Now we introduce srv->admin and srv->prev_admin which are bitfields
containing one bit per source of administrative status (maintenance only
for now). For the sake of backwards compatibility we implement a single
source (ADMF_FMAINT) but the code already checks any source (ADMF_MAINT)
where the STF_MAINTAIN bit was previously checked. This will later allow
us to add ADMF_IMAINT for maintenance mode inherited from tracked servers.
Along doing these changes, it appeared that some places will need to be
revisited when implementing the inherited bit, this concerns all those
modifying the ADMF_FMAINT bit (enable/disable actions on the CLI or stats
page), and the checks to report "via" on the stats page. But currently
the code is harmless.
Till now, the server's state and flags were all saved as a single bit
field. It causes some difficulties because we'd like to have an enum
for the state and separate flags.
This commit starts by splitting them in two distinct fields. The first
one is srv->state (with its counter-part srv->prev_state) which are now
enums, but which still contain bits (SRV_STF_*).
The flags now lie in their own field (srv->flags).
The function srv_is_usable() was updated to use the enum as input, since
it already used to deal only with the state.
Note that currently, the maintenance mode is still in the state for
simplicity, but it must move as well.
When run in daemon mode (i.e. with at least one forked process) and using
the epoll poller, sending USR1 (graceful shutdown) to the worker processes
can cause some workers to start running at 100% CPU. Precondition is having
an established HTTP keep-alive connection when the signal is received.
The cloned (during fork) listening sockets do not get closed in the parent
process, thus they do not get removed from the epoll set automatically
(see man 7 epoll). This can lead to the process receiving epoll events
that it doesn't feel responsible for, resulting in an endless loop around
epoll_wait() delivering these events.
The solution is to explicitly remove these file descriptors from the epoll
set. To not degrade performance, care was taken to only do this when
neccessary, i.e. when the file descriptor was cloned during fork.
Signed-off-by: Conrad Hoffmann <conrad@soundcloud.com>
[wt: a backport to 1.4 could be studied though chances to catch the bug are low]
We used to call srv_is_usable() with either the current state and weights
or the previous ones. This causes trouble for future changes, so let's first
split it in two variants :
- srv_is_usable(srv) considers the current status
- srv_was_usable(srv) considers the previous status
Detecting that a server's status has changed is a bit messy, as well
as it is to commit the status changes. We'll have to add new conditions
soon and we'd better avoid to multiply the number of touched locations
with the high risk of forgetting them.
This commit introduces :
- srv_lb_status_changed() to report if the status changed from the
previously committed one ;
- svr_lb_commit_status() to commit the current status
The function is now used by all load-balancing algorithms.
This flag is only a copy of (srv->uweight == 0), so better get rid of
it to reduce some of the confusion that remains in the code, and use
a simple function to return this state based on this weight instead.
Being able to map prefixes to values is already used for IPv4/IPv6
but was not yet used with strings. It can be very convenient to map
directories to server farms but large lists may be slow.
By using ebmb_insert_prefix() and ebmb_lookup_longest(), we can
insert strings with their own length as a prefix, and lookup
candidate strings and ensure that the longest matching one will
be returned, which is the longest string matching the entry.
This commit modifies the PROXY protocol V2 specification to support headers
longer than 255 bytes allowing for optional extensions. It implements the
PROXY protocol V2 which is a binary representation of V1. This will make
parsing more efficient for clients who will know in advance exactly how
many bytes to read. Also, it defines and implements some optional PROXY
protocol V2 extensions to send information about downstream SSL/TLS
connections. Support for PROXY protocol V1 remains unchanged.
Process shared mutex seems not supported on some OSs (FreeBSD).
This patch checks errors on mutex lock init to fallback
on a private session cache (per process cache) in error cases.
Last fix did address the issue for inlined patterns, but it was not
enough because the flags are lost as well when updating patterns
dynamically over the CLI.
Also if the same file was used once with -i and another time without
-i, their references would have been merged and both would have used
the same matching method.
It's appear that the patterns have two types of flags. The first
ones are relative to the pattern matching, and the second are
relative to the pattern storage. The pattern matching flags are
the same for all the patterns of one expression. Now they are
stored in the expression. The storage flags are information
returned by the pattern mathing function. This information is
relative to each entry and is stored in the "struct pattern".
Now, the expression matching flags are forwarded to the parse
and index functions. These flags are stored during the
configuration parsing, and they are used during the parse and
index actions.
