Create sample */
|
|
if (elt->sample && expr->pat_head->parse_smp) {
|
|
/* New sample. */
|
|
data = malloc(sizeof(*data));
|
|
if (!data)
|
|
return 0;
|
|
|
|
/* Parse value. */
|
|
if (!expr->pat_head->parse_smp(elt->sample, data)) {
|
|
memprintf(err, "unable to parse '%s'", elt->sample);
|
|
free(data);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
else
|
|
data = NULL;
|
|
|
|
/* initialise pattern */
|
|
memset(&pattern, 0, sizeof(pattern));
|
|
pattern.data = data;
|
|
pattern.ref = elt;
|
|
|
|
/* parse pattern */
|
|
if (!expr->pat_head->parse(elt->pattern, &pattern, expr->mflags, err)) {
|
|
free(data);
|
|
return 0;
|
|
}
|
|
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
|
|
/* index pattern */
|
|
if (!expr->pat_head->index(expr, &pattern, err)) {
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
free(data);
|
|
return 0;
|
|
}
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function tries to commit entry <elt> into <ref>. The new entry must
|
|
* have already been inserted using pat_ref_append(), and its generation number
|
|
* may have been adjusted as it will not be changed. <err> must point to a NULL
|
|
* pointer. The PATREF lock on <ref> must be held. All the pattern_expr for
|
|
* this reference will be updated (parsing, indexing). On success, non-zero is
|
|
* returned. On failure, all the operation is rolled back (the element is
|
|
* deleted from all expressions and is freed), zero is returned and the error
|
|
* pointer <err> may have been updated (and the caller must free it). Failure
|
|
* causes include memory allocation, parsing error or indexing error.
|
|
*/
|
|
int pat_ref_commit_elt(struct pat_ref *ref, struct pat_ref_elt *elt, char **err)
|
|
{
|
|
struct pattern_expr *expr;
|
|
|
|
list_for_each_entry(expr, &ref->pat, list) {
|
|
if (!pat_ref_push(elt, expr, 0, err)) {
|
|
pat_ref_delete_by_ptr(ref, elt);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Loads <pattern>:<sample> into <ref> for generation <gen>. <sample> may be
|
|
* NULL if none exists (e.g. ACL). If not needed, the generation number should
|
|
* be set to ref->curr_gen. The error pointer must initially point to NULL. The
|
|
* new entry will be propagated to all use places, involving allocation, parsing
|
|
* and indexing. On error (parsing, allocation), the operation will be rolled
|
|
* back, an error may be reported, and NULL will be reported. On success, the
|
|
* freshly allocated element will be returned. The PATREF lock on <ref> must be
|
|
* held during the operation.
|
|
*/
|
|
struct pat_ref_elt *pat_ref_load(struct pat_ref *ref, unsigned int gen,
|
|
const char *pattern, const char *sample,
|
|
int line, char **err)
|
|
{
|
|
struct pat_ref_elt *elt;
|
|
|
|
elt = pat_ref_append(ref, pattern, sample, line);
|
|
if (elt) {
|
|
elt->gen_id = gen;
|
|
if (!pat_ref_commit_elt(ref, elt, err))
|
|
elt = NULL;
|
|
} else
|
|
memprintf(err, "out of memory error");
|
|
|
|
return elt;
|
|
}
|
|
|
|
/* This function adds entry to <ref>. It can fail on memory error. The new
|
|
* entry is added at all the pattern_expr registered in this reference. The
|
|
* function stops on the first error encountered. It returns 0 and <err> is
|
|
* filled. If an error is encountered, the complete add operation is cancelled.
|
|
* If the insertion is a success the function returns 1.
|
|
*/
|
|
int pat_ref_add(struct pat_ref *ref,
|
|
const char *pattern, const char *sample,
|
|
char **err)
|
|
{
|
|
return !!pat_ref_load(ref, ref->curr_gen, pattern, sample, -1, err);
|
|
}
|
|
|
|
/* This function purges all elements from <ref> that are older than generation
|
|
* <oldest>. It will not purge more than <budget> entries at once, in order to
|
|
* remain responsive. If budget is negative, no limit is applied.
