While waiting in a keep-alive state for a request, we want to silently
close if we don't get anything. However if we get a partial request it's
different because that means the client has started to send something.
This requires a new transaction flag. It will be used to implement a
distinct timeout for keep-alive and requests.
This change, suggested by Cyril Bont, makes a lot of sense and
would have made it obvious that sessid was not properly initialized
while switching to keep-alive. The code is now cleaner.
The stream_int_cond_close() function was added to preserve the
contents of the response buffer because stream_int_retnclose()
was buggy. It flushed the response instead of flushing the
request. This caused issues with pipelined redirects followed
by error messages which ate the previous response.
This might even have caused object truncation on pipelined
requests followed by an error or by a server redirection.
Now that this is fixed, simply get rid of the now useless
function.
Sometimes it can be desired to return a location which is the same
as the request with a slash appended when there was not one in the
request. A typical use of this is for sending a 301 so that people
don't reference links without the trailing slash. The name of the
new option is "append-slash" and it can be used on "redirect"
statements in prefix mode.
Some message pointers were not usable once the message reached the
HTTP_MSG_DONE state. This is the case for ->som which points to the
body because it is needed to parse chunks. There is one case where
we need the beginning of the message : server redirect. We have to
call http_get_path() after the request has been parsed. So we rely
on ->sol without counting on ->som. In order to achieve this, we're
making ->rq.{u,v} relative to the beginning of the message instead
of the buffer. That simplifies the code and makes it cleaner.
Preliminary tests show this is OK.
Several HTTP analysers used to set those flags to values that
were useful but without considering the possibility that they
were not called again to clean what they did. First, replace
direct flag manipulation with more explicit macros. Second,
enforce a rule stating that any buffer which changes one of
these flags from the default must restore it after completion,
so that other analysers see correct flags.
With both this fix and the previous one about analyser bits,
we should not see any more stuck sessions.
This patch implements default-server support allowing to change
default server options. It can be used in [defaults] or [backend]/[listen]
sections. Currently the following options are supported:
- error-limit
- fall
- inter
- fastinter
- downinter
- maxconn
- maxqueue
- minconn
- on-error
- port
- rise
- slowstart
- weight
Supported informations, available via "tr/td title":
- cap: capabilities (proxy)
- mode: one of tcp, http or health (proxy)
- id: SNMP ID (proxy, socket, server)
- IP (socket, server)
- cookie (backend, server)
There were still several situations leading to CLOSE_WAIT sockets
remaining there forever because some complex transitions were
obviously not caught due to the impossibility to resync changes
between the request and response FSMs.
This patch now centralizes the global transaction state and feeds
it from both request and response transitions. That way, whoever
finishes first, there will be no issue for converging to the correct
state.
Some heavy use of the new debugging function has helped a lot. Maybe
those calls could be removed after some time. First tests are very
positive.
By default we automatically wait for enough data to fill large
packets if buf->to_forward is not null. This causes a problem
with POST/Expect requests which have a data size but no data
immediately available. Instead of causing noticeable delays on
such requests, simply add a flag to disable waiting when sending
requests.
Many times we see a lot of short responses in HTTP (typically 304 on a
reload). It is a waste of network bandwidth to send that many small packets
when we know we can merge them. When we know that another HTTP request is
following a response, we set BF_EXPECT_MORE on the response buffer, which
will turn MSG_MORE on exactly once. That way, multiple short responses can
leave pipelined if their corresponding requests were also pipelined.
This option enables HTTP keep-alive on the client side and close mode
on the server side. This offers the best latency on the slow client
side, and still saves as many resources as possible on the server side
by actively closing connections. Pipelining is supported on both requests
and responses, though there is currently no reason to get pipelined
responses.
This new flag may be set by any user on a stream interface to tell
the underlying protocol that there is no need for lingering on the
socket since we know the other side either received everything or
does not care about what we sent.
This will typically be used with forced server close in HTTP mode,
where we want to quickly close a server connection after receiving
its response. Otherwise the system would prevent us from reusing
the same port for some time.
The body parser will be used in close and keep-alive modes. It follows
the stream to keep in sync with both the request and the response message.
Both chunked transfer-coding and content-length are supported according to
RFC2616.
The multipart/byterange encoding has not yet been implemented and if not
seconded by any of the two other ones, will be forwarded till the close,
as requested by the specification.