This issue was introduced in dev23 with the major pattern rework,
and is a continuation of commit a631fc8 ("BUG/MAJOR: patterns: -i
and -n are ignored for inlined patterns"). No backport is needed.
These flags are only passed to pattern_read_from_file() which
loads the patterns from a file. The functions used to parse the
patterns from the current line do not provide the means to pass
the pattern flags so they're lost.
This issue was introduced in dev23 with the major pattern rework,
and was reported by Graham Morley. No backport is needed.
Using the previous callback, it's trivial to block the heartbeat attack,
first we control the message length, then we emit an SSL error if it is
out of bounds. A special log is emitted, indicating that a heartbleed
attack was stopped so that they are not confused with other failures.
That way, haproxy can protect itself even when running on an unpatched
SSL stack. Tests performed with openssl-1.0.1c indicate a total success.
Users have seen a huge increase in the rate of SSL handshake failures
starting from 2014/04/08 with the release of the Heartbleed OpenSSL
vulnerability (CVE-2014-0160). Haproxy can detect that a heartbeat
was received in the incoming handshake, and such heartbeats are not
supposed to be common, so let's log a different message when a
handshake error happens after a heartbeat is detected.
This patch only adds the new message and the new code.
The http_(res|req)_keywords_register() functions allow to register
new keywords.
You need to declare a keyword list:
struct http_req_action_kw_list test_kws = {
.scope = "testscope",
.kw = {
{ "test", parse_test },
{ NULL, NULL },
}
};
and a parsing function:
int parse_test(const char **args, int *cur_arg, struct proxy *px, struct http_req_rule *rule, char **err)
{
rule->action = HTTP_REQ_ACT_CUSTOM_STOP;
rule->action_ptr = action_function;
return 0;
}
http_req_keywords_register(&test_kws);
The HTTP_REQ_ACT_CUSTOM_STOP action stops evaluation of rules after
your rule, HTTP_REQ_ACT_CUSTOM_CONT permits the evaluation of rules
after your rule.
Finn Arne Gangstad suggested that we should have the ability to break
keep-alive when the target server has reached its maxconn and that a
number of connections are present in the queue. After some discussion
around his proposed patch, the following solution was suggested : have
a per-proxy setting to fix a limit to the number of queued connections
on a server after which we break keep-alive. This ensures that even in
high latency networks where keep-alive is beneficial, we try to find a
different server.
This patch is partially based on his original proposal and implements
this configurable threshold.
All the code inherited from version 1.1 still holds a lot ot sessions
called "t" because in 1.1 they were tasks. This naming is very annoying
and sometimes even confusing, for example in code involving tables.
Let's get rid of this once for all and before 1.5-final.
Nothing changed beyond just carefully renaming these variables.
This basically reimplements commit f3221f9 ("MEDIUM: stats: add support
for HTTP keep-alive on the stats page") which was reverted by commit
51437d2 after Igor Chan reported a broken stats page caused by the bug
fix by previous commit.
In order to avoid abusively relying on buf->o to guess how many bytes to
rewind during a redispatch, we now clear msg->sov. Thus the meaning of this
field is exactly "how many bytes of headers are left to be forwarded". It
is still possible to rewind because msg->eoh + msg->eol equal that value
before scheduling the forwarding, so we can always subtract them.
http_body_rewind() returns the number of bytes to rewind before buf->p to
find the message's body. It relies on http_hdr_rewind() to find the beginning
and adds msg->eoh + msg->eol which are always safe.
http_data_rewind() does the same to get the beginning of the data, which
differs from above when a chunk is present. It uses the function above and
adds msg->sol.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_uri_rewind() returns the number of bytes to rewind before buf->p to
find the URI. It relies on http_hdr_rewind() to find the beginning and
is just here to simplify operations.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_hdr_rewind() returns the number of bytes to rewind before buf->p to
find the beginning of headers. At the moment it's not exact as it still
relies on buf->o, assuming that no other data from a past message were
pending there, but it's what was done till there.
The purpose is to centralize further ->sov changes aiming at avoiding
to rely on buf->o.
http_body_bytes() returns the number of bytes of the current message body
present in the buffer. It is compatible with being called before and after
the headers are forwarded.
This is done to centralize further ->sov changes.
The function addr_to_stktable_key doesn't consider the expected
type of key. If the stick table key is based on IPv6 addresses
and the input is IPv4, the returned key is IPv4 adddress and his
length is 4 bytes, while is expected 16 bytes key.
