haproxy/dev/phash/phash.c

114 lines
3.6 KiB
C
Raw Normal View History

/* Brute-force based perfect hash generator for small sets of integers. Just
* fill the table below with the integer values, try to pad a little bit to
* avoid too complicated divides, experiment with a few operations in the
* hash function and reuse the output as-is to make your table. You may also
* want to experiment with the random generator to use either one or two
* distinct values for mul and key.
*/
#include <stdio.h>
#include <stdlib.h>
/* warning no more than 32 distinct values! */
//#define CODES 21
//#define CODES 20
//#define CODES 19
//const int codes[CODES] = { 200,400,401,403,404,405,407,408,410,413,421,422,425,429,500,501,502,503,504};
#define CODES 32
const int codes[CODES] = { 200,400,401,403,404,405,407,408,410,413,421,422,425,429,500,501,502,503,504,
/* padding entries below, which will fall back to the default code */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
unsigned mul, xor;
unsigned bmul = 0, bxor = 0;
static unsigned rnd32seed = 0x11111111U;
static unsigned rnd32()
{
rnd32seed ^= rnd32seed << 13;
rnd32seed ^= rnd32seed >> 17;
rnd32seed ^= rnd32seed << 5;
return rnd32seed;
}
/* the hash function to use in the target code. Try various combinations of
* multiplies and xor, always folded with a modulo, and try to spot the
* simplest operations if possible. Sometimes it may be worth adding a few
* dummy codes to get a better modulo code. In this case, just add dummy
* values at the end, but always distinct from the original ones. If the
* number of codes is even, it might be needed to rotate left the result
* before the modulo to compensate for lost LSBs.
*/
unsigned hash(unsigned i)
{
//return ((i * mul) - (i ^ xor)) % CODES; // more solutions
//return ((i * mul) + (i ^ xor)) % CODES; // alternate
//return ((i ^ xor) * mul) % CODES; // less solutions but still OK for sequences up to 19 long
//return ((i * mul) ^ xor) % CODES; // less solutions but still OK for sequences up to 19 long
i = i * mul;
i >>= 5;
//i = i ^ xor;
//i = (i << 30) | (i >> 2); // rotate 2 right
//i = (i << 2) | (i >> 30); // rotate 2 left
//i |= i >> 20;
//i += i >> 30;
//i |= i >> 16;
return i % CODES;
//return ((i * mul) ^ xor) % CODES; // less solutions but still OK for sequences up to 19 long
}
int main(int argc, char **argv)
{
unsigned h, i, flag, best, tests;
if (argc > 2) {
mul = atol(argv[1]);
xor = atol(argv[2]);
for (i = 0; i < CODES && codes[i] >= 0; i++)
printf("hash(%4u) = %4u // [%4u] = %4u\n", codes[i], hash(codes[i]), hash(codes[i]), codes[i]);
return 0;
}
tests = 0;
best = 0;
while (/*best < CODES &&*/ ++tests) {
mul = rnd32();
xor = mul; // works for some sequences up to 21 long
//xor = rnd32(); // more solutions
flag = 0;
for (i = 0; i < CODES && codes[i] >= 0; i++) {
h = hash(codes[i]);
if (flag & (1 << h))
break;
flag |= 1 << h;
}
if (i > best ||
(i == best && mul <= bmul && xor <= bxor)) {
/* find the best code and try to find the smallest
* parameters among the best ones (need to disable
* best<CODES in the loop for this). Small values are
* interesting for some multipliers, and for some RISC
* architectures where literals can be loaded in less
* instructions.
*/
best = i;
bmul = mul;
bxor = xor;
printf("%u: mul=%u xor=%u\n", best, bmul, bxor);
}
if ((tests & 0x7ffff) == 0)
printf("%u tests...\r", tests);
}
printf("%u tests, %u vals with mul=%u xor=%u:\n", tests, best, bmul, bxor);
mul = bmul; xor = bxor;
for (i = 0; i < CODES && codes[i] >= 0; i++)
printf("hash(%4u) = %2u // [%2u] = %4u\n", codes[i], hash(codes[i]), hash(codes[i]), codes[i]);
}