Both the request and the response analysers converge into an HTTP_MSG_DONE
state where it will be possible to force a close (option forceclose) or to
restart with a fresh new transaction and maintain keep-alive.
This change is important. All tests are OK but any possible behaviour
change with "option httpclose" might find its root here.
Some wrong operations were performed on buffers, assuming the
offsets were relative to the beginning of the request while they
are relative to the beginning of the buffer. In practice this is
not yet an issue since both are the same... until we add support
for keep-alive.
It's not enough to know if the connection will be in CLOSE or TUNNEL mode,
we still need to know whether we want to read a full message to a known
length or read it till the end just as in TUNNEL mode. Some updates to the
RFC clarify slightly better the corner cases, in particular for the case
where a non-chunked encoding is used last.
Now we also take care of adding a proper "connection: close" to messages
whose size could not be determined.
This state indicates that an HTTP message (request or response) is
complete. This will be used to know when we can re-initialize a
new transaction. Right now we only switch to it after the end of
headers if there is no data. When other analysers are implemented,
we can switch to this state too.
The condition to reuse a connection is when the response finishes
after the request. This will have to be checked when setting the
state.
This code really belongs to the http part since it's transaction-specific.
This will also make it easier to later reinitialize a transaction in order
to support keepalive.
We used to apply a limit to each buffer's size in order to leave
some room to rewrite headers, then we used to remove this limit
once the session switched to a data state.
Proceeding that way becomes a problem with keepalive because we
have to know when to stop reading too much data into the buffer
so that we can leave some room again to process next requests.
The principle we adopt here consists in only relying on to_forward+send_max.
Indeed, both of those data define how many bytes will leave the buffer.
So as long as their sum is larger than maxrewrite, we can safely
fill the buffers. If they are smaller, then we refrain from filling
the buffer. This means that we won't risk to fill buffers when
reading last data chunk followed by a POST request and its contents.
The only impact identified so far is that we must ensure that the
BF_FULL flag is correctly dropped when starting to forward. Right
now this is OK because nobody inflates to_forward without using
buffer_forward().
Up to now, we only had a flag in the session indicating if it had to
work in "connection: close" mode. This is not at all compatible with
keep-alive.
Now we ensure that both sides of a connection act independantly and
only relative to the transaction. The HTTP version of the request
and response is also correctly considered. The connection already
knows several modes :
- tunnel (CONNECT or no option in the config)
- keep-alive (when permitted by configuration)
- server-close (close the server side, not the client)
- close (close both sides)
This change carefully detects all situations to find whether a request
can be fully processed in its mode according to the configuration. Then
the response is also checked and tested to fix corner cases which can
happen with different HTTP versions on both sides (eg: a 1.0 client
asks for explicit keep-alive, and the server responds with 1.1 without
a header).
The mode is selected by a capability elimination algorithm which
automatically focuses on the least capable agent between the client,
the frontend, the backend and the server. This ensures we won't get
undesired situtations where one of the 4 "agents" is not able to
process a transaction.
No "Connection: close" header will be added anymore to HTTP/1.0 requests
or responses since they're already in close mode.
The server-close mode is still not completely implemented. The response
needs to be rewritten as keep-alive before being sent to the client if
the connection was already in server-close (which implies the request
was in keep-alive) and if the response has a content-length or a
transfer-encoding (but only if client supports 1.1).
A later improvement in server-close mode would probably be to detect
some situations where it's interesting to close the response (eg:
redirections with remote locations). But even then, the client might
close by itself.
It's also worth noting that in tunnel mode, no connection header is
affected in either direction. A tunnelled connection should theorically
be notified at the session level, but this is useless since by definition
there will not be any more requests on it. Thus, we don't need to add a
flag into the session right now.
Implement decreasing health based on observing communication between
HAProxy and servers.
Changes in this version 2:
- documentation
- close race between a started check and health analysis event
- don't force fastinter if it is not set
- better names for options
- layer4 support
Changes in this version 3:
- add stats
- port to the current 1.4 tree
In order to support keepalive, we'll have to differentiate
normal sessions from tunnel sessions, which are the ones we
don't want to analyse further.
Those are typically the CONNECT requests where we don't care
about any form of content-length, as well as the requests
which are forwarded on non-close and non-keepalive proxies.
