This switches explicit calls to various trivial registration methods for
keywords, muxes or protocols from constructors to INITCALL1 at stage
STG_REGISTER. All these calls have in common to consume a single pointer
and return void. Doing this removes 26 constructors. The following calls
were addressed :
- acl_register_keywords
- bind_register_keywords
- cfg_register_keywords
- cli_register_kw
- flt_register_keywords
- http_req_keywords_register
- http_res_keywords_register
- protocol_register
- register_mux_proto
- sample_register_convs
- sample_register_fetches
- srv_register_keywords
- tcp_req_conn_keywords_register
- tcp_req_cont_keywords_register
- tcp_req_sess_keywords_register
- tcp_res_cont_keywords_register
- flt_register_keywords
In commit c7566001 ("MINOR: server: Add "alpn" and "npn" keywords") and
commit 201b9f4e ("MAJOR: connections: Defer mux creation for outgoing
connection if alpn is set"), the build was broken on older OpenSSL
releases.
Move the #ifdef's around so that we build again with older OpenSSL
releases (0.9.8 was tested).
When we create a connection, if we have to defer the conn_stream and the
mux creation until we can decide it (ie until the SSL handshake is done, and
the ALPN is decided), store the connection in the stream_interface, so that
we're sure we can destroy it if needed.
The creation of the conn_stream for an outgoing connection has been delayed
a bit, and when using dispatch, a check was made to see if a conn_stream
was attached before the conn_stream was created, so remove the test, as
it's done later anyway, and create and install the conn_stream right away
when we don't have a server, as is done when we don't have an alpn/npn
defined.
If an ALPN (or a NPN) was chosen for a server, defer choosing the mux until
after the SSL handshake is done, and the ALPN/NPN has been negociated, so
that we know which mux to pick.
Do not destroy the connection when we're about to destroy a stream. This
prevents us from doing keepalive on server connections when the client is
using HTTP/2, as a new stream is created for each request.
Instead, the session is now responsible for destroying connections.
When reusing connections, the attach() mux method is now used to create a new
conn_stream.
Instead of trying to receive as soon as the connection is created, and to
eventually have to transfer subscription if we move connections, wait
until the connection is established before attempting to recv.
Commit 85b73e9 ("BUG/MEDIUM: stream: Make sure polling is right on retry.")
introduced a possible null dereference on the error path detected by gcc-7.
Let's simply assign srv_conn after checking the error and not before.
No backport is needed.
While "option prefer-last-server" only applies to non-deterministic load
balancing algorithms, 401/407 responses actually caused haproxy to prefer
the last server unconditionally.
As this breaks deterministic load balancing algorithms like uri, this
patch applies the same condition here.
Should be backported to 1.8 (together with "BUG/MINOR: only mark
connections private if NTLM is detected").
When retrying to connect to a server, because the previous connection failed,
make sure if we subscribed to the previous connection, the polling flags will
be true for the new fd.
No backport is needed.
The return value from conn_install_mux() was not checked, so if an
inconsistency happens in the code, or a memory allocation fails while
initializing the mux, we can crash while using an uninitialized mux.
In practice the code inconsistency does not really happen since we
cannot configure such a situation, except during development, but
the out of memory condition could definitely happen.
This should be backported to 1.8 (the code is a bit different there,
there are two calls to conn_install_mux()).
This adds the sample fetch 'be_conn_free([<backend>])'. This sample fetch
provides the total number of unused connections across available servers in the
specified backend.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
The comment above the change remains true. We assume there is always 1
conn_stream per outgoing connectionq. Today, it is always true because H2 is not
supported yet for server connections.
It remained some fragments of the old buffers API in debug messages, here and
there.
This was caused by the recent buffer API changes, no backport is needed.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
These ones manipulate the output data count which will be specific to
the channel soon, so prepare the call points to use the channel only.
The b_* functions are now unused and were removed.
For large farms where servers are regularly added or removed, picking
a random server from the pool can ensure faster load transitions than
when using round-robin and less traffic surges on the newly added
servers than when using leastconn.
This commit introduces "balance random". It internally uses a random as
the key to the consistent hashing mechanism, thus all features available
in consistent hashing such as weights and bounded load via hash-balance-
factor are usable. It is extremely convenient because one common concern
when using random is what happens when a server is hammered a bit too
much. Here that can trivially be avoided, like in the configuration below :
backend bk0
balance random
hash-balance-factor 110
server-template s 1-100 127.0.0.1:8000 check inter 1s
Note that while "balance random" internally relies on a hash algorithm,
it holds the same properties as round-robin and as such is compatible with
reusing an existing server connection with "option prefer-last-server".
Commit 522eea7 ("MINOR: ssl: Handle sending early data to server.") added
a dependency on SRV_SSL_O_EARLY_DATA which only exists when USE_OPENSSL
is defined (which is probably not the best solution) and breaks the build
when ssl is not enabled. Just add an ifdef USE_OPENSSL around the block
for now.
This adds a new keyword on the "server" line, "allow-0rtt", if set, we'll try
to send early data to the server, as long as the client sent early data, as
in case the server rejects the early data, we no longer have them, and can't
resend them, so the only option we have is to send back a 425, and we need
to be sure the client knows how to interpret it correctly.
