In order to avoid abusively relying on buf->o to guess how many bytes to
rewind during a redispatch, we now clear msg->sov. Thus the meaning of this
field is exactly "how many bytes of headers are left to be forwarded". It
is still possible to rewind because msg->eoh + msg->eol equal that value
before scheduling the forwarding, so we can always subtract them.
http_body_rewind() returns the number of bytes to rewind before buf->p to
find the message's body. It relies on http_hdr_rewind() to find the beginning
and adds msg->eoh + msg->eol which are always safe.
http_data_rewind() does the same to get the beginning of the data, which
differs from above when a chunk is present. It uses the function above and
adds msg->sol.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_uri_rewind() returns the number of bytes to rewind before buf->p to
find the URI. It relies on http_hdr_rewind() to find the beginning and
is just here to simplify operations.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_hdr_rewind() returns the number of bytes to rewind before buf->p to
find the beginning of headers. At the moment it's not exact as it still
relies on buf->o, assuming that no other data from a past message were
pending there, but it's what was done till there.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_body_bytes() returns the number of bytes of the current message body
present in the buffer. It is compatible with being called before and after
the headers are forwarded.
This is done to centralize further ->sov changes.
There are still some pending issues in the gzip compressor, and fixing
them requires a better handling of intermediate parsing states.
Another issue to deal with is the rewinding of a buffer during a redispatch
when a load balancing algorithm involves L7 data because the exact amount of
data to rewind is not clear. At the moment, this is handled by unwinding all
pending data, which cannot work in responses due to pipelining.
Last, having a first analysis which parses the body and another one which
restarts from where the parsing was left is wrong. Right now it only works
because we never both parse and transform in the same direction. But that
is wrong anyway.
In order to address the first issue, we'll have to use msg->eoh + msg->eol
to find the end of headers, and we still need to store the information about
the forwarded header length somewhere (msg->sol might be reused for this).
msg->sov may only be used for the start of data and not for subsequent chunks
if possible. This first implies that we stop sharing it with header length,
and stop using msg->sol there. In fact we don't need it already as it is
always zero when reaching the HTTP_MSG_BODY state. It was only updated to
reflect a copy of msg->sov.
So now as a first step into that direction, this patch ensure that msg->sol
is never re-assigned after being set to zero and is not used anymore when
we're dealing with HTTP processing and forwarding. We'll later reuse it
differently but for now it's secured.
The patch does nothing magic, it only removes msg->sol everywhere it was
already zero and avoids setting it. In order to keep the sov-sol difference,
it now resets sov after forwarding data. In theory there's no problem here,
but the patch is still tagged major because that code is complex.
One of the issues we face when we need to either forward headers only
before compressing, or rewind the stream during a redispatch is to know
the proper length of the request headers. msg->eoh always has the total
length up to the last CRLF, and we never know whether the request ended
with a single LF or a standard CRLF. This makes it hard to rewind the
headers without explicitly checking the bytes in the buffer.
Instead of doing so, we now use msg->eol to carry the length of the last
CRLF (either 1 or 2). Since it is not modified at all after HTTP_MSG_BODY,
and was only left in an undefined state, it is safe to use at any moment.
Thus, the complete header length to forward or to rewind now is always
msg->eoh + msg->eol.
This is the continuation of previous patch. Now that full buffers are
not rejected anymore, let's wait for at least the advertised chunk or
body length to be present or the buffer to be full. When either
condition is met, the message processing can go forward.
Thus we don't need to use url_param_post_limit anymore, which was passed
in the configuration as an optionnal <max_wait> parameter after the
"check_post" value. This setting was necessary when the feature was
implemented because there was no support for parsing message bodies.
The argument is now silently ignored if set in the configuration.
The function addr_to_stktable_key doesn't consider the expected
type of key. If the stick table key is based on IPv6 addresses
and the input is IPv4, the returned key is IPv4 adddress and his
length is 4 bytes, while is expected 16 bytes key.
This patch considers the expected key and try to convert IPv4 to
IPv6 and IPv6 to IPv4 according with the expected key.
This fixes the bug reported by Apollon Oikonomopoulos.
This bug was introduced somewhere in the 1.5-dev process.