This patch considers the expected key and try to convert IPv4 to
IPv6 and IPv6 to IPv4 according with the expected key.
This fixes the bug reported by Apollon Oikonomopoulos.
This bug was introduced somewhere in the 1.5-dev process.
The cfgparse.c file becomes huge, and a large part of it comes from the
server keyword parser. Since the configuration is a bit more modular now,
move this parser to server.c.
This patch also moves the check of the "server" keyword earlier in the
supported keywords list, resulting in a slightly faster config parsing
for configs with large numbers of servers (about 10%).
No functional change was made, only the code was moved.
This function it is used for dynamically update all the patterns
attached to one file. This function is atomic. All parsing or indexation
failures are reported in the haproxy logs.
This patch adds new display type. This display returns allocated string,
when the string is flush into buffers, it is freed. This permit to
return the content of "memprintf(err, ...)" messages.
The pat_ref_add functions has changed to return error.
The acl and map function do the same work with the file parsing. This
patch merge these code in only one.
Note that the function map_read_entries_from_file() in the file "map.c"
is moved to the the function pat_ref_read_from_file_smp() in the file
"pattern.c". The code of this function is not modified, only the the
name and the arguments order has changed.
The find_smp search the smp using the value of the pat_ref_elt pointer.
The pat_find_smp_* are no longer used. The function pattern_find_smp()
known all pattern indexation, and can be found
All the pattern delete function can use her reference to the original
"struct pat_ref_elt" to find the element to be remove. The functions
pat_del_list_str() and pat_del_meth() were deleted because after
applying this modification, they have the same code than pat_del_list_ptr().
The pattern reference are stored with two identifiers: the unique_id and
the reference.
The reference identify a file. Each file with the same name point to the
same reference. We can register many times one file. If the file is
modified, all his dependencies are also modified. The reference can be
used with map or acl.
The unique_id identify inline acl. The unique id is unique for each acl.
You cannot force the same id in the configuration file, because this
repport an error.
The format of the acl and map listing through the "socket" has changed
for displaying these new ids.
This patch extract the expect_type variable from the "struct pattern" to
"struct pattern_head". This variable is set during the declaration of
ACL and MAP. With this change, the function "pat_parse_len()" become
useless and can be replaced by "pat_parse_int()".
Implicit ACLs by default rely on the fetch's output type, so let's simply do
the same for all other ones. It has been verified that they all match.
This patch add the following socket command line options:
show acl [<id>]
clear acl <id>
get acl <id> <pattern>
del acl <id> <pattern>
add acl <id> <pattern>
The system used for maps is backported in the pattern functions.
Some functions needs to change the sample associated to pattern. This
new pointer permit to return the a pointer to the sample pointer. The
caller can use or change the value.
This commit adds a delete function for patterns. It looks up all
instances of the pattern to delete and deletes them all. The fetch
keyword declarations have been extended to point to the appropriate
delete function.
The match function known the format of the pattern. The pattern can be
stored in a list or in a tree. The pattern matching function use itself
the good entry point and indexation type.
Each pattern matching function return the struct pattern that match. If
the flag "fill" is set, the struct pattern is filled, otherwise the
content of this struct must not be used.
With this feature, the general pattern matching function cannot have
exceptions for building the "struct pattern".
Before this commit, the pattern_exec_match() function returns the
associate sample, the associate struct pattern or the associate struct
pattern_tree. This is complex to use, because we can check the type of
information returned.
Now the function return always a "struct pattern". If <fill> is not set,
only the value of the pointer can be used as boolean (NULL or other). If
<fill> is set, you can use the <smp> pointer and the pattern
information.
If information must be duplicated, it is stored in trash buffer.
Otherwise, the pattern can point on existing strings.
The method are actuelly stored using two types. Integer if the method is
known and string if the method is not known. The fetch is declared as
UINT, but in some case it can provides STR.
This patch create new type called METH. This type contain interge for
known method and string for the other methods. It can be used with
automatic converters.
The pattern matching can expect method.
During the free or prune function, http_meth pettern is freed. This
patch initialise the freed pointer to NULL.
The operations applied on types SMP_T_CSTR and SMP_T_STR are the same,
but the check code and the declarations are double, because it must
declare action for SMP_T_C* and SMP_T_*. The declared actions and checks
are the same. this complexify the code. Only the "conv" functions can
change from "C*" to "*"
Now, if a function needs to modify input string, it can call the new
function smp_dup(). This one duplicate data in a trash buffer.