For now, the lua scripts are not compatible with the new HTX internal
representation of HTTP messages. Thus, for a given proxy, when the option
"http-use-htx" is enabled, an error is triggered if any lua's
action/service/sample-fetch/converter is also configured.
For now, the filters are not compatible with the new HTX internal representation
of HTTP messages. Thus, for a given proxy, when the option "http-use-htx" is
enabled, an error is triggered if any filter is also configured.
To do so, the stream is created as earlier as possible. It means, during the mux
creation for the first request, and for others, just at the end of the previous
transaction. Because all timeouts are handled by the strream, the mux's task is
now useless, so it is removed. Finally, to report errors, flags are set on the
HTX message. The HTX message is passed to the stream if there is some content to
analyse or if there is some error to handle.
All of this will probably be reworked later to handle errors and timeouts
directly in the mux. For now, it is the simpler way to handle all of this.
When a server is down, the channel's data must not be consumed. This is
required to allow redispatch and connection retry. So now, we wait for
the connection to be marked as connected, with the flag CO_FL_CONNECTED,
before starting to consume channel's data. In the mux, this event is
tracked with the flag H1C_F_CS_WAIT_CONN.
It does the same than smp_prefetch_http but for HTX messages. It can be called
from an HTTP proxy or a TCP proxy. For HTTP proxies, the parsing is handled by
the mux, so it does nothing but wait. For TCP proxies, it tries to parse an HTTP
message and to convert it in a temporary HTX message. Sample fetches will use
this temporary variable to do their job.
This version is simpler than the legacy one because the parsing is no more
handled by the analyzer. So now we just need to wait to have more data to move
on.
For now, the call to the stats applet is disabled for HTX messages. But HTX
versions of the function to check the request URI against the stats URI and the
fnuction to prepare the call to the stats applet have been added.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
It is more or less the same than del_hdr_value but adapted to be called from HTX
analyzers. The main changes is that it takes pointers on the start and the end
of the header value.
The mux-h1 now parses and formats HTTP/1 messages using the HTX
representation. The HTX analyzers have been updated too. For now, only
htx_wait_for_{request/response} and http_{request/response}_forward_body have
been adapted. Others are disabled for now.
Now, the HTTP messages are parsed by the mux on a side and then, after analysis,
formatted on the other side. In the middle, in the stream, there is no more
parsing. Among other things, the version parsing is now handled by the
mux. During the data forwarding, depending the value of the "extra" field, we
are able to know if the body length is known or not and if yes, how many bytes
are still expected.
This file will host all functions to manipulate HTTP messages using the HTX
representation. Functions in this file will be able to be called from anywhere
and are mainly related to the HTTP semantics.
The internal representation of an HTTP message, called HTX, is a structured
representation, unlike the old one which is a raw representation of
messages. Idea is to have a version-agnostic representation of the HTTP
messages, which can be easily used by to handle HTTP/1, HTTP/2 and hopefully
QUIC messages, and communication from one of them to another.
In this patch, we add types to define the internal representation itself and the
main functions to manipulate them.
The mux relies on the flag CO_RFL_BUF_FLUSH during a call to h1_rcv_buf to know
if it needs to stop reads and to flush its internal buffers to use kernel tcp
splicing. It is the caller responsibility (here the SI) to know when it must
come back on buffered exchanges.
Now, the connection mode is detected in the mux and not in HTX analyzers
anymore. Keep-alive connections are now managed by the mux. A new stream is
created for each transaction. This removes the most important part of the
synchronization between channels and the HTTP transaction cleanup. These changes
only affect the HTX part (proto_htx.c). Legacy HTTP analyzers remain untouched
for now.
On the client-side, the mux is responsible to create new streams when a new
request starts. It is also responsible to parse and update the "Connection:"
header of the response. On the server-side, the mux is responsible to parse and
update the "Connection:" header of the request. Muxes on each side are
independent. For now, there is no connection pool on the server-side, so it
always close the server connection.
For now, it only parses and transfers data. There is no internal representation
yet. It means the stream still need to parse it too. So a message is parsed 3
times today: one time by each muxes (the client one and the server one) and
another time by the stream. This is of course inefficient. But don't worry, it
is only a transitionnal state. And this mux is optional for now.
BTW, headers and body parsing are now handled using same functions than the mux
H2. Request/Response synchronization is also handled. The mux's task is now used
to catch client/http-request timeouts. Others timeouts are still handled by the
stream. On the clien-side, the stream is created once headers are fully parsed
and body parsing starts only when heeaders are transferred to the stream (ie,
copied into channel buffer).
There is still some known limitations here and there. But, it works in the
common cases. Bad message are not captured and some logs are emitted when errors
occur, only if no stream are attached to the mux. Otherwise, data are
transferred and we let the stream handles errors itself.
For now, it is just an other kind of passthrough multiplexer, but with internal
buffers to be prepared to parse incoming messages and to format outgoing
ones. There is also a task attached to it to handle timeouts. However, because
it does not handle any timeout for now, this task is unused. And finally,
because it handles internal buffers, it also handles retries on recv/send. To
use this multiplexer, you must use the option "http-use-htx" both on the
frontend and the backend.
It does not support keep-alive and will freeze connections after the first
request/response.
For now, these analyzers are just copies of the legacy HTTP analyzers. But,
during the HTTP refactoring, it will be the main place where it will be
visible. And in legacy analyzers, the macro IS_HTX_STRM is used to know if the
HTX version should be called or not.
Note: the following commits were applied to proto_http.c after this patch
was developed and need to be studied to see if an adaptation to htx
is required :
fd9b68c BUG/MINOR: only mark connections private if NTLM is detected
To prepare the refactoring of the code handling HTTP messages, these macros will
help to use HTX functions instead of legacy ones when the new HTX internal
representation is in use. To do so, for a given stream, we will check if its
frontend has the option PR_O2_USE_HTX. It is useless to test backend options
because it is not possible to mix the HTX representation and the legacy one
(i.e, having an HTX frontend and a legacy backend or vice versa).
The flag CS_FL_READ_PARTIAL can be set by the mux on the conn_stream to notify
the stream interface that some data were received. Is is used in si_cs_recv to
re-arm read timeout on the channel.
These 2 functions are pretty naive. They only split a start-line into its 3
substrings or a header line into its name and value. Spaces before and after
each part are skipped. No CRLF at the end are expected.
By setting the flag CO_RFL_KEEP_RSV when calling mux->rcv_buf, the
stream-interface notifies the mux it must keep some space to preserve the
buffer's reserve. This flag is only useful for multiplexers handling structured
data, because in such case, the stream-interface cannot know the real amount of
free space in the channel's buffer.
This file is empty for now. But it will be used to add new versions of the HTTP
analyzers based on the internal representation of HTTP messages (not implemented
yet but called HTX).
By setting the flag CO_RFL_BUF_FLUSH when calling mux->rcv_buf, the
stream-interface notifies the mux it should flush its buffers without reading
more data. This flag is set when the SI want to use the kernel TCP splicing to
forward data. Of course, the mux can respect it or not, depending on its
state. It's just an information.
Do not destroy the connection when we're about to destroy a stream. This
prevents us from doing keepalive on server connections when the client is
using HTTP/2, as a new stream is created for each request.
Instead, the session is now responsible for destroying connections.
When reusing connections, the attach() mux method is now used to create a new
conn_stream.
Introduce a new field in session, "srv_conn", and a linked list of sessions
in the connection. It will be used later when we'll switch connections
from being managed by the stream, to being managed by the session.