The pattern reference are stored with two identifiers: the unique_id and
the reference.
The reference identify a file. Each file with the same name point to the
same reference. We can register many times one file. If the file is
modified, all his dependencies are also modified. The reference can be
used with map or acl.
The unique_id identify inline acl. The unique id is unique for each acl.
You cannot force the same id in the configuration file, because this
repport an error.
The format of the acl and map listing through the "socket" has changed
for displaying these new ids.
This patch extract the expect_type variable from the "struct pattern" to
"struct pattern_head". This variable is set during the declaration of
ACL and MAP. With this change, the function "pat_parse_len()" become
useless and can be replaced by "pat_parse_int()".
Implicit ACLs by default rely on the fetch's output type, so let's simply do
the same for all other ones. It has been verified that they all match.
This patch add the following socket command line options:
show acl [<id>]
clear acl <id>
get acl <id> <pattern>
del acl <id> <pattern>
add acl <id> <pattern>
The system used for maps is backported in the pattern functions.
Some functions needs to change the sample associated to pattern. This
new pointer permit to return the a pointer to the sample pointer. The
caller can use or change the value.
This commit adds a delete function for patterns. It looks up all
instances of the pattern to delete and deletes them all. The fetch
keyword declarations have been extended to point to the appropriate
delete function.
The match function known the format of the pattern. The pattern can be
stored in a list or in a tree. The pattern matching function use itself
the good entry point and indexation type.
Each pattern matching function return the struct pattern that match. If
the flag "fill" is set, the struct pattern is filled, otherwise the
content of this struct must not be used.
With this feature, the general pattern matching function cannot have
exceptions for building the "struct pattern".
Before this commit, the pattern_exec_match() function returns the
associate sample, the associate struct pattern or the associate struct
pattern_tree. This is complex to use, because we can check the type of
information returned.
Now the function return always a "struct pattern". If <fill> is not set,
only the value of the pointer can be used as boolean (NULL or other). If
<fill> is set, you can use the <smp> pointer and the pattern
information.
If information must be duplicated, it is stored in trash buffer.
Otherwise, the pattern can point on existing strings.
The method are actuelly stored using two types. Integer if the method is
known and string if the method is not known. The fetch is declared as
UINT, but in some case it can provides STR.
This patch create new type called METH. This type contain interge for
known method and string for the other methods. It can be used with
automatic converters.
The pattern matching can expect method.
During the free or prune function, http_meth pettern is freed. This
patch initialise the freed pointer to NULL.
The operations applied on types SMP_T_CSTR and SMP_T_STR are the same,
but the check code and the declarations are double, because it must
declare action for SMP_T_C* and SMP_T_*. The declared actions and checks
are the same. this complexify the code. Only the "conv" functions can
change from "C*" to "*"
Now, if a function needs to modify input string, it can call the new
function smp_dup(). This one duplicate data in a trash buffer.
The pattern parse functions put the parsed result in a "struct pattern"
without memory allocation. If the pattern must reference the input data
without changes, the pattern point to the parsed string. If buffers are
needed to store translated data, it use th trash buffer. The indexation
function that allocate the memory later if it is needed.
Before this patch, the indexation function check the declared patttern
matching function and index the data according with this function. This
is not useful to add some indexation mode.
This commit adds dedicated indexation function. Each struct pattern is
associated with one indexation function. This function permit to index
data according with the type of pattern and with the type of match.
This commit separes the "struct list" used for the chain the "struct
pattern" which contain the pattern data. Later, this change will permit
to manipulate lists ans trees with the same "struct pattern".
Each pattern parser take only one string. This change is reported to the
function prototype of the function "pattern_register()". Now, it is
called with just one string and no need to browse the array of args.
After the previous patches, the "pat_parse_strcat()" function disappear,
and the "pat_parse_int()" and "pat_parse_dotted_ver()" functions dont
use anymore the "opaque" argument, and take only one string on his
input.
So, after this patch, each pattern parser no longer use the opaque
variable and take only one string as input. This patch change the
prototype of the pattern parsing functions.
