sock_raw and sock_ssl use a pretty generic chk_rcv function, so let's move
this function to the stream_interface and remove specific functions. Later
we might have a single chk_rcv function.
We need to have a generic function to be called by upper layers when buffer
flags have been updated (the si->update function). At the moment, both sock_raw
and sock_ssl had their own which basically was a copy-paste. Since these
functions are only used to update stream interface flags, it is logical to
have them handled by the stream interface code.
This allowed us to remove the stream_interface-specific update function from
sock_raw and sock_ssl which now use the generic code.
The stream_sock_update_conn callback has also been more appropriately renamed
conn_notify_si() since it's meant to be called by lower layers to notify the
SI and possibly upper layers about incoming changes.
This is a second attempt at getting rid of FD_WAIT_*. Now the situation is
much better since native I/O handlers can directly manipulate the FD using
fd_{poll|want|stop}_* and the connection handlers manipulate connection-level
flags using the conn_{data|sock}_* equivalent.
Proceeding this way ensures that the connection flags always reflect the
reality even after data<->handshake switches.
Now the connection handler, the handshake callbacks and the I/O callbacks
make use of the connection-layer polling functions to enable or disable
polling on a file descriptor.
Some changes still need to be done to avoid using the FD_WAIT_* constants.
These functions have a more explicity meaning and will offer provisions
for explicit polling.
EV_FD_ISSET() has been left for now as it is still in use in checks.
Up to now, we had to use a shutr/shutw interface per data layer, which
basically means 3 distinct functions when we include SSL :
- generic stream_interface
- sock_raw
- sock_ssl
With this change, the code located in the stream_interface manages all the
stream_interface and buffer updates, and calls the data layer hooks when
needed.
At the moment, the socket layer hook had been implicitly considered as
being a regular socket, so the si_shut*() functions call the normal
shutdown() and EV_FD_CLR() functions on the fd if a socket layer is
defined. This may change in the future. The stream_int_shut*()
functions don't call EV_FD_CLR() so that they can later be embedded
in lower layers.
Thus, the si->data->shutr() is not called anymore and si->data->shutw()
is called to close the data layer only (eg: only for SSL).
Proceeding like this is very important because it's the only way to be
able not to rely on these functions when called from the connection
handlers, and call the data layers' instead.
Handshakes is not called anymore from the data handlers, they're only
called from the connection handler when their flag is set.
Also, this move has uncovered an issue with the stream interface notifier :
it doesn't consider the FD_WAIT_* flags possibly set by the handshake
handlers. This will result in a stuck handshake when no data is in the
output buffer. In order to cover this, for now we'll perform the EV_FD_SET
in the SSL handshake function, but this needs to be addressed separately
from the stream interface operations.
This new flag is used to indicate that the connection was already
connected. It can be used by I/O handlers to know that a connection
has just completed. It is used by stream_sock_update_conn(), allowing
the sock_opt handlers not to manipulate the SI timeout nor the
BF_WRITE_NULL flag anymore.
It's better to have only stream_sock_update_conn() handle the conversion
of the CO_FL_ERROR flag to SI_FL_ERR than having it in each and every I/O
callback.
The socket data layer code must only focus on moving data between a
socket and a buffer. We need a special stream interface handler to
update the stream interface and the file descriptor status.
At the moment the code works but suffers from a race condition caused
by its API : the read/write callbacks still make use of the fd instead
of using the connection. And when a double shutdown is performed, a call
to ->write() after ->read() processed an error results in dereferencing
a NULL fdtab[]->owner. This is only a temporary issue which doesn't need
to be fixed now since this will automatically go away when the functions
change to use the connection instead.
This handshake handler must be independant, so move it away from
proto_tcp. It has a dedicated connection flag. It is tested before
I/O handlers and automatically removes the CO_FL_WAIT_L4_CONN flag
upon success.
It also sets the BF_WRITE_NULL flag on the stream interface and
stops the SI timeout. However it does not perform the task_wakeup(),
and relies on the data handler to do so for now. The SI wakeup will
have to be moved elsewhere anyway.
Herv Commowick reported a failure to resync upon restart caused by a
segfault on the old process. This is due to the data_ctx of the connection
being initialized after the stream interface.
This function will be called later when splitting the shutdown in two
steps. It will be needed by SSL and for remote socket operations to
release unused contexts.
The state and the private pointer are not specific to the applets, since SSL
will require exactly both of them. Move them to the connection layer now and
rename them. We also now ensure that both are NULL on first call.
We start to move everything needed to manage a connection to a special
entity "struct connection". We have the data layer operations and the
control operations there. We'll also have more info in the future such
as file descriptors and applet contexts, so that in the end it becomes
detachable from the stream interface, which will allow connections to
be reused between sessions.
For now on, we start with minimal changes.
Calling the init() function in sess_establish was a bad idea, it is
too late to allow it to fail on lack of resource and does not help at
all. Remove it for now before it's used.
Similarly to the previous patch, we don't need the socket-layer functions
outside of stream_interface. They could even move to a file dedicated to
applets, though that does not seem particularly useful at the moment.