When compiled with USE_GETADDRINFO, make sure we use getaddrinfo(3) to
perform name lookups. On default dual-stack setups this will change the
behavior of using IPv6 first. Global configuration option
'nogetaddrinfo' can be used to revert to deprecated gethostbyname(3).
Commit 6f7203d ("MEDIUM: pattern: add prune function") introduced an
array of functions pat_prune_fcts[] but unfortunately declared it in
pattern.h without marking it "extern", resulting in each file including
it having its own copy.
The cfgparse.c file becomes huge, and a large part of it comes from the
server keyword parser. Since the configuration is a bit more modular now,
move this parser to server.c.
This patch also moves the check of the "server" keyword earlier in the
supported keywords list, resulting in a slightly faster config parsing
for configs with large numbers of servers (about 10%).
No functional change was made, only the code was moved.
We have a use case where we look up a customer ID in an HTTP header
and direct it to the corresponding server. This can easily be done
using ACLs and use_backend rules, but the configuration becomes
painful to maintain when the number of customers grows to a few
tens or even a several hundreds.
We realized it would be nice if we could make the use_backend
resolve its name at run time instead of config parsing time, and
use a similar expression as http-request add-header to decide on
the proper backend to use. This permits the use of prefixes or
even complex names in backend expressions. If no name matches,
then the default backend is used. Doing so allowed us to get rid
of all the use_backend rules.
Since there are some config checks on the use_backend rules to see
if the referenced backend exists, we want to keep them to detect
config errors in normal config. So this patch does not modify the
default behaviour and proceeds this way :
- if the backend name in the use_backend directive parses as a log
format rule, it's used as-is and is resolved at run time ;
- otherwise it's a static name which must be valid at config time.
There was the possibility of doing this with the use-server directive
instead of use_backend, but it seems like use_backend is more suited
to this task, as it can be used for other purposes. For example, it
becomes easy to serve a customer-specific proxy.pac file based on the
customer ID by abusing the errorfile primitive :
use_backend bk_cust_%[hdr(X-Cust-Id)] if { hdr(X-Cust-Id) -m found }
default_backend bk_err_404
backend bk_cust_1
errorfile 200 /etc/haproxy/static/proxy.pac.cust1
Signed-off-by: Bertrand Jacquin <bjacquin@exosec.fr>
This patch permit to register new sections in the haproxy's
configuration file. This run like all the "keyword" registration, it is
used during the haproxy initialization, typically with the
"__attribute__((constructor))" functions.
The function url2sa() converts faster url like http://<ip>:<port> in a
struct sockaddr_storage. This patch add:
- the https support
- permit to return the length parsed
- support IPv6
- support DNS synchronous resolution only during start of haproxy.
The faster IPv4 convertion way is keeped. IPv6 is slower, because I use
the standard IPv6 parser function.
This function it is used for dynamically update all the patterns
attached to one file. This function is atomic. All parsing or indexation
failures are reported in the haproxy logs.
This patch replace a lot of pointeur by pattern matching identifier. If
the declared ACL use all the predefined pattern matching functions, the
register function gets the functions provided by "pattern.c" and
identified by the PAT_LATCH_*.
In the case of the acl uses his own functions, they can be declared, and
the acl registration doesn't change it.
This flag is no longer used. The last place using this, are the display
of the result of pattern matching in the cli command "get map" or "get
acl".
The first parameter of this command is the reference of the file used to
perform the lookup.
The function str2net runs DNS resolution if valid ip cannot be parsed.
The DNS function used is the standard function of the libc and it
performs asynchronous request.
The asynchronous request is not compatible with the haproxy
archictecture.
str2net() is used during the runtime throught the "socket".
This patch remove the DNS resolution during the runtime.
The pointer <regstr> is only used to compare and identify the original
regex string with the patterns. Now the patterns have a reference map
containing this original string. It is useless to store this value two
times.
This patch adds new display type. This display returns allocated string,
when the string is flush into buffers, it is freed. This permit to
return the content of "memprintf(err, ...)" messages.
The pat_ref_add functions has changed to return error.
The format of the acl file are not the same than the format of the map
files. In some case, the same file can be used, but this is ambiguous
for the user because the patterns are not the expected.
The acl and map function do the same work with the file parsing. This
patch merge these code in only one.