|
|
* The caller must already hold the PATREF_LOCK on <ref>. The function will
|
|
* take the PATEXP_LOCK on all expressions of the pattern as needed. It returns
|
|
* non-zero on completion, or zero if it had to stop before the end after
|
|
* <budget> was depleted.
|
|
*/
|
|
int pat_ref_purge_older(struct pat_ref *ref, unsigned int oldest, int budget)
|
|
{
|
|
struct pat_ref_elt *elt, *elt_bck;
|
|
struct bref *bref, *bref_bck;
|
|
struct pattern_expr *expr;
|
|
int done;
|
|
|
|
list_for_each_entry(expr, &ref->pat, list)
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
|
|
|
|
/* all expr are locked, we can safely remove all pat_ref */
|
|
|
|
/* assume completion for e.g. empty lists */
|
|
done = 1;
|
|
list_for_each_entry_safe(elt, elt_bck, &ref->head, list) {
|
|
if ((int)(elt->gen_id - oldest) >= 0)
|
|
continue;
|
|
|
|
if (budget >= 0 && !budget--) {
|
|
done = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* we have to unlink all watchers from this reference pattern. We must
|
|
* not relink them if this elt was the last one in the list.
|
|
*/
|
|
list_for_each_entry_safe(bref, bref_bck, &elt->back_refs, users) {
|
|
LIST_DEL(&bref->users);
|
|
LIST_INIT(&bref->users);
|
|
if (elt->list.n != &ref->head)
|
|
LIST_ADDQ(&LIST_ELEM(elt->list.n, typeof(elt), list)->back_refs, &bref->users);
|
|
bref->ref = elt->list.n;
|
|
}
|
|
|
|
/* delete the storage for all representations of this pattern. */
|
|
pat_delete_gen(ref, elt);
|
|
|
|
LIST_DEL(&elt->list);
|
|
free(elt->pattern);
|
|
free(elt->sample);
|
|
free(elt);
|
|
}
|
|
|
|
list_for_each_entry(expr, &ref->pat, list)
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
if (done) {
|
|
malloc_trim(0);
|
|
}
|
|
#endif
|
|
|
|
return done;
|
|
}
|
|
|
|
/* This function prunes <ref>, replaces all references by the references
|
|
* of <replace>, and reindexes all the news values.
|
|
*
|
|
* The patterns are loaded in best effort and the errors are ignored,
|
|
* but written in the logs.
|
|
*/
|
|
void pat_ref_reload(struct pat_ref *ref, struct pat_ref *replace)
|
|
{
|
|
struct pattern_expr *expr;
|
|
struct pat_ref_elt *elt, *safe;
|
|
struct bref *bref, *back;
|
|
struct pattern pattern;
|
|
|
|
|
|
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
|
|
list_for_each_entry(expr, &ref->pat, list) {
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
|
|
}
|
|
|
|
/* all expr are locked, we can safely remove all pat_ref */
|
|
list_for_each_entry_safe(elt, safe, &ref->head, list) {
|
|
list_for_each_entry_safe(bref, back, &elt->back_refs, users) {
|
|
/* we have to unlink all watchers. */
|
|
LIST_DEL_INIT(&bref->users);
|
|
bref->ref = NULL;
|
|
}
|
|
pat_delete_gen(ref, elt);
|
|
LIST_DEL(&elt->list);
|
|
free(elt->pattern);
|
|
free(elt->sample);
|
|
free(elt);
|
|
}
|
|
|
|
/* switch pat_ret_elt lists */
|
|
LIST_ADD(&replace->head, &ref->head);
|
|
LIST_DEL(&replace->head);
|
|
|
|
list_for_each_entry(expr, &ref->pat, list) {
|
|
list_for_each_entry(elt, &ref->head, list) {
|
|
char *err = NULL;
|
|
struct sample_data *data = NULL;
|
|
|
|
/* Create sample */
|
|
