Don't use the zlib allocator anymore, 5 pools are used for the zlib
compression. Their sizes depends of the window size and the memLevel in
deflateInit2.
The window size and the memlevel of the zlib are now configurable using
global options tune.zlib.memlevel and tune.zlib.windowsize.
It affects the memory consumption of the zlib.
The build was dependent of the zlib.h header, regardless of the USE_ZLIB
option. The fix consists of several #ifdef in the source code.
It removes the overhead of the zstream structure in the session when you
don't use the option.
With extra-large buffers, it is possible that a lot of data are sent upon
connection establishment before the session is notified. The issue is how
to handle a send() error after some data were actually sent.
At the moment, only a connection error is reported, causing a new connection
attempt and send() to restart after the last data. We absolutely don't want
to retry the connect() if at least one byte was sent, because those data are
lost.
The solution consists in reporting exactly what happens, which is :
- a successful connection attempt
- a read/write error on the channel
That way we go on with sess_establish(), the response analysers are called
and report the appropriate connection state for the error (typically a server
abort while waiting for a response). This mechanism also guarantees that we
won't retry since it's a success. The logs also report the correct connect
time.
Note that 1.4 is not directly affected because it only attempts one send(),
so it cannot detect a send() failure here and distinguish it form a failed
connection attempt. So no backport is needed. Also, this is just a safe belt
we're taking, since this issue should not happen anymore since previous commit.
It is stupid to loop over ->snd_buf() because the snd_buf() itself already
loops and stops when system buffers are full. But looping again onto it,
we lose the information of the full buffers and perform one useless syscall.
Furthermore, this causes issues when dealing with large uploads while waiting
for a connection to establish, as it can report a server reject of some data
as a connection abort, which is wrong.
1.4 does not have this issue as it loops maximum twice (once for each buffer
half) and exists as soon as system buffers are full. So no backport is needed.
Some old browsers that have a user-agent starting with "Mozilla/4" do
not support compressison correctly, so disable compression for those.
Internet explorer 6 after Windows XP service pack 2, IE 7, and IE 8,
do however support compression and still have a user agent starting
with Mozilla/4, so we try to enable compression for those.
MSIE has a user-agent on this form:
Mozilla/4.0 (compatible; MSIE <version>; ...)
98% of MSIE 6 SP2 user agents start with
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1
The remaining 2% have additional flags before "SV1".
This simplified matching looking for MSIE at exactly position 25
and SV1 at exacly position 51 gives a few false negatives, so sometimes
a compression opportunity is lost.
A test against 3 hours of traffic to around 3000 news sites worldwide
gives less than 0.007% (70ppm) missed compression opportunities.
Keys are copied from samples to stick_table_key. If a key is larger
than the stick_table_key, we have an overflow. In pratice it does not
happen because it requires :
1) a configuration with tune.bufsize larger than BUFSIZE (common)
2) a stick-table configured with keys strictly larger than buffers
3) extraction of data larger than BUFSIZE (eg: using payload())
Points 2 and 3 don't make any sense for a real world configuration. That
said the issue needs be fixed. The solution consists in allocating it the
same size as the global buffer size, just like the samples. This fixes the
issue.
Sample conversions rely on two alternative buffers which were previously
allocated as static bufs of size BUFSIZE. Now they're initialized to the
global buffer size. It was the same for HTTP authentication. Note that it
seems that none of them was prone to any mistake when dealing with the
buffer size, but better stay on the safe side by maintaining the old
assumption that a trash buffer is always "large enough".
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
This function's naming was misleading as it is used to append data
at the end of a string, causing some surprizes when used for the
first time!
Add a chunk_printf() function which does what its name suggests.
This is a first step in avoiding to constantly reinitialize chunks.
It replaces the old chunk_reset() which was not properly named as it
used to drop everything and was only used by chunk_destroy(). It has
been renamed chunk_drop().
We don't want the lower layer to forward a close while we're compressing,
and we want the system to fuse outgoing TCP segments using MSG_MORE as
much as possible to save round trips that can emerge from sending short
packets with a PUSH flag.
A test on a remote busy DSL line consisting in compressing a 100MB file
on the fly full of zeroes only showed a transfer rate of a few kB/s due
to these round trips.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.
Thomas Heil reported that health checks did not work anymore when a backend
or server has "usesrc clientip". This is because the source address is not
set and tcp_bind_socket() tries to bind to that address anyway.
The solution consists in explicitly clearing the source address in the checks
and to make tcp_bind_socket() avoid binding when the address is not set. This
also has an indirect benefit that a useless bind() syscall will be avoided
when using "source 0.0.0.0 usesrc clientip" in health checks.
From the beginning it has been said that -D must always be used on the
command line from startup scripts so that haproxy does not accidentally
stay in foreground when loaded from init script... Except that this has
not been true for a long time now.