We'll soon have an SSL socket layer, and in order to ease the difference
between the two, we use the name "sock_raw" to designate the one which
directly talks to the sockets without any conversion.
These operators are used regardless of the socket protocol family. Move
them to a "sock_ops" struct. ->read and ->write have been moved there too
as they have no reason to remain at the protocol level.
This is in fact where those parts belong to. The old data_state was replaced
by applet.state and is now initialized when the applet is registered. It's
worth noting that the applet does not need to know the session nor the
buffer anymore since everything is brought by the stream interface.
It is possible that having a separate applet struct would simplify the
code but that's not a big deal.
Now that we have the target pointer and type in the stream interface,
we don't need the applet.handler pointer anymore. That makes the code
somewhat cleaner because we know we're dealing with an applet by checking
its type instead of checking the pointer is not null.
When doing a connect() on a stream interface, some information is needed
from the server and from the backend. In some situations, we don't have
a server and only a backend (eg: peers). In other cases, we know we have
an applet and we don't want to connect to anything, but we'd still like
to have the info about the applet being used.
For this, we now store a pointer to the "target" into the stream interface.
The target describes what's on the other side before trying to connect. It
can be a server, a proxy or an applet for now. Later we'll probably have
descriptors for multiple-stage chains so that the final information may
still be found.
This will help removing many specific cases in the code. It already made
it possible to remove the "srv" and "be" parameters to tcpv4_connect_server().
I/O handlers are still delicate to manipulate. They have no type, they're
just raw functions which have no knowledge of themselves. Let's have them
declared as applets once for all. That way we can have multiple applets
share the same handler functions and we can store their names there. When
we later need to add more parameters (eg: usage stats), we'll be able to
do so in the applets themselves.
The CLI functions has been prefixed with "cli" instead of "stats" as it's
clearly what is going on there.
The applet descriptor in the stream interface should get all the applet
specific data (st0, ...) but this will be done in the next patch so that
we don't pollute this one too much.
When a client connection aborts while the server-side connection is in
turn-around after a failed connection attempt, the turn-around timeout
is reset in shutw() but the state is not changed. The session then
remains stuck in this state forever. Change the QUE and TAR states to
DIS just as we do for CER to fix this.
This patch should be backported to 1.4.
When an error message is returned to a client, all buffer contents
were left intact. Since the analysers were removed, the potentially
invalid data that were read had a chance to be sent too.
Now we ensure we only keep the already scheduled data in the buffer
and we truncate it after that. That means that responses with data
that must be blocked will really be blocked, and that incorrectly
chunked data will be stopped at the point where the chunking fails.
si->release() was called each time we closed one direction of a stream
interface, while it should only have been called when both sides are
closed. This bug is specific to 1.5 and only affects embedded tasks.
Now we stop relying on BF_READ_DONTWAIT, which is unrelated to the
wakeups, and only consider activity to decide whether to wake the task
up instead of considering the other side's activity. It is worth noting
that the local stream interface's flags were not updated consecutively
to a call to chk_snd(), which could possibly result in hung tasks from
time to time. This fix will avoid possible loops and uncaught events.
This will be used when an I/O handler running in a stream interface
needs to establish a connection somewhere. We want the session
processor to evaluate both I/O handlers, depending on which side has
one. Doing so also requires that stream_int_update_embedded() wakes
the session up only when the other side is established or has closed,
for instance in order to handle connection errors without looping
indefinitely during the connection setup time.
The session processor still relies on BF_READ_ATTACHED being set,
though we must do whatever is required to remove this dependency.
When a connection is closed on a stream interface, some iohandlers
will need to be informed in order to release some resources. This
normally happens upon a shutr+shutw. It is the equivalent of the
fd_delete() call which is done for real sockets, except that this
time we release internal resources.
It can also be used with real sockets because it does not cost
anything else and might one day be useful.
The 'client.c' file now only contained frontend-specific functions,
so it has naturally be renamed 'frontend.c'. Same for client.h. This
has also been an opportunity to remove some cross references from
files that should not have depended on it.
In the end, this file should contain a protocol-agnostic accept()
code, which would initialize a session, task, etc... based on an
accept() from a lower layer. Right now there are still references
to TCP.
The stream_int_cond_close() function was added to preserve the
contents of the response buffer because stream_int_retnclose()
was buggy. It flushed the response instead of flushing the
request. This caused issues with pipelined redirects followed
by error messages which ate the previous response.
This might even have caused object truncation on pipelined
requests followed by an error or by a server redirection.
Now that this is fixed, simply get rid of the now useless
function.
When processing a GET or HEAD request in close mode, we know we don't
need to read anything anymore on the socket, so we can disable it.
Doing this can save up to 40% of the recv calls, and half of the
epoll_ctl calls.
For this we need a buffer flag indicating that we're not interesting in
reading anymore. Right now, this flag also disables both polled reads.
We might benefit from disabling only speculative reads, but we will need
at least this flag when we want to support keepalive anyway.
Currently we don't disable the flag on completion, but it does not
matter as we close ASAP when performing the shutw().