if (elt->sample && expr->pat_head->parse_smp) {
|
|
/* New sample. */
|
|
data = malloc(sizeof(*data));
|
|
if (!data)
|
|
continue;
|
|
|
|
/* Parse value. */
|
|
if (!expr->pat_head->parse_smp(elt->sample, data)) {
|
|
memprintf(&err, "unable to parse '%s'", elt->sample);
|
|
send_log(NULL, LOG_NOTICE, "%s", err);
|
|
free(err);
|
|
free(data);
|
|
continue;
|
|
}
|
|
|
|
}
|
|
|
|
/* initialise pattern */
|
|
memset(&pattern, 0, sizeof(pattern));
|
|
pattern.data = data;
|
|
pattern.ref = elt;
|
|
|
|
/* parse pattern */
|
|
if (!expr->pat_head->parse(elt->pattern, &pattern, expr->mflags, &err)) {
|
|
send_log(NULL, LOG_NOTICE, "%s", err);
|
|
free(err);
|
|
free(data);
|
|
continue;
|
|
}
|
|
|
|
/* index pattern */
|
|
if (!expr->pat_head->index(expr, &pattern, &err)) {
|
|
send_log(NULL, LOG_NOTICE, "%s", err);
|
|
free(err);
|
|
free(data);
|
|
continue;
|
|
}
|
|
}
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
|
|
}
|
|
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
|
|
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
malloc_trim(0);
|
|
#endif
|
|
}
|
|
|
|
/* This function prunes all entries of <ref> and all their associated
|
|
* pattern_expr. It may return before the end of the list is reached,
|
|
* returning 0, to yield, indicating to the caller that it must call it again.
|
|
* until it returns non-zero. All patterns are purged, both current ones and
|
|
* future or incomplete ones. This is used by "clear map" or "clear acl".
|
|
*/
|
|
int pat_ref_prune(struct pat_ref *ref)
|
|
{
|
|
return pat_ref_purge_older(ref, ref->curr_gen + 1, 100) &&
|
|
pat_ref_purge_older(ref, ref->next_gen + 1, 100);
|
|
}
|
|
|
|
/* This function looks up any existing reference <ref> in pattern_head <head>, and
|
|
* returns the associated pattern_expr pointer if found, otherwise NULL.
|
|
*/
|
|
struct pattern_expr *pattern_lookup_expr(struct pattern_head *head, struct pat_ref *ref)
|
|
{
|
|
struct pattern_expr_list *expr;
|
|
|
|
list_for_each_entry(expr, &head->head, list)
|
|
if (expr->expr->ref == ref)
|
|
return expr->expr;
|
|
return NULL;
|
|
}
|
|
|
|
/* This function creates new pattern_expr associated to the reference <ref>.
|
|
* <ref> can be NULL. If an error occurs, the function returns NULL and
|
|
* <err> is filled. Otherwise, the function returns new pattern_expr linked
|
|
* with <head> and <ref>.
|
|
*
|
|
* The returned value can be an already filled pattern list, in this case the
|
|
* flag <reuse> is set.
|
|
*/
|
|
struct pattern_expr *pattern_new_expr(struct pattern_head *head, struct pat_ref *ref,
|
|
int patflags, char **err, int *reuse)
|
|
{
|
|
struct pattern_expr *expr;
|
|
struct pattern_expr_list *list;
|
|
|
|
if (reuse)
|
|
*reuse = 0;
|
|
|
|
/* Memory and initialization of the chain element. */
|
|
list = calloc(1, sizeof(*list));
|
|
if (!list) {
|
|
memprintf(err, "out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
/* Look for existing similar expr. No that only the index, parse and
|
|
* parse_smp function must be identical for having similar pattern.
|
|
* The other function depends of these first.