To sum up :
- len : it's now the max number of characters for the value, preventing
garbaged results.
- a new option "prefix" is added, this allows to use dynamic cookie
names (e.g. ASPSESSIONIDXXX).
Previously in the thread, I wanted to use the value found with
"capture cookie" but when i started to update the documentation, I
found this solution quite weird. I've made a small rework to not
depend on "capture cookie".
- There's the posssiblity to define the URL parser mode (path parameters
or query string).
We now set msg->col and msg->sov to the first byte of non-header.
They will be used later when parsing chunks. A new macro was added
to perform size additions on an http_msg in order to limit the risks
of copy-paste in the long term.
During this operation, it appeared that the http_msg struct was not
optimal on 64-bit, so it was re-ordered to fill the holes.
An HTTP message can be decomposed into several sub-states depending
on the transfer-encoding. We'll have to keep these state information
while parsing chunks, so we must extend the values. In order not to
change everything, we'll now consider that anything >= MSG_BODY is
the body, and that the value indicates the precise state. The
MSG_ERROR status which was greater than MSG_BODY was moved for this.
Right now, an HTTP server cannot track a TCP server and vice-versa.
This patch enables proxy tracking without relying on the proxy's mode
(tcp/http/health). It only requires a matching proxy name to exist. The
original function was renamed to findproxy_mode().
It's a pain to enable regparm because ebtree is built in its corner
and does not depend on the rest of the config. This causes no problem
except that if the regparm settings are not exactly similar, then we
can get inconsistent function interfaces and crashes.
One solution realized in this patch consists in externalizing all
compiler settings and changing CONFIG_XXX_REGPARM into CONFIG_REGPARM
so that we ensure that any sub-component uses the same setting. Since
ebtree used a value here and not a boolean, haproxy's config has been
set to use a number too. Both haproxy's core and ebtree currently use
the same copy of the compiler.h file. That way we don't have any issue
anymore when one setting changes somewhere.
All files referencing the previous ebtree code were changed to point
to the new one in the ebtree directory. A makefile variable (EBTREE_DIR)
is also available to use files from another directory.
The ability to build the libebtree library temporarily remains disabled
because it can have an impact on some existing toolchains and does not
appear worth it in the medium term if we add support for multi-criteria
stickiness for instance.
The code part which waits for an HTTP response has been extracted
from the old function. We now have two analysers and the second one
may re-enable the first one when an 1xx response is encountered.
This has been tested and works.
The calls to stream_int_return() that were remaining in the wait
analyser have been converted to stream_int_retnclose().
This patch has 2 goals :
1. I wanted to test the appsession feature with a small PHP code,
using PHPSESSID. The problem is that when PHP gets an unknown session
id, it creates a new one with this ID. So, when sending an unknown
session to PHP, persistance is broken : haproxy won't see any new
cookie in the response and will never attach this session to a
specific server.
This also happens when you restart haproxy : the internal hash becomes
empty and all sessions loose their persistance (load balancing the
requests on all backend servers, creating a new session on each one).
For a user, it's like the service is unusable.
The patch modifies the code to make haproxy also learn the persistance
from the client : if no session is sent from the server, then the
session id found in the client part (using the URI or the client cookie)
is used to associated the server that gave the response.
As it's probably not a feature usable in all cases, I added an option
to enable it (by default it's disabled). The syntax of appsession becomes :
appsession <cookie> len <length> timeout <holdtime> [request-learn]
This helps haproxy repair the persistance (with the risk of losing its
session at the next request, as the user will probably not be load
balanced to the same server the first time).
2. This patch also tries to reduce the memory usage.
Here is a little example to explain the current behaviour :
- Take a Tomcat server where /session.jsp is valid.
- Send a request using a cookie with an unknown value AND a path
parameter with another unknown value :
curl -b "JSESSIONID=12345678901234567890123456789012" http://<haproxy>/session.jsp;jsessionid=00000000000000000000000000000001
(I know, it's unexpected to have a request like that on a live service)
Here, haproxy finds the URI session ID and stores it in its internal
hash (with no server associated). But it also finds the cookie session
ID and stores it again.
- As a result, session.jsp sends a new session ID also stored in the
internal hash, with a server associated.
=> For 1 request, haproxy has stored 3 entries, with only 1 which will be usable
The patch modifies the behaviour to store only 1 entry (maximum).