Now, the "char **args" is replaced by a "char *arg", the "int *opaque"
is removed and these functions return 1 in succes case, and 0 if fail.
This patch remove the limit of 32 groups. It also permit to use standard
"pat_parse_str()" function in place of "pat_parse_strcat()". The
"pat_parse_strcat()" is no longer used and its removed. Before this
patch, the groups are stored in a bitfield, now they are stored in a
list of strings. The matching is slower, but the number of groups is
low and generally the list of allowed groups is short.
The fetch function "smp_fetch_http_auth_grp()" used with the name
"http_auth_group" return valid username. It can be used as string for
displaying the username or with the acl "http_auth_group" for checking
the group of the user.
Maybe the names of the ACL and fetch methods are no longer suitable, but
I keep the current names for conserving the compatibility with existing
configurations.
The function "userlist_postinit()" is created from verification code
stored in the big function "check_config_validity()". The code is
adapted to the new authentication storage system and it is moved in the
"src/auth.c" file. This function is used to check the validity of the
users declared in groups and to check the validity of groups declared
on the "user" entries.
This resolve function is executed before the check of all proxy because
many acl needs solved users and groups.
Large configurations can take time to parse when thousands of backends
are in use. Let's store all the proxies in trees.
findproxy_mode() has been modified to use the tree for lookups, which
has divided the parsing time by about 2.5. But many lookups are still
present at many places and need to be dealt with.
We store the time stamp of last read in the channel in order to
be able to measure some bit rate and pause lengths. We only use
16 bits which were unused for this. We don't need more, as it
allows us to measure with a millisecond precision for up to 65s.
These ones are only reset during transfers. There is a low but non-null
risk that a first full read causes the previous value to be reused and
immediately to immediately set the CF_STREAMER flag. The impact is only
to increase earlier than expected the SSL record size and to use splice().
This bug was already present in 1.4, so a backport is possible.
Summary:
Track and report last session time on the stats page for each server
in every backend, as well as the backend.
This attempts to address the requirement in the ROADMAP
- add a last activity date for each server (req/resp) that will be
displayed in the stats. It will be useful with soft stop.
The stats page reports this as time elapsed since last session. This
change does not adequately address the requirement for long running
session (websocket, RDP... etc).
Till now, we had one flag per stick counter to indicate if it was
tracked in a backend or in a frontend. We just had to add another
flag per stick-counter to indicate if it relies on contents or just
connection. These flags are quite painful to maintain and tend to
easily conflict with other flags if their number is changed.
The correct solution consists in moving the flags to the stkctr struct
itself, but currently this struct is made of 2 pointers, so adding a
new entry there to store only two bits will cause at least 16 more bytes
to be eaten per counter due to alignment issues, and we definitely don't
want to waste tens to hundreds of bytes per session just for things that
most users don't use.
Since we only need to store two bits per counter, an intermediate
solution consists in replacing the entry pointer with a composite
value made of the original entry pointer and the two flags in the
2 unused lower bits. If later a need for other flags arises, we'll
have to store them in the struct.
A few inline functions have been added to abstract the retrieval
and assignment of the pointers and flags, resulting in very few
changes. That way there is no more dependence on the number of
stick-counters and their position in the session flags.
One year ago, commit 5d5b5d8 ("MEDIUM: proto_tcp: add support for tracking
L7 information") brought support for tracking L7 information in tcp-request
content rules. Two years earlier, commit 0a4838c ("[MEDIUM] session-counters:
correctly unbind the counters tracked by the backend") used to flush the
backend counters after processing a request.
While that earliest patch was correct at the time, it became wrong after
the second patch was merged. The code does what it says, but the concept
is flawed. "TCP request content" rules are evaluated for each HTTP request
over a single connection. So if such a rule in the frontend decides to
track any L7 information or to track L4 information when an L7 condition
matches, then it is applied to all requests over the same connection even
if they don't match. This means that a rule such as :
tcp-request content track-sc0 src if { path /index.html }
will count one request for index.html, and another one for each of the
objects present on this page that are fetched over the same connection
which sent the initial matching request.