|
|
*/
|
|
if (ref) {
|
|
list_for_each_entry(expr, &ref->pat, list)
|
|
if (expr->pat_head->index == head->index &&
|
|
expr->pat_head->parse == head->parse &&
|
|
expr->pat_head->parse_smp == head->parse_smp &&
|
|
expr->mflags == patflags)
|
|
break;
|
|
if (&expr->list == &ref->pat)
|
|
expr = NULL;
|
|
}
|
|
else
|
|
expr = NULL;
|
|
|
|
/* If no similar expr was found, we create new expr. */
|
|
if (!expr) {
|
|
/* Get a lot of memory for the expr struct. */
|
|
expr = calloc(1, sizeof(*expr));
|
|
if (!expr) {
|
|
free(list);
|
|
memprintf(err, "out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize this new expr. */
|
|
pattern_init_expr(expr);
|
|
|
|
/* Copy the pattern matching and indexing flags. */
|
|
expr->mflags = patflags;
|
|
|
|
/* This new pattern expression reference one of his heads. */
|
|
expr->pat_head = head;
|
|
|
|
/* Link with ref, or to self to facilitate LIST_DEL() */
|
|
if (ref)
|
|
LIST_ADDQ(&ref->pat, &expr->list);
|
|
else
|
|
LIST_INIT(&expr->list);
|
|
|
|
expr->ref = ref;
|
|
|
|
HA_RWLOCK_INIT(&expr->lock);
|
|
|
|
/* We must free this pattern if it is no more used. */
|
|
list->do_free = 1;
|
|
}
|
|
else {
|
|
/* If the pattern used already exists, it is already linked
|
|
* with ref and we must not free it.
|
|
*/
|
|
list->do_free = 0;
|
|
if (reuse)
|
|
*reuse = 1;
|
|
}
|
|
|
|
/* The new list element reference the pattern_expr. */
|
|
list->expr = expr;
|
|
|
|
/* Link the list element with the pattern_head. */
|
|
LIST_ADDQ(&head->head, &list->list);
|
|
return expr;
|
|
}
|
|
|
|
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
|
|
* be returned there on errors and the caller will have to free it.
|
|
*
|
|
* The file contains one key + value per line. Lines which start with '#' are
|
|
* ignored, just like empty lines. Leading tabs/spaces are stripped. The key is
|
|
* then the first "word" (series of non-space/tabs characters), and the value is
|
|
* what follows this series of space/tab till the end of the line excluding
|
|
* trailing spaces/tabs.
|
|
*
|
|
* Example :
|
|
*
|
|
* # this is a comment and is ignored
|
|
* 62.212.114.60 1wt.eu \n
|
|
* <-><-----------><---><----><---->
|
|
* | | | | `--- trailing spaces ignored
|
|
* | | | `-------- value
|
|
* | | `--------------- middle spaces ignored
|
|
* | `------------------------ key
|
|
* `-------------------------------- leading spaces ignored
|
|
*
|
|
* Return non-zero in case of success, otherwise 0.
