The latter function is more suited to operations that don't require any
check because the check has already been performed. It will be used by
other b_* functions.
This function is used a lot in block copies and is needlessly
complicated since it still uses pointer arithmetic. Let's fall
back to regular offsets and simplify it. This removed around
23 bytes from b_putblk() and it removed any conditional jump.
In thread_sync_barrier, we exit when all threads have set their own bit in the
barrier mask. It is done by comparing it to all_threads_mask. But we must not
use a simple equality to do so, becaue all_threads_mask may change. Since commit
ba86c6c25 ("MINOR: threads: Be sure to remove threads from all_threads_mask on
exit"), when a thread exit, its bit is removed from all_threads_mask. Instead,
we must use a bitwise AND to test is all bits of all_threads_mask are set.
This also requires that all_threads_mask is set to volatile if we want to
catch changes.
This patch must be backported in 1.8.
Currently only md5 signatures are generated. While md5
still is not broken with regard to preimage attacks, sha256
clearly is the current secure solution.
This patch should be backported to all supported branches.
It remained some fragments of the old buffers API in debug messages, here and
there.
This was caused by the recent buffer API changes, no backport is needed.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
A number of outdated docs dating 2012 about buffers implementation
and management were totally irrelevant to the current code (and even
to most 1.8 code as well). These docs have all been removed so that
only the up to date documentation remains.
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
This one is more generic and designed to work on a random block. It
may later get a b_rep_ist() variant since many strings are already
available as (ptr,len).
There was no point keeping that function in the buffer part since it's
exclusively used by HTTP at the channel level, since it also automatically
appends the CRLF. This further cleans up the buffer code.
The new file istbuf.h links the indirect strings (ist) with the buffers.
The purpose is to encourage addition of more standard buffer manipulation
functions that rely on this in order to improve the overall ease of use
along all the code. Just like ist.h and buf.h, this new file is not
expected to depend on anything beyond these two files.
A few functions were added and/or converted from buffer.h :
- b_isteq() : indicates if a buffer and a string match
- b_isteat() : consumes a string from the buffer if it matches
- b_istput() : appends a small string to a buffer (all or none)
- b_putist() : appends part of a large string to a buffer
The equivalent functions were removed from buffer.h and changed at the
various call places.
The two variants now do exactly the same (appending at the tail of the
buffer) so let's not keep the distinction between these classes of
functions and have generic ones for this. It's also worth noting that
b{i,o}_putchk() wasn't used at all and was removed.
There's no distinction between in and out data now. The latter covers
the needs of the former and supports wrapping. The extra cost is
negligible given the locations where it's used.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
Since we use "_data" for the amount of data at many places, as opposed to
"_space" for the amount of space, let's rename the "data" field to "area"
so that we can reuse "data" later for the amount of data in the buffer
(currently called "len" despite not being contigous).
b_set_data() is used :
- in proto_http and hlua to trim input data (b_set_data(co_data()))
- in SPOE to append data to a buffer while building a message
In no case will this truncate a buffer so we can safely remove the
test for len < b->output.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>
This replaces chn->buf->p with ci_head(chn), chn->buf->o with co_data(chn)
and chn->buf->i with ci_data(chn). This is in order to help porting to the
new buffer API.
This part is tricky, it passes a channel where we used to have a buffer,
in order to reduce the API changes during the big switch. This way all
the channel's wrappers to distinguish between input and output are
available. It also makes sense given that the compression applies on
a channel since it's in the forwarding path.
The parser now uses the channel exclusively to access the data. In order
to avoid the cost of indirection, a local variable "input" was added to
the function that replaces buf->p. Given that this part is on the critical
path, it will have to be tested again for any visible performance loss.
This is aimed at easing the transition to the new API. There are a few places
which deserve some simplifications afterwards because ci_head() is called
often and may be placed into a local pointer.
A few locations still accessing ->i and ->o directly were changed to
use ci_data() and co_data() respectively. A call to b_del() was replaced
with co_set_data() in si_cs_send() so that ->o will is automatically be
decremented after the migration.
The buffer is not used as a forwarding buffer so we can simply map ->i
to ->len and ->p to b_head(). It *seems* that p is never modified, so
that we could even always use b_orig(). This needs to be rechecked.