Worse, it is possible to make the code do stupid things by using multiple
counters:
tcp-request content track-sc0 src if { path /foo }
tcp-request content track-sc1 src if { path /bar }
Just sending two requests first, one with /foo, one with /bar, shows
twice the number of requests for all subsequent requests. Just because
both of them persist after the end of the request.
So the decision to flush backend-tracked counters was not the correct
one. In practice, what is important is to flush countent-based rules
since they are the ones evaluated for each request.
Doing so requires new flags in the session however, to keep track of
which stick-counter was tracked by what ruleset. A later change might
make this easier to maintain over time.
This bug is 1.5-specific, no backport to stable is needed.
In addition to previous outputs, we also emit the cumulated number of
connections, the cumulated number of requests, the maximum allowed
SSL connection concurrency, the current number of SSL connections and
the cumulated number of SSL connections. This will help troubleshoot
systems which experience memory shortage due to SSL.
This function is used to compute the new polling state based on
the previous state. All pollers have to do this in their update
loop, so better centralize the logic for it.
Currently, each poll loop handles the polled events the same way,
resulting in a lot of duplicated, complex code. Additionally, epoll
was the only one to handle newly created FDs immediately.
So instead, let's move that code to fd.c in a new function dedicated
to this task : fd_process_polled_events(). All pollers now use this
function.
This is the reimplementation of the "done" action : when we experience
a short read, we're almost certain that we've exhausted the system's
buffers and that we'll meet an EAGAIN if we attempt to read again. If
the FD is not yet polled, the stream interface already takes care of
stopping the speculative read. When the FD is already being polled, we
have two options :
- either we're running from a level-triggered poller, in which case
we'd rather report that we've reached the end so that we don't
speculate over the poller and let it report next time data are
available ;
- or we're running from an edge-triggered poller in which case we
have no choice and have to see the EAGAIN to re-enable events.
At the moment we don't have any edge-triggered poller, so it's desirable
to avoid speculative I/O that we know will fail.
Note that this must not be ported to SSL since SSL hides the real
readiness of the file descriptor.
Thanks to this change, we observe no EAGAIN anymore during keep-alive
transfers, and failed recvfrom() are reduced by half in http-server-close
mode (the client-facing side is always being polled and the second recv
can be avoided). Doing so results in about 5% performance increase in
keep-alive mode. Similarly, we used to have up to about 1.6% of EAGAIN
on accept() (1/maxaccept), and these have completely disappeared under
high loads.
It's easier and safer to rely on conn_xprt_ready() everywhere than to
check the flag itself. It will also simplify adding extra checks later
if needed. Some useless controls for !xprt have been removed, as the
XPRT_READY flag itself guarantees xprt is set.
It's easier and safer to rely on conn_ctrl_ready() everywhere than to
check the flag itself. It will also simplify adding extra checks later
if needed. Some useless controls for !ctrl have been removed, as the
CTRL_READY flag itself guarantees ctrl is set.
We simply remove these functions and replace their calls with the
appropriate ones :
- if we're in the data phase, we can simply report wait on the FD
- if we're in the socket phase, we may also have to signal the
desire to read/write on the socket because it might not be
active yet.
These flags were used to report the readiness of the file descriptor.
Now this readiness is directly checked at the file descriptor itself.
This removes the need for constantly synchronizing updates between the
file descriptor and the connection and ensures that all layers share
the same level of information.
For now, the readiness is updated in conn_{sock,data}_poll_* by directly
touching the file descriptor. This must move to the lower layers instead
so that these functions can disappear as well. In this state, the change
works but is incomplete. It's sensible enough to avoid making it more
complex.
Now the sock/data updates become much simpler because they just have to
enable/disable access to a file descriptor and not to care anymore about
its readiness.
This commit heavily changes the polling system in order to definitely
fix the frequent breakage of SSL which needs to remember the last
EAGAIN before deciding whether to poll or not. Now we have a state per
direction for each FD, as opposed to a previous and current state
previously. An FD can have up to 8 different states for each direction,
each of which being the result of a 3-bit combination. These 3 bits
indicate a wish to access the FD, the readiness of the FD and the
subscription of the FD to the polling system.