The fix is easy and must be backported to 1.4 too which is affected.
ssl_c_notbefore: start date of client cert (string, eg: "121022182230Z" for YYMMDDhhmmss[Z])
ssl_c_notafter: end date of client cert (string, eg: "121022182230Z" for YYMMDDhhmmss[Z])
ssl_f_notbefore: start date of frontend cert (string, eg: "121022182230Z" for YYMMDDhhmmss[Z])
ssl_f_notafter: end date of frontend cert (string, eg: "121022182230Z" for YYMMDDhhmmss[Z])
ssl_c_key_alg: algo used to encrypt the client's cert key (ex: rsaEncryption)
ssl_f_key_alg: algo used to encrypt the frontend's cert key (ex: rsaEncryption)
ssl_c_s_dn : client cert subject DN (string)
ssl_c_i_dn : client cert issuer DN (string)
ssl_f_s_dn : frontend cert subject DN (string)
ssl_f_i_dn : frontend cert issuer DN (string)
Return either the full DN without params, or just the DN entry (first param) or
its specific occurrence (second param).
The crappy zlib and openssl libs both define a free_func as a different typedef.
That's a very clever idea to use such a generic name in general purpose libraries,
really... The zlib one is easier to redefine than openssl's, so let's only fix this
one.
Decreasing the deflateInit2's memLevel parameter from 9 to 8 does not
affect the compression ratio and increases the compression speed by 12%.
Lower values do not increase transfer speed but decrease the compression
ratio so it looks like 8 is optimal.
A number of older browsers have many issues with compressed contents. It
happens that all these older browsers announce themselves as "Mozilla/4"
and that despite not being all broken, the amount of working browsers
announcing themselves this way compared to all other ones is so tiny
that it's not worth wasting cycles trying to adapt to every specific
one.
So let's simply disable compression for these older browsers.
More information on this very detailed article :
http://zoompf.com/2012/02/lose-the-wait-http-compression
This commit introduces HTTP compression using the zlib library.
http_response_forward_body has been modified to call the compression
functions.
This feature includes 3 algorithms: identity, gzip and deflate:
* identity: this is mostly for debugging, and it was useful for
developping the compression feature. With Content-Length in input, it
is making each chunk with the data available in the current buffer.
With chunks in input, it is rechunking, the output chunks will be
bigger or smaller depending of the size of the input chunk and the
size of the buffer. Identity does not apply any change on data.
* gzip: same as identity, but applying a gzip compression. The data
are deflated using the Z_NO_FLUSH flag in zlib. When there is no more
data in the input buffer, it flushes the data in the output buffer
(Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in
input, or when there is no more data to read, it writes the end of
data with Z_FINISH and the ending chunk.
* deflate: same as gzip, but with deflate algorithm and zlib format.
Note that this algorithm has ambiguous support on many browsers and
no support at all from recent ones. It is strongly recommended not
to use it for anything else than experimentation.
You can't choose the compression ratio at the moment, it will be set to
Z_BEST_SPEED (1), as tests have shown very little benefit in terms of
compression ration when going above for HTML contents, at the cost of
a massive CPU impact.
Compression will be activated depending of the Accept-Encoding request
header. With identity, it does not take care of that header.
To build HAProxy with zlib support, use USE_ZLIB=1 in the make
parameters.
This work was initially started by David Du Colombier at Exceliance.
This state's name is confusing as it is only used with chunked encoding
and makes newcomers think it's also related to the content-length. Let's
call it CHUNK_CRLF to clear any doubt on this.
This tiny function was not inlined because initially not much used.
However it's been used un the chunk parser for a while and it became
one of the most CPU-cycle eater there. By inlining it, the chunk parser
speed was increased by 74 %. We're almost 3 times faster than original
with just the last 4 commits.
These functions are not that long and the compiler inlines them well. Doing
so has sped up the chunked encoding parser by 41% !
Note that http_forward_trailers was also declared static because it's not
exported.
Most calls to channel_forward() are performed with short byte counts and
are already optimized in channel_forward() taking just a few instructions.
Thus it's a waste of CPU cycles to call a function for this, let's just
inline the short byte count case and fall back to the common one for
remaining situations.
Doing so has increased the chunked encoding parser's performance by 12% !
Commit ceb4ac9c states that IPv6 values are accepted by "hdr_ip" acl,
but the code didn't allow it. This patch provides the ability to accept IPv6
values.
url2sa() mistakenly uses "addr" as a reference. This causes a segfault when
option http_proxy or url_ip are used.
This bug was introduced in haproxy 1.5 and doesn't need to be backported.
Some tests revealed that IPs not in the range of IPv6 subnets incorrectly
matched (for example "acl BUG src 2804::/16" applied to a src IP "127.0.0.1").
This is caused by the acl_match_ip() function applies a mask in host byte
order, whereas it should be in network byte order.
Using "stats bind-process", it becomes possible to indicate to haproxy which
process will get the incoming connections to the stats socket. It will also
shut down the warning when nbproc > 1.