All the references to connections in the data path from streams and
stream_interfaces were changed to use conn_streams. Most functions named
"something_conn" were renamed to "something_cs" for this. Sometimes the
connection still is what matters (eg during a connection establishment)
and were not always renamed. The change is significant and minimal at the
same time, and was quite thoroughly tested now. As of this patch, all
accesses to the connection from upper layers go through the pass-through
mux.
For HTTP/2 and QUIC, we'll need to deal with multiplexed streams inside
a connection. After quite a long brainstorming, it appears that the
connection interface to the existing streams is appropriate just like
the connection interface to the lower layers. In fact we need to have
the mux layer in the middle of the connection, between the transport
and the data layer.
A mux can exist on two directions/sides. On the inbound direction, it
instanciates new streams from incoming connections, while on the outbound
direction it muxes streams into outgoing connections. The difference is
visible on the mux->init() call : in one case, an upper context is already
known (outgoing connection), and in the other case, the upper context is
not yet known (incoming connection) and will have to be allocated by the
mux. The session doesn't have to create the new streams anymore, as this
is performed by the mux itself.
This patch introduces this and creates a pass-through mux called
"mux_pt" which is used for all new connections and which only
calls the data layer's recv,send,wake() calls. One incoming stream
is immediately created when init() is called on the inbound direction.
There should not be any visible impact.
Note that the connection's mux is purposely not set until the session
is completed so that we don't accidently run with the wrong mux. This
must not cause any issue as the xprt_done_cb function is always called
prior to using mux's recv/send functions.
A lock for LB parameters has been added inside the proxy structure and atomic
operations have been used to update server variables releated to lb.
The only significant change is about lb_map. Because the servers status are
updated in the sync-point, we can call recalc_server_map function synchronously
in map_set_server_status_up/down function.
For now, we have a list of each type per thread. So there is no need to lock
them. This is the easiest solution for now, but not the best one because there
is no sharing between threads. An idle connection on a thread will not be able
be used by a stream on another thread. So it could be a good idea to rework this
patch later.
Now, each proxy contains a lock that must be used when necessary to protect
it. Moreover, all proxy's counters are now updated using atomic operations.
srv_queue([<backend>/]<server>) : integer
Returns an integer value corresponding to the number of connections currently
pending in the designated server's queue. If <backend> is omitted, then the
server is looked up in the current backend. It can sometimes be used together
with the "use-server" directive to force to use a known faster server when it
is not much loaded. See also the "srv_conn", "avg_queue" and "queue" sample
fetch methods.
The server state and weight was reworked to handle
"pending" values updated by checks/CLI/LUA/agent.
These values are commited to be propagated to the
LB stack.
In further dev related to multi-thread, the commit
will be handled into a sync point.
Pending values are named using the prefix 'next_'
Current values used by the LB stack are named 'cur_'
2 places were using an open-coded implementation of this function to count
available servers. Note that the avg_queue_size() fetch didn't check that
the proxy was in STOPPED state so it would possibly return a wrong server
count here but that wouldn't impact the returned value.
Signed-off-by: Nenad Merdanovic <nmerdan@haproxy.com>
This is like the nbsrv() sample fetch function except that it works as
a converter so it can count the number of available servers of a backend
name retrieved using a sample fetch or an environment variable.
Signed-off-by: Nenad Merdanovic <nmerdan@haproxy.com>
Keeping the address and the port in the same field causes a lot of problems,
specifically on the DNS part where we're forced to cheat on the family to be
able to keep the port. This causes some issues such as some families not being
resolvable anymore.
This patch first moves the service port to a new field "svc_port" so that the
port field is never used anymore in the "addr" field (struct sockaddr_storage).
All call places were adapted (there aren't that many).
when using "option prefer-last-server", we may not always stay on
the same backend if option balance told us otherwise.
For example, backend may change in the following cases:
balance hdr()
balance rdp-cookie
balance source
balance uri
balance url_param
[wt: backport this to 1.7 and 1.6]
According to nbsrv() documentation this fetcher should return "an
integer value corresponding to the number of usable servers".
In case backend is disabled none of servers is usable, so I believe
fetcher should return 0.
This patch should be backported to 1.7, 1.6, 1.5.
Now we exclusively use xprt_get(XPRT_RAW) instead of &raw_sock or
xprt_get(XPRT_SSL) for &ssl_sock. This removes a bunch of #ifdef and
include spread over a number of location including backend, cfgparse,
checks, cli, hlua, log, server and session.
These 2 patches add ability to fetch frontend/backend name in your
logic, so they can be used later to make routing decisions (fe_name) or
taking some actions based on backend which responded to request (be_name).
In our case we needed a fetcher to be able to extract information we
needed from frontend name.
When a backend doesn't use any known LB algorithm, backend_lb_algo_str()
returns NULL. It used to cause "nil" to be printed in the stats dump
since version 1.4 but causes 1.7 to try to parse this NULL to encode
it as a CSV string, causing a crash on "show stat" in this case.
The only situation where this can happen is when "transparent" or
"dispatch" are used in a proxy, in which case the LB algorithm is
BE_LB_ALGO_NONE. Thus now we explicitly report "none" when this
situation is detected, and we preventively report "unknown" if any
unknown algorithm is detected, which may happen if such an algo is
added in the future and the function is not updated.
This fix must be backported to 1.7 and may be backported as far as
1.4, though it has less impact there.