|
|
*/
|
|
int pat_ref_read_from_file_smp(struct pat_ref *ref, const char *filename, char **err)
|
|
{
|
|
FILE *file;
|
|
char *c;
|
|
int ret = 0;
|
|
int line = 0;
|
|
char *key_beg;
|
|
char *key_end;
|
|
char *value_beg;
|
|
char *value_end;
|
|
|
|
file = fopen(filename, "r");
|
|
if (!file) {
|
|
memprintf(err, "failed to open pattern file <%s>", filename);
|
|
return 0;
|
|
}
|
|
|
|
/* now parse all patterns. The file may contain only one pattern
|
|
* followed by one value per line. The start spaces, separator spaces
|
|
* and and spaces are stripped. Each can contain comment started by '#'
|
|
*/
|
|
while (fgets(trash.area, trash.size, file) != NULL) {
|
|
line++;
|
|
c = trash.area;
|
|
|
|
/* ignore lines beginning with a dash */
|
|
if (*c == '#')
|
|
continue;
|
|
|
|
/* strip leading spaces and tabs */
|
|
while (*c == ' ' || *c == '\t')
|
|
c++;
|
|
|
|
/* empty lines are ignored too */
|
|
if (*c == '\0' || *c == '\r' || *c == '\n')
|
|
continue;
|
|
|
|
/* look for the end of the key */
|
|
key_beg = c;
|
|
while (*c && *c != ' ' && *c != '\t' && *c != '\n' && *c != '\r')
|
|
c++;
|
|
|
|
key_end = c;
|
|
|
|
/* strip middle spaces and tabs */
|
|
while (*c == ' ' || *c == '\t')
|
|
c++;
|
|
|
|
/* look for the end of the value, it is the end of the line */
|
|
value_beg = c;
|
|
while (*c && *c != '\n' && *c != '\r')
|
|
c++;
|
|
value_end = c;
|
|
|
|
/* trim possibly trailing spaces and tabs */
|
|
while (value_end > value_beg && (value_end[-1] == ' ' || value_end[-1] == '\t'))
|
|
value_end--;
|
|
|
|
/* set final \0 and check entries */
|
|
*key_end = '\0';
|
|
*value_end = '\0';
|
|
|
|
/* insert values */
|
|
if (!pat_ref_append(ref, key_beg, value_beg, line)) {
|
|
memprintf(err, "out of memory");
|
|
goto out_close;
|
|
}
|
|
}
|
|
|
|
if (ferror(file)) {
|
|
memprintf(err, "error encountered while reading <%s> : %s",
|
|
filename, strerror(errno));
|
|
goto out_close;
|
|
}
|
|
/* success */
|
|
ret = 1;
|
|
|
|
out_close:
|
|
fclose(file);
|
|
return ret;
|
|
}
|
|
|
|
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
|
|
* be returned there on errors and the caller will have to free it.
|
|
*/
|
|
int pat_ref_read_from_file(struct pat_ref *ref, const char *filename, char **err)
|
|
{
|
|
FILE *file;
|
|
char *c;
|
|
char *arg;
|
|
int ret = 0;
|
|
int line = 0;
|
|
|
|
file = fopen(filename, "r");
|
|
if (!file) {
|
|
memprintf(err, "failed to open pattern file <%s>", filename);
|
|
return 0;
|
|
}
|
|
|
|
/* now parse all patterns. The file may contain only one pattern per
|
|
* line. If the line contains spaces, they will be part of the pattern.
|
|
* The pattern stops at the first CR, LF or EOF encountered.
|
|
*/
|
|
while (fgets(trash.area, trash.size, file) != NULL) {
|
|
line++;
|
|
c = trash.area;
|
|
|
|
/* ignore lines beginning with a dash */
|
|
if (*c == '#')
|
|
continue;
|
|
|
|
/* strip leading spaces and tabs */
|
|
while (*c == ' ' || *c == '\t')
|
|
c++;
|
|
|
|
|
|
arg = c;
|
|
while (*c && *c != '\n' && *c != '\r')
|
|
c++;
|
|
*c = 0;
|
|
|
|
/* empty lines are ignored too */
|
|
if (c == arg)
|
|
continue;
|
|
|
|
if (!pat_ref_append(ref, arg, NULL, line)) {
|
|
memprintf(err, "out of memory when loading patterns from file <%s>", filename);
|
|
goto out_close;
|
|
}
|
|
}
|
|
|
|
if (ferror(file)) {
|
|
memprintf(err, "error encountered while reading <%s> : %s",
|
|
filename, strerror(errno));
|
|
goto out_close;
|
|
}
|
|
ret = 1; /* success */
|
|
|
|
out_close:
|
|
fclose(file);
|
|
return ret;
|
|