By default, when data is sent over a socket, both the write timeout and the
read timeout for that socket are refreshed, because we consider that there is
activity on that socket, and we have no other means of guessing if we should
receive data or not.
While this default behaviour is desirable for almost all applications, there
exists a situation where it is desirable to disable it, and only refresh the
read timeout if there are incoming data. This happens on sessions with large
timeouts and low amounts of exchanged data such as telnet session. If the
server suddenly disappears, the output data accumulates in the system's
socket buffers, both timeouts are correctly refreshed, and there is no way
to know the server does not receive them, so we don't timeout. However, when
the underlying protocol always echoes sent data, it would be enough by itself
to detect the issue using the read timeout. Note that this problem does not
happen with more verbose protocols because data won't accumulate long in the
socket buffers.
When this option is set on the frontend, it will disable read timeout updates
on data sent to the client. There probably is little use of this case. When
the option is set on the backend, it will disable read timeout updates on
data sent to the server. Doing so will typically break large HTTP posts from
slow lines, so use it with caution.
It will soon be necessary to have stream interfaces running as part of
the current task, or as independant tasks. For instance when we want to
implement compression or SSL. It will also be used for applets running
as stream interfaces.
These new functions are used to perform exactly that. Note that it's
still not easy to write a simple echo applet and more functions will
likely be needed.
The BF_WRITE_ENA buffer flag became very complex to deal with, because
it was used to :
- enable automatic connection
- enable close forwarding
- enable data forwarding
The last point was not very true anymore since we introduced ->send_max,
but still the test remained everywhere. This was causing issues such as
impossibility to connect without forwarding data, impossibility to prevent
closing when data was forwarded, etc...
This patch clarifies the situation by getting rid of this multi-purpose
flag and replacing it with :
- data forwarding based only on ->send_max || ->pipe ;
- a new BF_AUTO_CONNECT flag to allow automatic connection and only
that ;
- ability to perform an automatic connection when ->send_max or ->pipe
indicate that data is waiting to leave the buffer ;
- a new BF_AUTO_CLOSE flag to let the producer automatically set the
BF_SHUTW_NOW flag when it gets a BF_SHUTR.
During this cleanup, it was discovered that some tests were performed
twice, or that the BF_HIJACK flag was still tested, which is not needed
anymore since ->send_max replcaed it. These places have been fixed too.
These cleanups have also revealed a few areas where the other flags
such as BF_EMPTY are not cleanly used. This will be an opportunity for
a second patch.
The stream_int_return() function used to call buffer_erase() on the response
buffer, which completely wipes it without taking care about whatever could
have been there. Now we more carefully strip only data not scheduled to be
sent.
All the processing has now completely been split in layers. As of
now, everything is still in process_session() which is not the right
place, but the code sequence works. Timeouts, retries, errors, all
work.
The shutdown sequence has been strictly applied: BF_SHUTR/BF_SHUTW
are only assigned by lower layers. Upper layers can only indicate
their wish to close using BF_SHUTR_NOW and BF_SHUTW_NOW.
When a shutdown is performed on a stream interface, the buffer flags
are updated accordingly and re-checked by upper layers. A lot of care
has been taken to ensure that aborts during intermediate connection
setups are correctly handled and shutdowns correctly propagated to
both buffers.
A future evolution would consist in ensuring that BF_SHUT?_NOW may
be set at any time, and applies only when the buffer is empty. This
might help with error messages, but might complicate the processing
of data remaining in buffers.
Some useless buffer flag combinations have been removed.
Stat counters are still broken (eg: per-server total number of sessions).
Error messages should be delayed to the close instant and be produced by
protocol.
Many functions must now move to proper locations.
Tracking connection status changes was hard, and some code was
redundant. A new SI_ST_CER state was added to the stream interface
to indicate a past connection error, and an SI_FL_ERR flag was
added to report past I/O error. The stream_sock code does not set
the connection to SI_ST_CLO anymore in case of I/O error, it's
the upper layer which does it. This makes it possible to know
exactly when the file descriptors are allocated.
The new SI_ST_CER state permitted to split tcp_connection_status()
in two parts, one processing SI_ST_CON and the other one SI_ST_CER.
Synchronous connection errors now make use of this last state, hence
eliminating duplicate code.
Some ib<->ob copy paste errors were found and fixed, and all entities
setting SI_ST_CLO also shut the buffers down.
Some of these stream_interface specific functions and structures
have migrated to a new stream_interface.c file.
Some types of errors are still not detected by the buffers. For
instance, let's assume the following scenario in one single pass
of process_session: a connection sits in SI_ST_TAR state during
a retry. At TAR expiration, a new connection attempt is made, the
connection is obtained and srv->cur_sess is increased. Then the
buffer timeout is fires and everything is cleared, the new state
becomes SI_ST_CLO. The cleaning code checks that previous state
was either SI_ST_CON or SI_ST_EST to release the connection. But
that's wrong because last state is still SI_ST_TAR. So the
server's connection count does not get decreased.
This means that prev_state must not be used, and must be replaced
by some transition detection instead of level detection.
The following debugging line was useful to track state changes :
fprintf(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s-> rep->flags);