This means that it will now be possible to remember the state of a
file descriptor across disable/enable sequences that generally happen
during forwarding, where enabling reading on a previously disabled FD
would result in forgetting the EAGAIN flag it met last time.
Several new state manipulation functions have been introduced or
adapted :
- fd_want_{recv,send} : enable receiving/sending on the FD regardless
of its state (sets the ACTIVE flag) ;
- fd_stop_{recv,send} : stop receiving/sending on the FD regardless
of its state (clears the ACTIVE flag) ;
- fd_cant_{recv,send} : report a failure to receive/send on the FD
corresponding to EAGAIN (clears the READY flag) ;
- fd_may_{recv,send} : report the ability to receive/send on the FD
as reported by poll() (sets the READY flag) ;
Some functions are used to report the current FD status :
- fd_{recv,send}_active
- fd_{recv,send}_ready
- fd_{recv,send}_polled
Some functions were removed :
- fd_ev_clr(), fd_ev_set(), fd_ev_rem(), fd_ev_wai()
The POLLHUP/POLLERR flags are now reported as ready so that the I/O layers
knows it can try to access the file descriptor to get this information.
In order to simplify the conditions to add/remove cache entries, a new
function fd_alloc_or_release_cache_entry() was created to be used from
pollers while scanning for updates.
The following pollers have been updated :
ev_select() : done, built, tested on Linux 3.10
ev_poll() : done, built, tested on Linux 3.10
ev_epoll() : done, built, tested on Linux 3.10 & 3.13
ev_kqueue() : done, built, tested on OpenBSD 5.2
We're completely changing the way FDs will be polled. There will be no
more speculative I/O since we'll know the exact FD state, so these will
only be cached events.
First, let's fix a few field names which become confusing. "spec_e" was
used to store a speculative I/O event state. Now we'll store the whole
R/W states for the FD there. "spec_p" was used to store a speculative
I/O cache position. Now let's clearly call it "cache".
We're completely changing the way FDs will be polled. First, let's fix
a few field names which become confusing. "spec_e" was used to store a
speculative I/O event state. Now we'll store the whole R/W states for
the FD there.
It is quite often that an connection error only reports "socket error" with
no more information. This is especially problematic with health checks where
many causes are possible, including resource exhaustion which do not lead to
a valid errno code. So let's add explicit codes to cover these cases.
Till now there was no way to know from a connection if a previous
call to drain() had done any change. This function is used to drain
incoming data and to update the connection's flags at the same time.
It also correctly sets the polling flags on the connection if the
drain function indicates inability to receive. This function will
be used preferably over ctrl->drain() when a connection is used.
This reverts commit 1208266356.
It randomly breaks SSL. What happens is that if the SSL response is
read at once by the SSL stack and is partially delivered to the buffer,
then there's no way to read the next parts because we wait for some
polling first.
So we'll fix this after the polling rework.
This function is called twice per request, and does almost always nothing.
Better use an inline version to avoid entering it when we can.
About 0.5% additional performance was gained this way.
si_connect() used to only return SI_ST_CON. But it already detect the
connection reuse and is the function which avoids calling connect().
So it already knows the connection is valid and reuse. Thus we make it
return SI_ST_EST when a connection is reused. This means that
connect_server() can return this state and sess_update_stream_int()
as well.
Thanks to this change, we don't need to leave process_session() in
SI_ST_CON state to immediately enter it again to switch to SI_ST_EST.
Implementing this removes one call to process_session() per request
in keep-alive mode. We're now at 2 calls per request, which is the
minimum (one for the request and another one for the response). The
number of calls to http_wait_for_response() has also dropped from 2
to one.
Tests indicate a performance gain of about 2.6% in request rate in
keep-alive mode. There should be no gain in http-server-close() since
we don't use this faster path.
This reverts commit f3221f99ac.
Igor reported some very strange breakage of his stats page which is
clearly caused by the chunking, though I don't see at first glance
what could be wrong. Better revert it for now.