}
|
|
|
|
int pattern_read_from_file(struct pattern_head *head, unsigned int refflags,
|
|
const char *filename, int patflags, int load_smp,
|
|
char **err, const char *file, int line)
|
|
{
|
|
struct pat_ref *ref;
|
|
struct pattern_expr *expr;
|
|
struct pat_ref_elt *elt;
|
|
int reuse = 0;
|
|
|
|
/* Lookup for the existing reference. */
|
|
ref = pat_ref_lookup(filename);
|
|
|
|
/* If the reference doesn't exists, create it and load associated file. */
|
|
if (!ref) {
|
|
chunk_printf(&trash,
|
|
"pattern loaded from file '%s' used by %s at file '%s' line %d",
|
|
filename, refflags & PAT_REF_MAP ? "map" : "acl", file, line);
|
|
|
|
ref = pat_ref_new(filename, trash.area, refflags);
|
|
if (!ref) {
|
|
memprintf(err, "out of memory");
|
|
return 0;
|
|
}
|
|
|
|
if (load_smp) {
|
|
ref->flags |= PAT_REF_SMP;
|
|
if (!pat_ref_read_from_file_smp(ref, filename, err))
|
|
return 0;
|
|
}
|
|
else {
|
|
if (!pat_ref_read_from_file(ref, filename, err))
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
/* The reference already exists, check the map compatibility. */
|
|
|
|
/* If the load require samples and the flag PAT_REF_SMP is not set,
|
|
* the reference doesn't contain sample, and cannot be used.
|
|
*/
|
|
if (load_smp) {
|
|
if (!(ref->flags & PAT_REF_SMP)) {
|
|
memprintf(err, "The file \"%s\" is already used as one column file "
|
|
"and cannot be used by as two column file.",
|
|
filename);
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
/* The load doesn't require samples. If the flag PAT_REF_SMP is
|
|
* set, the reference contains a sample, and cannot be used.
|
|
*/
|
|
if (ref->flags & PAT_REF_SMP) {
|
|
memprintf(err, "The file \"%s\" is already used as two column file "
|
|
"and cannot be used by as one column file.",
|
|
filename);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Extends display */
|
|
chunk_printf(&trash, "%s", ref->display);
|
|
chunk_appendf(&trash, ", by %s at file '%s' line %d",
|
|
refflags & PAT_REF_MAP ? "map" : "acl", file, line);
|
|
free(ref->display);
|
|
ref->display = strdup(trash.area);
|
|
if (!ref->display) {
|
|
memprintf(err, "out of memory");
|
|
return 0;
|
|
}
|
|
|
|
/* Merge flags. */
|
|
ref->flags |= refflags;
|
|
}
|
|
|
|
/* Now, we can loading patterns from the reference. */
|
|
|
|
/* Lookup for existing reference in the head. If the reference
|
|
* doesn't exists, create it.
|
|
*/
|
|
expr = pattern_lookup_expr(head, ref);
|
|
if (!expr || (expr->mflags != patflags)) {
|
|
expr = pattern_new_expr(head, ref, patflags, err, &reuse);
|
|
if (!expr)
|
|
return 0;
|
|
}
|
|
|
|
/* The returned expression may be not empty, because the function
|
|
* "pattern_new_expr" lookup for similar pattern list and can
|
|
* reuse a already filled pattern list. In this case, we can not
|
|
* reload the patterns.
|
|
*/
|
|
if (reuse)
|
|
return 1;
|
|
|
|
/* Load reference content in the pattern expression. */
|
|
list_for_each_entry(elt, &ref->head, list) {
|
|
if (!pat_ref_push(elt, expr, patflags, err)) {
|
|
if (elt->line > 0)
|
|
memprintf(err, "%s at line %d of file '%s'",
|
|
*err, elt->line, filename);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function executes a pattern match on a sample. It applies pattern <expr>
|
|
* to sample <smp>. The function returns NULL if the sample don't match. It returns
|
|
* non-null if the sample match. If <fill> is true and the sample match, the
|
|
* function returns the matched pattern. In many cases, this pattern can be a
|
|
* static buffer.