Note that the function map_read_entries_from_file() in the file "map.c"
is moved to the the function pat_ref_read_from_file_smp() in the file
"pattern.c". The code of this function is not modified, only the the
name and the arguments order has changed.
The find_smp search the smp using the value of the pat_ref_elt pointer.
The pat_find_smp_* are no longer used. The function pattern_find_smp()
known all pattern indexation, and can be found
All the pattern delete function can use her reference to the original
"struct pat_ref_elt" to find the element to be remove. The functions
pat_del_list_str() and pat_del_meth() were deleted because after
applying this modification, they have the same code than pat_del_list_ptr().
Now, each pattern entry known the original "struct pat_ref_elt" from
that was built. This patch permit to delete each pattern entry without
confusion. After this patch, each reference can use his pointer to be
targeted.
The pattern reference are stored with two identifiers: the unique_id and
the reference.
The reference identify a file. Each file with the same name point to the
same reference. We can register many times one file. If the file is
modified, all his dependencies are also modified. The reference can be
used with map or acl.
The unique_id identify inline acl. The unique id is unique for each acl.
You cannot force the same id in the configuration file, because this
repport an error.
The format of the acl and map listing through the "socket" has changed
for displaying these new ids.
This patch extract the expect_type variable from the "struct pattern" to
"struct pattern_head". This variable is set during the declaration of
ACL and MAP. With this change, the function "pat_parse_len()" become
useless and can be replaced by "pat_parse_int()".
Implicit ACLs by default rely on the fetch's output type, so let's simply do
the same for all other ones. It has been verified that they all match.
Sometimes the same pattern file is used with the same index, parse and
parse_smp functions. If this two condition are true, these two pattern
are identical and the same struct can be used.
This patch add the following socket command line options:
show acl [<id>]
clear acl <id>
get acl <id> <pattern>
del acl <id> <pattern>
add acl <id> <pattern>
The system used for maps is backported in the pattern functions.
Some functions needs to change the sample associated to pattern. This
new pointer permit to return the a pointer to the sample pointer. The
caller can use or change the value.
This commit adds a delete function for patterns. It looks up all
instances of the pattern to delete and deletes them all. The fetch
keyword declarations have been extended to point to the appropriate
delete function.
This commit adds second tree node in the pattern struct and use it to
index IPv6 addresses. This commit report feature used in the list. If
IPv4 not match the tree, try to convert the IPv4 address in IPv6 with
prefixing the IPv4 address by "::ffff", after this operation, the match
function try lookup in the IPv6 tree. If the IPv6 sample dont match the
IPv6 tree, try to convert the IPv6 addresses prefixed by "2002:IPv4",
"::ffff:IPv4" and "::0000:IPv4" in IPv4 address. after this operation,
the match function try lookup in the IPv4 tree.
The match function known the format of the pattern. The pattern can be
stored in a list or in a tree. The pattern matching function use itself
the good entry point and indexation type.
Each pattern matching function return the struct pattern that match. If
the flag "fill" is set, the struct pattern is filled, otherwise the
content of this struct must not be used.
With this feature, the general pattern matching function cannot have
exceptions for building the "struct pattern".
Before this commit, the pattern_exec_match() function returns the
associate sample, the associate struct pattern or the associate struct
pattern_tree. This is complex to use, because we can check the type of
information returned.
Now the function return always a "struct pattern". If <fill> is not set,
only the value of the pointer can be used as boolean (NULL or other). If
<fill> is set, you can use the <smp> pointer and the pattern
information.
If information must be duplicated, it is stored in trash buffer.
Otherwise, the pattern can point on existing strings.
The method are actuelly stored using two types. Integer if the method is
known and string if the method is not known. The fetch is declared as
UINT, but in some case it can provides STR.
This patch create new type called METH. This type contain interge for
known method and string for the other methods. It can be used with
automatic converters.
The pattern matching can expect method.
During the free or prune function, http_meth pettern is freed. This
patch initialise the freed pointer to NULL.
The operations applied on types SMP_T_CSTR and SMP_T_STR are the same,
but the check code and the declarations are double, because it must
declare action for SMP_T_C* and SMP_T_*. The declared actions and checks
are the same. this complexify the code. Only the "conv" functions can
change from "C*" to "*"
Now, if a function needs to modify input string, it can call the new
function smp_dup(). This one duplicate data in a trash buffer.