|
|
*/
|
|
struct pattern *pattern_exec_match(struct pattern_head *head, struct sample *smp, int fill)
|
|
{
|
|
struct pattern_expr_list *list;
|
|
struct pattern *pat;
|
|
|
|
if (!head->match) {
|
|
if (fill) {
|
|
static_pattern.data = NULL;
|
|
static_pattern.ref = NULL;
|
|
static_pattern.sflags = 0;
|
|
static_pattern.type = SMP_T_SINT;
|
|
static_pattern.val.i = 1;
|
|
}
|
|
return &static_pattern;
|
|
}
|
|
|
|
/* convert input to string */
|
|
if (!sample_convert(smp, head->expect_type))
|
|
return NULL;
|
|
|
|
list_for_each_entry(list, &head->head, list) {
|
|
HA_RWLOCK_RDLOCK(PATEXP_LOCK, &list->expr->lock);
|
|
pat = head->match(smp, list->expr, fill);
|
|
if (pat) {
|
|
/* We duplicate the pattern cause it could be modified
|
|
by another thread */
|
|
if (pat != &static_pattern) {
|
|
memcpy(&static_pattern, pat, sizeof(struct pattern));
|
|
pat = &static_pattern;
|
|
}
|
|
|
|
/* We also duplicate the sample data for
|
|
same reason */
|
|
if (pat->data && (pat->data != &static_sample_data)) {
|
|
switch(pat->data->type) {
|
|
case SMP_T_STR:
|
|
static_sample_data.type = SMP_T_STR;
|
|
static_sample_data.u.str = *get_trash_chunk();
|
|
static_sample_data.u.str.data = pat->data->u.str.data;
|
|
if (static_sample_data.u.str.data >= static_sample_data.u.str.size)
|
|
static_sample_data.u.str.data = static_sample_data.u.str.size - 1;
|
|
memcpy(static_sample_data.u.str.area,
|
|
pat->data->u.str.area, static_sample_data.u.str.data);
|
|
static_sample_data.u.str.area[static_sample_data.u.str.data] = 0;
|
|
pat->data = &static_sample_data;
|
|
break;
|
|
|
|
case SMP_T_IPV4:
|
|
case SMP_T_IPV6:
|
|
case SMP_T_SINT:
|
|
memcpy(&static_sample_data, pat->data, sizeof(struct sample_data));
|
|
pat->data = &static_sample_data;
|
|
break;
|
|
default:
|
|
/* unimplemented pattern type */
|
|
pat->data = NULL;
|
|
break;
|
|
}
|
|
}
|
|
HA_RWLOCK_RDUNLOCK(PATEXP_LOCK, &list->expr->lock);
|
|
return pat;
|
|
}
|
|
HA_RWLOCK_RDUNLOCK(PATEXP_LOCK, &list->expr->lock);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This function prunes the pattern expressions starting at pattern_head <head>. */
|
|
void pattern_prune(struct pattern_head *head)
|
|
{
|
|
struct pattern_expr_list *list, *safe;
|
|
|
|
list_for_each_entry_safe(list, safe, &head->head, list) {
|
|
LIST_DEL(&list->list);
|
|
if (list->do_free) {
|
|
LIST_DEL(&list->expr->list);
|
|
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &list->expr->lock);
|
|
head->prune(list->expr);
|
|
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &list->expr->lock);
|
|
free(list->expr);
|
|
}
|
|
free(list);
|
|
}
|
|
}
|
|
|
|
/* This function searches occurrences of pattern reference element <ref> in
|
|
* expression <expr> and returns a pointer to a pointer of the sample storage.
|
|
* If <ref> is not found, NULL is returned.
|
|
*/
|
|
struct sample_data **pattern_find_smp(struct pattern_expr *expr, struct pat_ref_elt *ref)
|
|
{
|
|
struct ebmb_node *node;
|
|
struct pattern_tree *elt;
|
|
struct pattern_list *pat;
|
|
|
|
for (node = ebmb_first(&expr->pattern_tree);
|
|
node;
|
|
node = ebmb_next(node)) {
|
|
elt = container_of(node, struct pattern_tree, node);
|
|
if (elt->ref == ref)
|
|
return &elt->data;
|
|
}
|
|
|
|
for (node = ebmb_first(&expr->pattern_tree_2);
|
|
node;
|
|
node = ebmb_next(node)) {
|
|
elt = container_of(node, struct pattern_tree, node);
|
|
if (elt->ref == ref)
|
|
return &elt->data;
|
|
}
|
|
|
|
list_for_each_entry(pat, &expr->patterns, list)
|
|
if (pat->pat.ref == ref)
|
|
return &pat->pat.data;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function compares two pat_ref** on their unique_id, and returns -1/0/1
|
|
* depending on their order (suitable for sorting).
|
|
*/
|
|
static int cmp_pat_ref(const void *_a, const void *_b)
|
|
{
|
|
struct pat_ref * const *a = _a;
|
|
struct pat_ref * const *b = _b;
|
|
|
|
if ((*a)->unique_id < (*b)->unique_id)
|
|
return -1;
|
|
else if ((*a)->unique_id > (*b)->unique_id)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* This function finalizes the configuration parsing. It sets all the
|
|
* automatic ids.
|
|
*/
|
|
int pattern_finalize_config(void)
|
|
{
|
|
size_t len = 0;
|
|
size_t unassigned_pos = 0;
|
|
int next_unique_id = 0;
|
|
size_t i, j;
|
|
struct pat_ref *ref, **arr;
|
|
struct list pr = LIST_HEAD_INIT(pr);
|
|
|
|
pat_lru_seed = ha_random();
|
|
|
|
/* Count pat_refs with user defined unique_id and totalt count */
|
|
list_for_each_entry(ref, &pattern_reference, list) {
|
|
len++;
|
|
if (ref->unique_id != -1)
|
|
unassigned_pos++;
|
|
}
|
|
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
arr = calloc(len, sizeof(*arr));
|
|
if (arr == NULL) {
|
|
ha_alert("Out of memory error.\n");
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
i = 0;
|
|
j = unassigned_pos;
|
|
list_for_each_entry(ref, &pattern_reference, list) {
|
|
if (ref->unique_id != -1)
|
|
arr[i++] = ref;
|
|
else
|
|
arr[j++] = ref;
|
|
}
|
|
|
|
/* Sort first segment of array with user-defined unique ids for
|
|
* fast lookup when generating unique ids
|
|
*/
|
|
qsort(arr, unassigned_pos, sizeof(*arr), cmp_pat_ref);
|
|
|
|
/* Assign unique ids to the rest of the elements */
|
|
for (i = unassigned_pos; i < len; i++) {
|
|
do {
|
|
arr[i]->unique_id = next_unique_id++;
|
|
} while (bsearch(&arr[i], arr, unassigned_pos, sizeof(*arr), cmp_pat_ref));
|
|
}
|
|
|
|
/* Sort complete array */
|
|
qsort(arr, len, sizeof(*arr), cmp_pat_ref);
|
|
|
|
/* Convert back to linked list */
|
|
for (i = 0; i < len; i++)
|
|
LIST_ADDQ(&pr, &arr[i]->list);
|
|
|
|
/* swap root */
|
|
LIST_ADD(&pr, &pattern_reference);
|
|
LIST_DEL(&pr);
|
|
|
|
free(arr);
|
|
return 0;
|
|
}
|
|
|
|
static int pattern_per_thread_lru_alloc()
|
|
{
|
|
if (!global.tune.pattern_cache)
|
|
return 1;
|
|
pat_lru_tree = lru64_new(global.tune.pattern_cache);
|
|
return !!pat_lru_tree;
|
|
}
|
|
|
|
static void pattern_per_thread_lru_free()
|
|
{
|
|
lru64_destroy(pat_lru_tree);
|
|
}
|
|
|
|
REGISTER_PER_THREAD_ALLOC(pattern_per_thread_lru_alloc);
|
|
REGISTER_PER_THREAD_FREE(pattern_per_thread_lru_free);
|